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Abstract In this paper we propose a new, information-based approach for
modelling the dynamic evolution of a portfolio of credit risky securities. In our
setup market prices of traded credit derivatives are given by the solution of a
nonlinear filtering problem. The innovations approach to nonlinear filtering is
used to solve this problem and to derive the dynamics of market prices. More-
over, the practical application of the model is discussed: we analyse calibration,
the pricing of exotic credit derivatives and the computation of risk-minimizing
hedging strategies. The paper closes with a few numerical case studies.
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1 Introduction

Credit derivatives - derivative securities whose payoff is linked to default events
in a given portfolio - are an important tool in managing credit risk. However,
the subprime crisis and the subsequent turmoil in credit markets highlights
the need for a sound methodology for the pricing and the risk management of
these securities. Portfolio products pose a particular challenge in this regard:
the main difficulty is to capture the dependence structure of the defaults and
the dynamic evolution of the credit spreads in a realistic and tractable way.
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In this paper we propose a new, information-based approach to this prob-
lem. We consider a reduced-form model driven by an unobservable background
factor process X . For tractability reasons X is modelled as a finite state
Markov chain. We consider a market for defaultable securities related to m

firms and assume that the default times are conditionally independent dou-
bly stochastic random times where the default intensity of firm i is given by
λt,i = λi(Xt). This setup is akin to the model of ?. If X was observable,
the Markovian structure of the model would imply that prices of defaultable
securities are functions of the past defaults and the current state of X .

In our setupX is however not directly observed. Instead, the available infor-
mation consists of prices of liquidly traded securities. Prices of such securities
are given as conditional expectations with respect to a filtration FM = (FM

t )t≥0

which we call market information. We assume that FM is generated by the de-
fault history of the firms under consideration and by a process Z giving obser-
vations of X in additive noise. To compute the prices of the traded securities
at t one therefore needs to determine the conditional distribution of Xt given
FM

t . Since X is a finite-state Markov chain this distribution is represented by
a vector of probabilities denoted πt. Computing the dynamics of the process
π = (πt)t≥0 is a nonlinear filtering problem which is solved in Section 3 using
martingale representation results and the innovations approach to nonlinear
filtering. By the same token we derive the dynamics of the market price of
traded credit derivatives.

In Section 4 these results are then applied to the pricing and the hedging
of non-traded credit derivatives. It is shown that the price of most credit
derivatives common in practice - defined as conditional expectation of the
associated payoff given FM

t - depends on the realization of πt and on past
default information. Here a major issue arises for the application of the model:
we view the process Z as abstract source of information which is not directly
linked to economic quantities. Hence the process π is not directly accessible
for typical investors. As we aim at pricing formulas and hedging strategies
which can be evaluated in terms of publicly available information, a crucial
point is to determine πt from the prices of traded securities (calibration),
and we explain how this can be achieved by linear or quadratic programming
techniques. Thereafter we derive risk-minimizing hedging strategies. Finally,
in Section 5, we illustrate the applicability of the model to practical problems
with a few numerical case studies.

The proposed modelling approach has a number of advantages: first, ac-
tual computations are done mostly in the context of the hypothetical model
where X is fully observable. Since the latter has a simple Markovian structure,
computations become relatively straightforward. Second, the fact that prices
of traded securities are given by the conditional expectation given the mar-
ket filtration FM leads to rich credit-spread dynamics: the proposed approach
accommodates spread risk (random fluctuations of credit spreads between de-
faults) and default contagion (the observation that at the default of a company
the credit spreads of related companies often react drastically). A prime ex-
ample for contagion effects is the rise in credit spreads after the default of
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Lehman brothers in 2008. Both features are important in the derivation of
robust dynamic hedging strategies and for the pricing of certain exotic credit
derivatives. Third, the model has a natural factor structure with factor process
π. Finally, the model calibrates reasonably well to observed market data. It is
even possible to calibrate the model to single-name CDS spreads and tranche
spreads for synthetic CDOs from a heterogeneous portfolio, as is discussed in
detail in Section 5.2.

Reduced-form credit risk models with incomplete information have been
considered previously by Schönbucher (2004), Collin-Dufresne, Goldstein &
Helwege (2003), Duffie, Eckner, Horel & Saita (2009) and Frey & Runggaldier
(2008). Frey & Runggaldier (2008) concentrate on the mathematical analy-
sis of filtering problems in reduced-form credit risk models. Schönbucher and
Collin-Dufresne et. al. were the first to point out that the successive updat-
ing of the distribution of an unobservable factor in reaction to incoming de-
fault observation has the potential to generate contagion effects. None of these
contributions addresses the dynamics of credit-derivative prices under incom-
plete information or issues related to hedging. The innovations approach to
nonlinear filtering has been used previously by Landen (2001) in the context
of default-free term-structure models. Moreover, nonlinear filtering problems
arise in a natural way in structural credit risk models with incomplete infor-
mation about the current value of assets or liabilities such as Kusuoka (1999),
Duffie & Lando (2001), Jarrow & Protter (2004), Coculescu, Geman, & Jean-
blanc (2008) or Frey & Schmidt (2009).

2 The Model

Our model is constructed on some filtered probability space (Ω,F ,F,Q), with
F = (Ft)t≥0 satisfying the usual conditions; all processes considered are by
assumption F-adapted. Q is the risk-neutral martingale measure used for pric-
ing. For simplicity we work directly with discounted quantities so that the
default-free money market account satisfies Bt ≡ 1.

Defaults and losses. Consider m firms. The default time of firm i is a stop-
ping time denoted by τi and the current default state of the portfolio is
Yt = (Yt,1, . . . , Yt,m) with Yt,i = 1{τi≤t}. Note that Yt ∈ {0, 1}m. We as-
sume that Y0 = 0. The percentage loss given default of firm i is denoted by
the random variable ℓi ∈ (0, 1]. We assume that ℓ1, . . . , ℓm are independent
random variables, independent of all other quantities introduced in the sequel.
The loss state of the portfolio is given by the process L = (Lt,1, . . . , Lt,m)t≥0

where Lt,i = ℓiYt,i.

Marked-point-process representation. Denote by 0 = T0 < T1 < · · · < Tm < ∞
the ordered default times and by ξn the identity of the firm defaulting at Tn.
Then the sequence

(Tn, (ξn, ℓξn)) =: (Tn, En), 1 ≤ n ≤ m
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gives a representation of L as marked point process with mark space E :=
{1, . . . ,m}×(0, 1]. Let µL(ds, de) be the random measure associated to L with
support [0,∞)× E. Note that any random function R : Ω × [0,∞)× E → R
can be written in the form

R(s, e) = R(s, (ξ, ℓ)) =
m∑

i=1

1{ξ=i}Ri(s, ℓ)

with Ri(s, ℓ) := R(s, (i, ℓ)). Hence, integrals with respect to µL(ds, de) can be
written in the form

t∫

0

∫

E

R(s, e)µL(ds, de) =
∑

Tn≤t

Rξn(Tn, ℓξn) =
∑

τi≤t

Ri(τi, ℓi). (2.1)

2.1 The underlying Markov model

The default intensities of the firms under consideration are driven by the
so-called factor or state process X . The process X is modelled as a finite-
state Markov chain; in the sequel its state space SX is identified with the set
{1, . . . ,K}. The following assumption states that the default times are condi-
tionally independent, doubly-stochastic random times with default intensity
λt,i := λi(Xt). Set FX

∞ = σ(Xs : s ≥ 0).

A1 There are functions λi : SX → (0,∞), i = 1, . . . ,m, such that for all
t1, . . . , tm ≥ 0

Q
(
τ1 > t1, . . . , τm > tm | FX

∞

)
=

m∏

i=1

exp
(
−

ti∫

0

λi(Xs)ds
)
.

It is well-known that under A1 there are no joint defaults, i.e. τi 6= τj , for
i 6= j almost surely. Moreover, for all 1 ≤ i ≤ m

Yt,i −
t∧τi∫

0

λi(Xs)ds (2.2)

is an F-martingale; see for instance Chapter 9 in McNeil, Frey & Embrechts
(2005). Furthermore, the process (X,L) is jointly Markov.

Denote by Fℓi the distribution function of ℓi. A default of firm i occurs
with intensity (1 − Yt,i)λi(Xt), and the loss given default of firm i has the
distribution Fℓi . Hence the F-compensator νL of the random measure µL is
given by

νL(dt, de) = νL(dt, dξ, dℓ) =

m∑

i=1

δ{i}(dξ)Fℓi(dℓ) (1 − Yt,i)λi(Xt)dt , (2.3)
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where δ{i} stands for the Dirac-measure in i. To illustrate this further, we show
how the default intensity of company j can be recovered from (2.3): note that

Yt,j = 1{τj≤t} =
∑

Tn≤t

1{ξn=j} =

t∫

0

∫

E

Rj(s, e)µL(ds, de)

with Rj(s, e) = Rj(s, (ξ, ℓ)) := 1{ξ=j}. Using (2.1), the compensator of Yj is
given by

t∫

0

∫

E

Rj(s, e)νL(ds, de) =

t∫

0

∫

E

1{ξ=j}

m∑

i=1

δ{i}(dξ)Fℓi(dℓ) (1 − Ys,i)λi(Xs)ds

=

t∫

0

(1− Ys,j)λj(Xs)ds.

Example 2.1 In the numerical part we will consider a one-factor model where
X represents the global state of the economy. For this we model the default
intensities under full information as increasing functions λi : {1, . . . ,K} →
(0,∞). Hence, 1 represents the best state (lowest default intensity) and K

corresponds to the worst state; moreover, the default intensities are comono-
tonic. In the special case of a homogeneous model the default intensities of all
firms are identical, λi(·) ≡ λ(·).

Furthermore, denote by (q(i, k))1≤i,k≤K the generator matrix of X so that
q(i, k), i 6= k, gives the intensity of a transition from state i to state k. We
will consider two possible choices for this matrix. First, let the factor process
be constant, Xt ≡ X for all t. In that case q(i, k) ≡ 0, and filtering reduces
to Bayesian analysis. A model of this type is known as frailty model, see also
Schönbucher (2004). Second, we consider the case where X has next neighbour
dynamics, that is, the chain jumps from Xt only to the neighbouring points
Xt

+
− 1 (with the obvious modifications for Xt = 0 and Xt = K).

2.2 Market information

In our setting the factor process X is not directly observable. We assume that
prices of traded credit derivatives are determined as conditional expectation
with respect to some filtration FM which we call market information. The
following assumption states that FM is generated by the loss history FL and
observations of functions of X in additive Gaussian noise.

A2 FM = FL ∨ FZ , where the l-dimensional process Z is given by

Zt =

t∫

0

a(Xs) ds+Bt. (2.4)

Here, B is an l-dimensional standard F-Brownian motion independent of
X and L, and a(·) is a function from SX to Rl.
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In the case of a homogeneous model one could take l = 1 and assume that
a(·) = c lnλ(·). Here the constant c ≥ 0 models the information-content of Y :
for c = 0, Y carries no information, whereas for c large the state Xt can be
observed with high precision.

3 Dynamics of traded credit derivatives and filtering

In this section we study in detail traded credit derivatives. First, we give a
general description of this type of derivatives and discuss the relation between
pricing and filtering. In Section 3.2 we then study the dynamics of market
prices, using the innovations approach to nonlinear filtering.

3.1 Traded securities

We consider a market of N liquidly traded credit derivatives, with - for no-
tational simplicity - common maturity T . Most credit derivatives have inter-
mediate cash flows such as payments at default dates and it is convenient to
describe the payoff of the nth derivative by the cumulative dividend stream
Dn. We assume that Dn takes the form

Dt,n =

t∫

0

d1,n(s, Ls)db(s) +

t∫

0

∫

E

d2,n(s, Ls−, e)µ
L(ds, de) (3.1)

with bounded functions d1, d2 and an increasing deterministic function b :
[0, T ] → R.

Dividend streams of the form (3.1) can be used to model many important
credit derivatives, as the following examples show.

Zero-bond. A defaultable bond on firm i without coupon payments and
with zero recovery pays 1 at T if τi > T and zero otherwise. Hence, we have
b(s) = 1{s≥T}, d1(t, Lt) = 1{Lt,i=0} and d2 = 0.

For CDS and CDO the function b encodes the pre-scheduled payments: for
payment dates t1 < · · · < tñ < T we set b(s) = |{i : ti ≤ s}|.

Credit default swap (CDS). A protection seller position in a CDS on firm
i offers regular payments of size S at t1, . . . , tñ until default. In exchange
for this, the holder pays the loss ℓi at τi, provided τi < T (accrued pre-
mium payments are ignored for simplicity). This can be modelled by taking
d1(t, Lt) = S1{Lt,i=0} and d2(t, Lt−, (ξ, ℓ)) = −1{t≤T}1{ξ=i}ℓ; note that

t∫

0

∫

E

d2,n(s, Ls−, e)µ
L(ds, de) = −ℓi1{Lt,i>0} = −Lt,i.

Collateralized debt obligation (CDO). A single tranche CDO on the un-
derlying portfolio is specified by an lower and upper detachment point1 0 ≤

1 In practice, lower and upper detachment points are stated in percentage points, say
0 ≤ l < u ≤ 1. Then x1 = l ·m and x2 = u ·m.
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x1 < x2 ≤ m and a fixed spread S. Denote the cumulative portfolio loss by
L̄t =

∑m

i=1 Lt,i, and define the function

H(x) := (x2 − x)+ − (x1 − x)+ .

An investor in a CDO tranche receives at payment date ti a spread payment
proportional to the remaining notional H(L̄ti) of the tranche. Hence, his in-

come stream is given by
∫ t

0
SH(L̄s)db(s), so that d1(t, Lt) = SH(L̄t). In return

the investor pays at the successive default times Tn with Tn ≤ T the amount

−∆H(L̄Tn
) = −

(
H(L̄Tn

)−H(L̄Tn−)
)

(the part of the portfolio loss falling in the tranche). This can be modelled by
setting

d2(t, Lt−, (ξ, ℓ)) = 1{t≤T}H
(
ℓ+ L̄t−

)
−H

(
L̄t−

)
.

Other credit derivatives such as CDS indices or typical basket swaps can be
modelled in a similar way.

Pricing of traded credit derivatives. Recall that we work with discounted quan-
tities, that Q represents the underlying pricing measure, and the information
available to market participants is the market information FM. As a conse-
quence we assume that the current market value of the traded credit deriva-
tives is given by

p̂t,n := E
(
DT,n −Dt,n|FM

t

)
, 1 ≤ n ≤ N. (3.2)

The gains process ĝn of the n-th credit derivative sums the current market
value and the dividend payments received so far and is thus given by

ĝt,n := p̂t,n +Dt,n = E
(
DT,n | FM

t

)
; (3.3)

in particular, ĝn is a martingale.
Next, we show that the computation of market values leads to a nonlinear

filtering problem. We call E
(
DT,n − Dt,n|Ft

)
the hypothetical value of Dn.

While this quantity will be an important tool in our analysis it does not
correspond to market prices as in contrast to p̂n it is not FM-adapted. Observe
that by (3.1) DT,n −Dt,n is a function of the future path (Ls)s∈(t,T ]. Hence,
the F-Markov property of the pair (X,L) implies that

E
(
DT,n −Dt,n|Ft

)
= pn(t,Xt, Lt) (3.4)

for functions pn : [0, T ] × SX × [0, 1]m → R, n = 1, . . . , N ; see for instance
Proposition 2.5.15 in Karatzas & Shreve (1988) for a general version of the
Markov property that covers (3.4). By iterated conditional expectations we
obtain

p̂t,n = E
(
E
(
DT,n −Dt,n|Ft

)
|FM

t

)
= E

(
pn(t,Xt, Lt)|FM

t

)
. (3.5)

In order to compute the market values p̂t,n we therefore need to determine the
conditional distribution of Xt given FM

t . This a nonlinear filtering problem
which we solve in Section 3.3 below.
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Remark 3.1 (Computation of the full-information value) For bonds and CDSs
the evaluation of pn can be done via the Feynman-Kac formula and related
Markov chain techniques; for instance see Elliott & Mamon (2003). In the
case of CDOs, the evaluation of pn via Laplace transforms is discussed in ?.
Alternatively, a two stage method that employs the conditional independence
of defaults given FX

∞ can be used. For this, one first generates a trajectory
of X . Given this trajectory, the loss distribution can then be evaluated using
one of the known methods for computing the distribution of the sum of inde-
pendent (but not identically distributed) Bernoulli variables. Finally, the loss
distribution is estimated by averaging over the sampled trajectories of X . An
extensive numerical case study comparing the different approaches is given in
Wendler (2010).

3.2 Asset price dynamics under the market filtration

In the sequel we use the innovations approach to nonlinear filtering in order
to derive a representation of the martingales ĝn as a stochastic integral with
respect to certain FM-adapted martingales. For a generic process U we denote
by Ût := E(Ut|FM

t ) the optional projection of U w.r.t. the market filtration
FM in the rest of the paper. Moreover, for a generic function f : SX → R we
use the abbreviation f̂ for the optional projection of the process (f(Xs))s≥0

with respect to FM.

We begin by introducing the martingales needed for the representation
result. First, define for i = 1, . . . , l

mZ
t,i := Zt,i −

t∫

0

(âi)s ds . (3.6)

It is well-known that mZ is an FM-Brownian motion and thus the martingale
part in the FM-semimartingale decomposition of Z. Second, denote by

ν̂ L(dt, de) :=

m∑

i=1

δ{i}(dξ)Fℓi(dℓ) (1− Yt,i)(λ̂i)tdt (3.7)

the compensator of µL w.r.t. FM and define the compensated random measure

mL(dt, de) := µL(dt, de)− ν̂ L(dt, de) . (3.8)

Corollary VIII.C4 in Brémaud (1981) yields that for every FM-predictable

random function f such that E
( ∫

E

∫ T

0 |f(s, e)| ν̂ L(ds, de)
)
< ∞ the integral∫

E

∫ t

0 f(s, e)mL(ds, de) is a martingale with respect to FM.
The following martingale representation result is a key tool in our analysis;

its proof is relegated to the appendix.
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Lemma 3.2 For every FM-martingale (Ut)0≤t≤T there exists a FM-predictable
function γ : Ω × [0, T ] × E → R and an Rl-valued FM-adapted process α

satisfying
∫ T

0
||αs||2ds < ∞ Q-a.s. and

∫ T

0

∫
E
|γ(s, e)|νL(ds, de) < ∞ Q-a.s.

such that U has the representation

Ut = U0 +

t∫

0

∫

E

γ(s, e)mL(ds, de) +

t∫

0

α⊤
s dm

Z
s , 0 ≤ t ≤ T. (3.9)

The next theorem is the basis for the mathematical analysis of the model
under the market filtration.

Theorem 3.3 Consider a real-valued F-semimartingale

Jt = J0 +

t∫

0

Asds+MJ
t , t ≤ T

such that [MJ , B] = 0. Assume that

(i) E(|J0|) < ∞, E(
∫ T

0
|As|ds) < ∞ and E(

∫ T

0
|Js|λi(Xs)ds) < ∞, 1 ≤ i ≤ m.

(ii) E([MJ ]T ) < ∞.
(iii) For all 1 ≤ i ≤ m there is some FM-predictable Ri : Ω× [0, T ]× (0, 1] → R

such that

[J, Yi]t =

t∫

0

∫

E

1{ξ=i}Ri(s, ℓ)µ
L(ds, dξ, dℓ). (3.10)

Moreover, E(
∫ T

0

∫ 1

0 |Ri(s, ℓ)|Fℓi(dℓ)(1 − Ys,i)λi(Xs)ds) < ∞.

(iv)
∫ t

0 JsdBs,j and
∫ t

0 Zs,jdM
J
s , 1 ≤ j ≤ l are true F-martingales.

Then the optional projection Ĵ has the representation

Ĵt = Ĵ0 +

t∫

0

Âsds+

t∫

0

∫

E

γ(s, e)mL(ds, de) +

t∫

0

α⊤
s dm

Z
s , t ≤ T ; (3.11)

here, γ(s, e) = γ(s, (ξ, ℓ)) =
∑m

i=1 1{ξ=i}γi(s, ℓ), and α, γi are given by

αs = (Ĵa)s − Ĵs(â)s, (3.12)

γi(s, ℓ) =
1

(λ̂i)s−

[
(Ĵλi)s− − Ĵs−(λ̂i)s− + ( ̂Ri(·, ℓ)λi)s−

]
. (3.13)

Proof The proof uses the following two well-known facts.

1. For every true F-martingale N , the projection N̂ is an FM-martingale.

2. For any progressively measurable process φ with E
( ∫ T

0
|φs|ds

)
< ∞ the

process
̂∫ t

0
φsds−

∫ t

0
φ̂s ds, t ≤ T , is an FM-martingale.
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The first fact is simply a consequence of iterated expectations, while the second
follows from the Fubini theorem, see for instance Davis & Marcus (1981).

As MJ is a true martingale by (ii), Fact 1 and 2 immediately yield that

Ĵt − Ĵ0 −
∫ t

0
Âsds is an FM-martingale. Lemma 3.2 thus gives the existence of

the representation (3.11).

It remains to identify γ and α. The idea is to use the elementary identity

Ĵφ = Ĵ φ

for any FM-adapted φ. Each side of this equation gives rise to a different

semimartingale decomposition of Ĵφ ; comparing those for suitably chosen φ

one obtains γ and α.

In order to identify γ, fix i and let

φi
t =

t∫

0

∫

E

ϕ(s, ℓ)1{ξ=i} µ
L(ds, dξ, dℓ)

for a bounded and FM-predictable ϕ. Note that φi is FM-adapted. We first
determine the F-semimartingale decomposition of Jφi. Itô’s formula gives

d(Jtφ
i
t) = φi

t−dJt + Jt−dφ
i
t + d[J, φi]t. (3.14)

With (3.10),

[J, φi]t =
∑

s≤t

∆Js∆φi
s =

t∫

0

∫

E

Ri(s, ℓ)ϕ(s, ℓ)1{ξ=i}µ
L(ds, dξ, dℓ).

Hence, using (2.3), the predictable compensator of [J, φi] is

〈J, φi〉t =
t∫

0

1∫

0

Ri(s, ℓ)ϕ(s, ℓ)Fℓi(dℓ)(1 − Ys,i)λi(Xs)ds. (3.15)

Moreover, [J, φi]− 〈J, φi〉 is a true martingale by (iii), as ϕ is bounded. Using
(3.14) and (3.15) the finite variation part in the F-semimartingale decomposi-
tion of Jφi =: Ã+ M̃ computes to

Ãt =

t∫

0

(
φi
sAs + Js(1 − Ys,i)λi(Xs)

1∫

0

ϕ(s, ℓ)Fℓi(dℓ)

+

1∫

0

Ri(s, ℓ)ϕ(s, ℓ)(1− Ys,i)λi(Xs)Fℓi(dℓ)

)
ds.
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Moreover, M̃ is a true F-martingale by (i) - (iii). Using Fact 1 and 2 the finite

variation part in the FM-semimartingale decomposition of Ĵφi turns out to be

t∫

0

(
φi
sÂs + (1− Ys,i)(Ĵλi)s

1∫

0

ϕ(s, ℓ)Fℓi(dℓ)

+

1∫

0

ϕ(s, ℓ)(1− Ys,i)( ̂Ri(·, ℓ)λi)s Fℓi(dℓ)

)
ds. (3.16)

On the other hand, we get from Lemma 3.2 that

Ĵt =

t∫

0

Âsds+

t∫

0

∫

E

γ(s, e)mL(ds, de) +

t∫

0

α⊤
s dm

Z
s .

Hence, Itô’s formula gives

Ĵtφ
i
t = Mt +

t∫

0

(
φi
sÂs + Ĵs

1∫

0

ϕ(s, ℓ)Fℓi(dℓ)(1− Ys,i)(λ̂i)s

+

1∫

0

γi(s, ℓ)ϕ(s, ℓ)Fℓi(dℓ)(λ̂i)s(1− Ys,i)

)
ds (3.17)

where M is a local FM-martingale. Recall that Ĵφ = Ĵ φ. By the uniqueness of
the semimartingale decomposition, (3.16) must equal the finite variation part
in (3.17) which leads to

0 =

t∫

0

1∫

0

ϕ(s, ℓ)(1− Ys,i)

(
(Ĵλi)s − Ĵs(λ̂i)s

+ ( ̂Ri(·, ℓ)λi)s − γi(s, ℓ)(λ̂i)s

)
Fℓi(dℓ)ds

for all 0 ≤ t ≤ T . Since ϕ was arbitrary and γ is predictable, we get (3.13).
In order to establish (3.12) we use a similar argument with φ = Zi. For this,

note that the arising local martingales in the semimartingale decomposition
of JZi are true martingales by (iv). ⊓⊔

The following theorem describes the dynamics of the gains processes of the
traded credit derivatives and gives their instantaneous quadratic covariation.

Theorem 3.4 Under A1 and A2 the gains processes ĝ1, . . . , ĝN of the traded
securities have the martingale representation

ĝt,n = ĝ0,n +

m∑

i=1

t∫

0

∫

E

1{ξ=i}γ
ĝn
i (s, ℓ)mL(ds, dξ, dℓ) +

t∫

0

(αĝn
s )⊤dmZ

s ; (3.18)
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here the integrands are given by

α
ĝn
t = ̂pt,n · at − p̂t,n ât , (3.19)

γ
ĝn
i (s, ℓ) =

1

(λ̂i)s−

[
(p̂nλi)s− − (p̂n)s−(λ̂i)s− + ( ̂Ri,n(·, ℓ)λi)s−

]
with (3.20)

Ri,n(s, ℓ) = pn (s,Xs, Ls + ℓei)− pn(s,Xs, Ls) + d2,n (s,Xs, Ls + ℓei)
(3.21)

and ei the ith unit vector in Rm. The predictable quadratic variation of the
gains processes ĝ1, . . . , ĝN with respect to FM satisfies d〈ĝi, ĝj〉Mt = v

ij
t dt with

v
ij
t :=

m∑

k=1

1∫

0

γ
ĝi
k (t, ℓ) γ

ĝj
k (t, ℓ)Fℓk(dℓ) λ̂t,k(1− Yt,k) +

l∑

k=1

α
ĝi
t,kα

ĝj
t,k . (3.22)

Proof We apply Theorem 3.3 to the F-martingale Jt = E(DT,n|Ft) and verify
the conditions therein: first, [J,B] = 0 as B is independent of X and L. As
d1,n and d2,n from (3.1) are bounded, so is J . By A1 λi is bounded and hence
(i) holds. Second, MJ = J is bounded and hence a square-integrable true
martingale which gives (ii). Next, note that Jt = pn(t,Xt, Lt) +Dt,n. Hence

[J, Yi]t = (∆Jτi∆Yτi,i)1{τi≤t}

= 1{τi≤t}

(
pn(τi, Xτi, Lτi)− pn(τi, Xτi−, Lτi−) +∆Dτi,n

)

=

t∫

0

∫

E

1{ξ=i}Ri,n(s−, ℓ)µL(ds, dξ, dℓ)

with Ri,n as in (3.21). Here we have implicitly used, that pn is the solution of
a backward equation for the Markov process (X,L) and therefore continuous
in t, and that X and L have no joint jumps. As R is bounded, (iii) follows.
Next, as J is bounded,

∫
JdBj is a true martingale. Moreover,

t∫

0

Zs,jdJs =

t∫

0

s∫

0

aj(Xu)du dJs +

t∫

0

Bs,jdJs.

As a(·) is bounded, the first term has integrable quadratic variation and is
thus a true martingale. Since B and J are independent, we get

E
( t∫

0

(Bs,j)
2d[J ]s

)
= E

( t∫

0

E(B2
s,j)d[J ]s

)
≤ TE([J ]T ) < ∞.

This together yields (iv) and hence (3.18) with pt,n instead of J in (3.19) and
(3.20). Recall that ĝt,n = p̂t,n+Dt,n where Dt,n is FM

t -measurable. This allows
us to replace J by pt,n and yields the first part of the theorem.

The second part (the statement regarding the predictable quadratic varia-
tions) follows immediately from (3.18) and (3.7). ⊓⊔
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Remark 3.5 The assumption that X is a finite state Markov chain was only
used to insure integrability conditions in Theorem 3.3 and in Theorem 3.4 so
that these results are easily extended to a more general setting. The filtering
results in Section 3.3 below on the other hand do exploit the specific structure
of X .

3.3 Filtering and factor representation of market prices

Since X is a finite state Markov chain, the conditional distribution of Xt given
FM

t is given by the vector πt = (π1
t , . . . , π

K
t )⊤ with πk

t := Q(Xt = k|FM
t ).

The following proposition shows that the process π is the solution of a K-
dimensional SDE system driven by mZ and the FM-martingale M given by

Mt,j := Yt,j −
t∫

0

(1− Ys,j) (λ̂j)sds =

t∫

0

∫

E

1{ξ=j}m
L(ds, dξ, dℓ), 1 ≤ j ≤ m.

Proposition 3.6 Denote the generator matrix of X by (q(i, k))1≤i,k≤K . Then,
for k = 1, . . . ,K,

dπk
t =

∑

i∈SX

q(i, k)πi
tdt+ (γk(πt−))

⊤ dMt + (αk(πt))
⊤ dmZ

t , (3.23)

with coefficients given by

γk
j (πt) = πk

t

( λj(k)∑
i∈SX λj(i)πi

t

− 1
)
, 1 ≤ j ≤ m, (3.24)

αk(πt) = πk
t

(
a(k)−

∑

i∈SX

πi
ta(i)

)
. (3.25)

Proof Denote the generator of X by L and set fk(x) = 1{x=k}. Then the
F-semimartingale decomposition of (fk(Xt))t≥0 is

fk(Xt) = fk(X0) +

t∫

0

L fk(Xs) ds+
(
fk(Xt)− fk(X0)−

t∫

0

L fk(Xs) ds
)
.

Note that πk = f̂k and that L fk(Xt) = q(Xt, k). We apply Theorem 3.3 with
J = fk(Xt) = 1{Xt=k}. First, [fk(·), B] = [MJ , B] ≡ 0, as B is continuous
and fk(·) is of finite variation. Moreover, [fk(·), Yi] = 0 for all i as X and
Y have a.s. no common jumps, so that the random function Ri in Condition
(iii) of Theorem 3.3 vanishes for all i. Boundedness of J implies Conditions
(i)-(iv) from that theorem by a similar argument as in the proof of Theorem
3.4. Hence

dπk
t = ̂q(Xt, k)dt+

∫

E

m∑

i=1

γi(t, ℓ)1{ξ=i} m
L(dt, dξ, dℓ) +α⊤

t dm
Z
t
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with γi given by

γi(t, ℓ) =
1

(λ̂i)t−

(
(λ̂i(k)J)t− − (λ̂i)t−Ĵt−

)
=

1

(λ̂i)t−

(
λi(k)π

k
t− − (λ̂i)t− πk

t−

)
.

Note that (λ̂i)t− =
∑

k∈SX λi(k)π
k
t−. As γi(t, ℓ) does not depend on ℓ,

t∫

0

∫

E

γi(s, ℓ)1{ξ=i}m
L(ds, dξ, dℓ) =

t∫

0

γk
i (πs−)dMs,i ,

and (3.24) follows. For (3.25), note finally that

αk
t = ̂fk(Xt)a(Xt)− f̂k(Xt)â(Xt) = πk

t a(k) − πk
t

∑

i∈SX

πi
ta(i) .

Remark 3.7 Related results have previously appeared in the filtering litera-
ture. For the case of diffusion observations, (3.23) is given in Liptser & Shiryaev
(2000) and Wonham (1965). For the case of marked-point-process observations
we refer to Brémaud (1981) and further references therein.

Contagion. The previous results permit us to give an explicit expression for
the contagion effects induced in our model. For i 6= j we get from (3.24) that

λ̂τj ,i − λ̂τj−,i =

K∑

k=1

λi(k) · πk
τj−

(
λj(k)∑K

l=1 λj(l)πl
τj−

− 1

)

=
covπτj−

(
λi, λj

)

Eπτj−(λj)
. (3.26)

Moreover, πτj− gives the conditional distribution of X immediately prior to
the default event. According to (3.26), default contagion is proportional to the
covariance of the random variables λi(·) and λj(·) under πτj−. This implies
that contagion is largest for firms with similar characteristics and hence a high
correlation of λi(·) and λj(·). This effect is very intuitive.

The process (L,π) is a natural state variable process for the model: first,
(L,π) is a Markov process (see Proposition 3.8 below). Second, all quantities
of interest at time t can be represented in terms of Lt and πt. In particular,
the market values from (3.5) can be expressed as follows

p̂t,n =
∑

k∈SX

pn(t, k, Lt)π
k
t ,

and a similar representation can be obtained for the integrands α
ĝn
t and

γ
ĝn
i (t, ℓ) from Theorem 3.4. Motivated by these two observations we call (L,π)

the market state process. The next result characterizes its probabilistic prop-
erties.
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Proposition 3.8 The market state process (L,π) is the unique solution of the
martingale process associated with the generator L given by formula (A.1) in
the appendix. In particular, (L,π) is an FM-Markov process of jump-diffusion
type.

To prove this claim we use Itô’s formula to identify the generator of (L,π)
and show uniqueness of the related martingale problem; see Appendix A.2 for
details.

4 Practical issues: pricing, calibration and hedging

In this section we discuss the pricing, the calibration, and the hedging of credit
derivatives. Consider a non-traded credit derivative. In accordance with (3.2),
we define the price at time t of the credit derivative as conditional expectation
of the associated payoff given FM

t . For the credit derivatives common in prac-
tice this conditional expectation is given by a function of the current market
state (Lt,πt), as we show in Section 4.1. Here a major issue arises for the ap-
plication of the model: as explained in the introduction, we view the process Z
generating the market filtration FM as abstract source of information so that
the process π is not directly observable for investors. On the other hand, pric-
ing formulas and hedging strategies need to be evaluated using only publicly
available information. Section 4.2 is therefore devoted to model calibration. In
particular we explain how to determine πt from prices of traded securities ob-
served at time t. In Section 4.3 we finally consider dynamic hedging strategies
in our framework.

4.1 Pricing

Basically all credit derivatives common in practice fall in one of the following
two classes:

Options on the loss state. This class comprises derivatives with payoff given
by an FL-adapted dividend stream D of the form (3.1); examples are typical
basket derivatives or (bespoke) CDOs. As in (3.4), the hypothetical value of
an option on the loss state in the underlying Markov model, E

(
DT −Dt|Ft

)
,

is equal to p(t,Xt, Lt) for some function p : [0, T ]×SX × [0, 1]m → R.2 Hence,
the price of the option at time t is given by

p̂t := E(DT −Dt|FM
t ) =

∑

k∈SX

p(t, k, Lt)π
k
t . (4.1)

Note that for an option on the loss state the price p̂t depends only on the
current market state (Lt,πt) and on the function p(·) that gives the hypothet-
ical value of the option in the underlying Markov model. Hence the precise

2 The evaluation of p(·) can be done with similar methods as in Remark 3.1.
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form of the function a(·) from A2 and thus of the dynamics of π is irrelevant
for the pricing of these claims; the dynamics of π do however matter in the
computation of hedging strategies as will be shown below.

Options on traded assets. This class contains derivatives whose payoff de-
pends on the future market value of traded securities: the payoff is of the
form H̃(LU , p̂U,1, . . . , p̂U,N ), to be paid at maturity U ≤ T . Examples include
options on corporate bonds, options on CDS indices or options on synthetic
CDO tranches.

Denote by M = {π ≥ 0:
∑

k∈SX πk = 1} the unit simplex in RK . Using

(4.1), the payoff of the option can be written in the form H
(
U,LU ,πU

)
, where

H (t, L,π) = H̃
(
L,

∑

k∈SX

πkp1(t, k, L), . . . ,
∑

k∈SX

πkpN (t, k, L)
)
.

Since the market state (L,π) is a FM-Markov process, the price of the option
at time t is of the form

E
(
H(U,LU ,πU )|FM

t

)
= h(t, Lt,πt), (4.2)

for some h : [0, U ] × [0, 1]m ×M → R, where M = {π ≥ 0:
∑

k∈SX πk = 1}
denotes the unit simplex in RK . By standard results the function h is a solution
of the backward equation

∂th(·) + L h(·) = 0.

However, the market state is usually a high-dimensional process so that the
practical computation of h(·) will typically be based on Monte Carlo methods.
Note that for an option on traded assets the function h(·) and hence its price
depends on the entire generator L of (L,π) and therefore also on the form of
a(·).

Example 4.1 (Options on a CDS index) Index options are a typical example
for an option on a traded asset. Upon exercise the owner of the option holds a
protection-buyer position on the underlying index with a pre-specified spread
S (the exercise spread of the option); moreover, he obtains the cumulative
portfolio loss up to time U . Denote by V def(t,Xt, Lt) and V prem(t,Xt, Lt) the
full-information value of the default and the premium payment leg of the CDS
index. In our setup the value of the option at maturity U is then given by the
following function of the market state at U :

h(LU ,πU ) =
(
L̄U +

∑

k∈SX

πk
U

(
V def(U, k, LU)− SV prem(U, k, LU )

))+

, (4.3)

with L̄t =
∑m

i=1 Lt,i. Numerical results on the pricing of credit index options
in our setup can be found in (Frey & Schmidt 2010).
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4.2 Calibration

Model calibration involves two separate tasks: on the one hand, at fixed current
time t one needs to determine πt, the current value of the process π. On the
other hand, the model parameters (the generator matrix of X and parameters
of the functions a(·) and λi(·), i = 1, . . . ,m) need to be estimated. The latter
task depends on the specific parametrization of the model and on the available
data. We discuss parameter estimation for the frailty model in Section 5.

Here we concentrate on the determination of πt. The key point is the
observation that the set of all probability vectors consistent with the price
information at t can be described in terms of a set of linear inequalities. Details
depend on the way the traded credit derivatives are quoted in practice, and
we discuss zero coupon bonds and CDSs as representative examples.

Zero-bond. Consider a zero coupon bond on firm i. Its hypothetical value prior
to default in the underlying Markov model is given by

E
(
e−

∫
T

t
λi(Xs) ds

∣∣Xt = k
)
=: pi(t, k).

The precise form of pi(·) is irrelevant here. Suppose that at t we observe bid and
ask quotes p ≤ p for the bond. In order to be consistent with this information,
a solution π ∈ M of the calibration problem at t needs to satisfy the linear
inequalities

p ≤
∑

k∈SX

pi(t, k)πk ≤ p .

Credit default swap. A CDS on firm i is quoted by its spread St. The spread
is chosen in such a way that the market value of the contract is zero. In our
setup this translates as follows. Let

V def
i (t, k) := E

( T∫

t

dLs,i

∣∣Xt = k, Lt,i = 0

)
,

V
prem
i (t, k) :=

∑

tj∈(t,T ]

Q
(
Ltj ,i = 0|Xt = k, Lt,i = 0

)
.

(4.4)

Then the quoted CDS spread solves
∑

k∈SX πk
t

(
St V

prem
i (t, k)−V def

i (t, k)
)
= 0,

given τi > t. Suppose now that at time t we observe bid and ask spreads S ≤ S

for the contract. Then π must satisfy the following two inequalities:
∑

k∈SX

πk

(
SV

prem
i (t, k)− V def

i (t, k)
)
≤ 0 ,

∑

k∈SX

πk

(
SV

prem
i (t, k)− V def

i (t, k)
)
≥ 0 .

(4.5)

Standard linear programming techniques can be used to detect if the system of
linear inequalities corresponding to the available market quotes is nonempty
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and to determine a solution π ∈ M. 3 In case that there is more than one
probability vector π ∈ M consistent with the given price information at time
t, a unique solution π∗ of the calibration problem can be determined by a
suitable regularization procedure. More precisely, given a reference measure ν

on SX and a distance d, π∗ is given by

π∗ = argmin
{
d(π,ν) : π is consistent with the price information in t

}
.

(4.6)

A possible choice is to minimize relative entropy to the uniform distribution; in
that case d(π,ν) ∝ ∑

k∈SX πk lnπk and the optimization problem that defines
π∗ is convex.

4.3 Hedging

Hedging is a key issue in the management of portfolios of credit derivatives.
The standard market practice is to use sensitivity-based hedging strategies
computed by ad-hoc rules within the static base-correlation framework; see
for instance Neugebauer (2006). Clearly, it is desirable to work with hedging
strategies which are based on a methodologically sound approach instead.
In this section we therefore use our results from Section 3 to derive model-
based dynamic hedging strategies. We expect the market to be incomplete,
as the prices of the traded credit derivatives follow a jump-diffusion process.
In order to deal with this problem we use the concept of risk minimization as
introduced by Föllmer & Sondermann (1986). The hedging of credit derivatives
via risk minimization is also studied in Frey & Backhaus (2010) and Cont &
Kan (2008), albeit in a different setup; other relevant contributions include
the papers Laurent, Cousin & Fermanian (2007) or Bielecki, Jeanblanc &
Rutkowski (2007).

We begin by recalling the notion of a risk-minimizing hedging strategy.
Consider traded assets with prices p̂ and associated filtration Fp̂. Denote by
ĝ = (ĝ1, . . . , ĝN)⊤ the vector of gains processes of the traded securities and
by vt = (vijt )1≤i,j≤N their instantaneous quadratic variation as given in The-
orem 3.4, and let L2(ĝ,FM) be the space of all N -dimensional FM-predictable

processes θ such that E(
∫ T

0
θ⊤
s vsθsds) < ∞. An admissible trading strategy is

given by a pair ϕ = (θ, η) where θ ∈ L2(ĝ,FM) and η is FM-adapted. Moreover
the value process Vt = Vt(ϕ) = θ⊤

t p̂t + ηt is RCLL and E(sup0≤t≤T V 2
t ) < ∞.

The cost process C = C(ϕ) and the remaining risk process R = R(ϕ) of the
trading strategy ϕ are finally defined by

Ct = Vt −
t∫

0

θ⊤
s dĝs and Rt = E

(
(CT − Ct)

2|FM
t

)
, t ≤ T.

3 In abstract terms the set of linear inequalities corresponding to the calibration problem
can be written in the form Aπ ≤ b. Consider the auxiliary problem min c⊤y subject to
Aπ ≤ b + y, y ≥ 0 for a suitable vector of weights c > 0. Consider a solution (y,π) of the
auxiliary problem. If y = 0, π is a solution to the original calibration problem.
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Consider now a claim H with square integrable, (FL∨Fp̂)-adapted cumula-
tive dividend stream D such as the credit derivatives considered in Section 4.1.
An admissible strategy ϕ is called a risk-minimizing hedging strategy for H if
VT (ϕ) = DT and if moreover for any t ∈ [0, T ] and any admissible strategy ϕ̃

satisfying VT (ϕ̃) = DT we have Rt(ϕ) ≤ Rt(ϕ̃).

Risk-minimization is well-suited for our setup as the ensuing hedging strate-
gies are relatively easy to compute and as it suffices to know the risk-neutral
dynamics of credit derivative prices. From a methodological point of view it
might however be more natural to minimize the remaining risk under the his-
torical probability measure. This would lead to alternative quadratic-hedging
approaches; see for instance Schweizer (2001). However, the computation of
the corresponding strategies becomes a very challenging problem. Moreover,
it is quite hard to determine the dynamics of CDS and CDO spreads un-
der the historical measure as this requires the estimation of historical default
intensities.

Proposition 4.2 Consider a claim H with cumulative dividend stream DT ∈
L2(Ω,FL

T ∨ F p̂

T ,Q) and gains process ĝHt = E(DT |FM
t ). A risk-minimizing

hedging strategy ϕ = (θ, η) for H is given by

θt = vinv
t−

d

dt
〈ĝH , ĝ〉Mt and ηt = ĝHt − θ⊤t p̂t, t ≤ T (4.7)

where vinv
t denotes the pseudo inverse of the instantaneous quadratic variation

vt and where d
dt
〈ĝH , ĝ〉Mt is the predictable Lebesgue-density of 〈ĝH , ĝ〉Mt .

Proof It is well-known that risk-minimizing hedging strategies relate to the
Galtchouk-Kunita-Watanabe decomposition of the martingale gH with respect
to the gains processes of traded securities:

ĝHt = ĝH0 +

N∑

n=1

t∫

0

ξHs,n dĝs,n +H⊥
t , t ≤ T (4.8)

with ξHi ∈ L2(ĝ,FM) and 〈H⊥, ĝ〉M ≡ 0 : one has that θ = ξH , Vt(ϕ) = ĝHt
and C = H⊥. From 〈H⊥, ĝ〉M ≡ 0 we get the following equation for ξH :

d

dt
〈ĝH , ĝj〉Mt =

N∑

n=1

ξHt,jv
n,j
t , t ≤ T ; (4.9)

by definition of vinv
t a solution of (4.9) is given by vinv

t
d
dt
〈ĝH , ĝ〉Mt . ⊓⊔

The crucial step in applying Proposition 4.2 is to compute the quadratic
variation 〈ĝH , ĝ〉M, and we now explain how this can be achieved for the claims
considered in Section 4.1. First, if H represents an option on the loss state, by
an argument analogous to the proof of Theorem 3.4 one obtains that ĝHt has
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a representation of the form (3.18) with integrands αH and γH given by the
analogous expressions to (3.19) and (3.20). Then, 〈ĝH , ĝ〉M is given by

d〈ĝH , ĝi 〉Mt =

( m∑

j=1

1∫

0

(
γH
j (t, l)γ ĝi

j (t, l)
)
Flj (dl)λ̂t,j(1− Yt,j)

+

l∑

j=1

αH
t,jα

ĝi
t,j

)
dt , 1 ≤ i ≤ N. (4.10)

The main step in computing αH and γH is to compute the function p(t, k, L)
that gives the hypothetical value of the derivative in the underlying Markov
model.

Second, if H is an option on traded assets with payoff H̃(p̂U , LU ), we have
ĝHt = h(t, Lt,πt), compare (4.2). Applying Itô’s formula to h(t, Lt,πt) gives
a martingale representation of ĝH , see the proof of Proposition 3.8 in the
appendix and the related comment A.1. From this [ĝH , ĝn ] and its compen-
sator 〈ĝH , ĝn 〉M can be computed via standard arguments. Note finally that in
both cases θt depends only on the current market state (Lt,πt). A numerical
example is presented in Section 5.3.

5 Numerical case studies

In this section we present results from a number of small numerical and em-
pirical case studies that serve to further illustrate the application of the model
to practical problems.

5.1 Dynamics of credit spreads

As remarked earlier, the fact that in our model prices of traded securities are
given by the conditional expectation given the market filtration leads to rich
credit-spread dynamics with spread risk (random fluctuations of credit spreads
between defaults) and default contagion. This is illustrated in Figure 5.1 where
we plot a simulated credit-spread trajectory. The random fluctuation of the
credit spreads between defaults as well contagions effects at default times
(e.g. around t = 600) can be spotted clearly.

5.2 Calibration to CDO spreads

We work in a frailty model where the generator matrix of X is identically zero,
see Example 2.1. In that model default times are independent, exponentially
distributed random variables given X , and dependence is created by mixing
over the states of X . Moreover, the computation of full-information values is
particularly easy. A static model of this form (no dynamics of π) has been
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Fig. 5.1 A simulated path of credit spreads under zero recovery. The graph has been created
for the case where X is a Markov chain with next-neighbour dynamics (Example 2.1).

proposed by Hull & White (2006) under the label implied copula model ; see
also Rosen & Saunders (2009). Since prices of CDS-indices and CDO tranches
are independent of the form of the dynamics of π, pricing and calibration
techniques for these products in the frailty model are similar to those in the
implied copula models. However, our framework permits the pricing of tranche-
and index options and the derivation of model-based hedging strategies, issues
which cannot be addressed in the static implied copula models.

We choose a parametrization which is motivated by the popular one-factor
Gauss or double-t copula models. Assume X takes values in {x1, . . . , xK} ⊂ R

and that firm i defaults in a given year, if

√
ρX +

√
1− ρ ǫi > di;

here ǫ1, . . . , ǫm are i.i.d. standard normal random variables, ρ ∈ (−1, 1) and
d1, . . . , dm ∈ R are given default thresholds. Hence, givenX = xk, the one-year
default probability of firm i is given by

pi(xk) := Φ

( √
ρ√

1− ρ
xk − di√

1− ρ

)
(5.1)

and the corresponding default intensity is λi(xk) = − ln(1 − pi(xk)). In the
homogeneous version of this model all thresholds are identical, that is d1 =
· · · = dm.

In order to obtain calibration and pricing results which are robust with
respect to the precise location of the grid points, it is advisable to choose the
number of states K relatively large. We work with K = 100, and we choose 4

the levels x1, . . . , xK as quantiles of a t6-distribution and set ρ = 0.5.

4 Experiments with different values of these parameters yielded similar results.



22

The following algorithm determines the thresholds d = (d1, . . . , dm) and
probabilities π = (π1, . . . , πK) from m individual CDS spreads and CDO
tranche spreads.

Algorithm 5.1 1. Choose initial values for π(0), for instance the uniform
distribution on x1, . . . , xK .

2. Given π(0), compute the thresholds d(1) such that CDS spreads are matched
exactly, using that the CDS-spread of firm i is decreasing in di.

3. Given d(1), determine π(1) from CDO and CDS spreads via linear pro-
gramming as outlined in Section 4.2.

4. Iterate Steps 2. and 3. until a desired precision level is reached.

Comments. In Step 3. one could alternatively minimize the squared distance
between market- and model value via quadratic programming.

To obtain smoother results, a regularization procedure such as entropy
minimization can be applied to the outcome of Step 4 (see (4.6)).

In the homogeneous case (i.e. d1 = · · · = dm) the parameter d1 can be kept
fixed during the calibration.

Calibration results. We present results from two types of numerical experi-
ments5. First, we calibrated the homogeneous version of the model to tranche
and index spreads from the iTraxx Europe in the years 2006 (before the credit
crisis) and 2009. The calibration precision (Step 4) was chosen as 1% relative
error and regularization was used to obtain a smooth distribution.

The outcome is plotted in Figure 5.2. We clearly see that with the emer-
gence of the credit crisis the calibration procedure puts more mass on states
where the default intensity is high (2009-data). This reflects the increased
awareness of future defaults and the increasing risk aversion in the market
after the arrival of the crisis. This effect can also be observed in other model
types; see for instance (Brigo, Pallavicini & Torresetti 2009).

Second, we calibrated the inhomogeneous version of the model jointly to
CDS spreads and CDO tranche spreads, with quite satisfactory results. The
data consists of iTraxx Europe tranche spreads and CDS spreads from the
corresponding constituents on the same day in 2009 as in the first experiment.
This is a challenging calibration exercise, such that we choose the calibration
precision (Step 4) as 4% relative error for the tranche data and up to 8% rel-
ative error for the single-name CDSs; see the right graph in Figure 5.3. In the
left graph in Figure 5.3 we plot the distribution of the average default proba-
bility: 1

m

∑m

i=1 pi(·). The outcome is qualitatively similar to the homogeneous
case, however, the distribution is less smooth due to the additional constraints
in the calibration problem.

5 All calibrations run on a Pentium-III in about 1 minute.
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Fig. 5.2 One-year default probabilities (p(x1), . . . , p(x100), as in (5.1)) obtained via cali-
bration in a homogeneous one-factor frailty model for data from 2006 and 2009. Note that
logarithmic scaling is used on the x-axis.
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Fig. 5.3 Left: Average one-year default probabilities (p(x1), . . . , p(x100), as in (5.1)) ob-
tained via calibration in a one-factor frailty model for CDS and CDO data from 2009. Right:
Corresponding relative calibration errors for tranches (first 6 data points) and CDSs in Step
4.

5.3 Hedging of CDO tranches

Finally we consider the hedging of synthetic CDO tranches on the iTraxx
Europe, using the underlying CDS index as hedging instrument. This choice is
motivated by tractability reasons: it is much easier to manage a hedge portfolio
in the CDS index than in the 125 single-name CDSs on the constituents of the
index. Moreover, the empirical study in Cont & Kan (2008) shows that the
use of single-name CDS as additional hedging instruments does not lead to
a significant performance improvement in the hedging of CDOs. Given, that
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we use the CDS index as hedging instrument, it is most natural to work in a
homogeneous model and we use the homogeneous version of the frailty model
introduced in Section 5.2. Moreover, we take Z to be one-dimensional and
assume that a(x) = c ln(λ(x)) for c ≥ 0.

Recall from Section 4.3 that the function a(·) from A2 does have an impact
on the hedge ratios generated within the model. Hence we need to estimate
the parameter c. For this we use a simple method-of-moment type procedure.
First, we computed the empirical quadratic variation of index spreads. Since
there were no defaults within the iTraxx Europe in the observation period,
this quantity is an estimate of the continuous part of the quadratic variation
of index spreads. Second, we computed the model-implied instantaneous con-
tinuous quadratic variation (the quadratic variation of the diffusion part of the
spread dynamics) as a function of c.6 Matching these two expressions gives an
estimate for c. We obtain c = 0.42 (c = 0.71) for the 2009 data (2006 data).

The hedge ratio θt giving the number of CDS index contracts to be held
in the portfolio was computed from Proposition 4.2 using relation (4.10); nu-
merical results are given in Table 5.1. For comparison, we additionally state
the hedge ratios for c = 0. With c = 0 the dynamics of credit derivatives are
not affected by fluctuations in Z (no spread risk), and it is easily seen that the
risk-minimizing hedging strategy is a perfect replication strategy in that case,
see also Frey & Backhaus (2010). We see that θ is affected by c and that higher
values of c mostly lead to larger hedge ratios. Moreover, due to the relatively
high probability attributed to extreme states where default probabilities are
very high, in 2009 model-implied contagion effects were more pronounced than
in 2006. Hence a default leads to a huge increase in the value of a protection-
buyer position in the CDS index and in turn to a relatively low hedge ratio
for the equity tranche (labeled [0-3]). This is in line with observations in Frey
& Backhaus (2010).

Tranche [0-3] [3-6] [6-9] [9-12] [12-22]

2006-data, c estimated 0.469 0.091 0.053 0.036 0.096
2006-data, c = 0 0.346 0.091 0.056 0.041 0.110
2009-data, c estimated 0.068 0.0392 0.0369 0.0349 0.105
2009-data, c = 0 0.066 0.0390 0.0366 0.0346 0.105

Table 5.1 Risk-minimizing hedge ratio θ for hedging a CDO tranche with the underlying
CDS index in the homogeneous version of the frailty model. The numbers were computed
using the probability vector π

∗ obtained via calibration to the iTraxx data from 2006 and
2009.

6 For this we used (3.19) to determine the diffusion part in the dynamics of the default

leg V̂ def
t and the premium leg V̂ prem

t . The diffusion part of the spread St = V̂ def
t /V̂ prem

t

can then be obtained via Ito’s formula; it is given by c/V̂ prem
t

( ̂V def
t lnλ−St

̂V def
t lnλ

)
. The

model-implied instantaneous continuous quadratic variation is then equal to the square of
this expression.
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A Proofs

A.1 Proof of Lemma 3.2

The proof goes in three steps. First, we introduce a new measure Q∗, so that under Q∗

the FM-compensator of µL is independent of X, and Z is a Q∗-Brownian motion. Next, we
use available martingale representation results under Q∗ and finally we change back to the
original measure Q.

In the following, we simply write as := a(Xs). Define the density martingale

ηt :=
∏

Tn≤t

(λ̂Tn−,ξn )
−1 exp

( t∫

0

m∑

i=1

(1 − Ys,i)(λ̂s−,i − 1)ds

−

t∫

0

â⊤
s dmZ

s −
1

2

t∫

0

‖âs‖
2 ds

)
, t ≤ T,

and note that the dynamics of η is

dηt = ηt−

(
m∑

i=1

((λ̂t−,i)
−1 − 1)

(
dYt,i − λ̂t,i(1− Yt,i)dt

)
− â⊤

t dmZ
t

)

.

By A1, λj > 0. As SX is finite, the functions λ, λ̂, λ̂−1, and â are bounded, hence η is
a true martingale; see for instance Protter (2004), Exercise V.14. Define a measure Q∗ by
dQ∗/dQ|FM

T
= ηT . Then, by the Girsanov theorem, Z is a Q∗-Brownian motion and the

FM-compensator of µL under Q∗ is

ν∗(dt, de) :=
m∑

i=1

δ{i}(dξ)Fℓi
(dℓ) (1 − Yt,i)dt.

Consider now the (Q, FM)-martingale U and define the Q∗-integrable random variable

NT := UT η−1
T

and the associated martingale Nt = EQ∗

(NT | FM
t ). Note that by the Bayes

formula,

Nt =
1

ηt
EQ(NT ηT | FM

t ) =
1

ηt
EQ(UT | FM

t ) =
Ut

ηt
.

The next step is to establish a martingale representation. For this we rely on representa-
tion results for jump diffusions from Jacod & Shiryaev (2003). Therefore we need to rewrite
L in a suitable form: consider the semimartingale S := (Z, Y,L)⊤, such that the jumps of S
take values in Ẽ := Rl × {e1, . . . , em} × (0, 1]m where ei stands for the i-th unit vector in
Rm. The FM-compensator of the random measure µS associated with the jumps of S under
Q∗ is

νS(dt, dẽ) :=
m∑

i=1

1{ẽ=(0,ei,ℓei)}
Fℓi

(dℓ) (1− Yt−,i)dt.

Theorem III.2.34 Jacod & Shiryaev (2003) now shows that the martingale problem associated
with the characteristics of S has a unique solution; Theorem III.4.29 of the same source then
gives that the Q∗-martingale (Nt)0≤t≤T has a representation of the form

Nt = E(UT ) +

t∫

0

α̃
⊤
s dZs +

t∫

0

∫

Ẽ

˜̃γ(s, ẽ)mS(ds, dẽ),

where mS = µS − νS . Moreover,
∫ T

0
‖ α̃s ‖2 ds < ∞ Q∗-a.s. as well as

∫ T

0

∫
Ẽ

| ˜̃γ(s, ẽ) |

νS(ds, de) < ∞ Q∗-a.s. Let γ̃(s, (i, ℓ)) := ˜̃γ(s, (0, ei, ℓei)). Then

t∫

0

∫

Ẽ

˜̃γ(s, ẽ)mS(ds, dẽ) =

t∫

0

∫

E

γ̃(s, e)m∗(ds, de),
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where m∗ := µL − ν∗. Hence we established the existence of a martingale representation of
N with respect to (Z,m∗).

In order to change back to the original measure, we compute the differential of Ut =
ηtNt:

dUt = d(ηtNt) = ηt−dNt +Nt−dηt + d[η,N ]t

= ηt−α̃
⊤
t

(
dmZ

t + âtdt
)
+

∫

E

ηt−γ̃(t, e)m∗(dt, de)

+
m∑

i=1

Ntηt((λ̂t,i)
−1 − 1)

(
dYt,i − λ̂t,i(1− Yt,i)dt

)
− ηtNtâ

⊤
t dmZ

t − ηtâ
⊤
t α̃tdt

+

∫

E

γ̃(t, ξ, ℓ)ηt−(λ̂−1
t−,ξ

− 1)µL(dt, dξ, dℓ).

Rearranging terms gives

dUt = ηt−
(
α̃

⊤
t −Nt−â⊤

t

)
dmZ

t

+

∫

E

ηt−
(
Nt−((λ̂t−,ξ)

−1 − 1) + (λ̂t−,ξ)
−1γ̃(t, ξ, ℓ)

)
mL(dt, dξ, dℓ),

which is the desired martingale representation for U . Moreover, since λ is bounded away

from zero and since N and η have cadlag-paths, we also have
∫ T
0 ‖ αs ‖2 ds < ∞ Q-a.s. as

well as
∫ T
0

∫
E

| γ(s, e) | νL(ds, de) < ∞ Q-a.s. ⊓⊔

A.2 Proof of Proposition 3.8

First, we identify the generator of the process (L,π). Denote by M = {π ≥ 0:
∑

k∈SX πk =

1} the unit simplex in RK . Consider f : [0, T ]× [0, 1]m ×M → R, sufficiently regular. The
Itô formula gives

f(t, Lt,πt) = f(0, L0,π0) +

t∫

0

∂tf(·)ds+
∑

k∈SX

t∫

0

∂πkf(·)dπk
s

+
1

2

∑

k,l∈SX

t∫

0

∂πk∂πlf(·)d[πk, πl]cs

+
∑

Tn≤t

(
f(Tn, LTn

,πTn
)− f(Tn, LTn−,πTn−)−

∑

k∈SX

∂πkf(·)∆πk
Tn

)
,

where f(·) stands for f(s, Ls−,πs−). With (3.23) we obtain

∑

k∈SX

t∫

0

∂πkf(·)dπk
s =

∑

k∈SX

t∫

0

∂πkf(·)αk(πs)
⊤dmZ

s

+
∑

k∈SX

t∫

0

∂πkf(·)γk(πs−)⊤dMs

+
∑

k∈SX

t∫

0

∂πkf(·)
( ∑

i∈SX

q(i, k)πi
s

)
ds.
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Letting clk(π) := α
k(π)⊤α

l(π), we have that d[πk, πl]cs = clk(πs)ds. Finally, with ei being
the i-th unit vector in Rm,

∑

Tn≤t

(
f(Tn, LTn

,πTn
)− f(Tn, LTn−,πTn−)−

∑

k∈SX

∂πkf(·)∆πk
Tn

)

=

t∫

0

∫

E

m∑

i=1

1{ξ=i}

(
f
(
s, Ls− + ℓei, π

1
s−

λi(1)

(λ̂i)s−
, . . . , πK

s−

λi(K)

(λ̂i)s−

)
− f(s, Ls−,πs−)

−
∑

k∈SX

∂πkf(·)πk
s−

( λi(k)

(λ̂i)s−
− 1
))

µL(ds, dξ, dℓ).

Let λ̂i(π) :=
∑

l∈SX λi(k)π
l. The above shows that f(t, Lt,πt) −

∫ t
0 L f(s, Ls,πs)ds is a

(local) martingale where

L f(t, L,π) = ∂tf(t, L,π) +
∑

k∈SX

∂πkf(t, L,π)
( ∑

i∈SX

q(i, k)πi
)

+
1

2

∑

k,l∈SX

∂πk∂πlf(t, L,π)clk(π)

−
m∑

i=1

1{Li=0}

∑

k∈SX

∂πkf(t, L,π)πk
(
λi(k)− λ̂i(π)

)
(A.1)

+
m∑

i=1

1{Li=0}λ̂i(π)

1∫

0

(
f
(
t, L+ ℓei, π

1 λi(1)

λ̂i(π)
, . . . , πK λi(K)

λ̂i(π)

)
− f(t, L,π)

)
Fℓi

(dℓ).

Theorem 4.4.2 a) in (Ethier & Kurtz 1986) shows that (L,π) is a Markov process
w.r.t. filtration FM, if any two solutions of the martingale problem have the same one-
dimensional marginals. This holds in particular, if the associated martingale problem has a
unique solution measure, which we now show. Consider the following SDE system:

Lt,i =

t∫

0

∫

R

1{Lt−,i=0}Ki(Ls−,πs−; s, u)N (ds, du), (A.2)

dπk
t =

∑

i∈SX

q(i, k)πi
tdt+

m∑

j=1

1{Lt−,j=0}

∫

R

1
[Λ̂j−1,s,Λ̂j,s]

(u)γk
j (πt−) (N (dt, du)− dtdu)

+α
k(πt)dWt; (A.3)

where N is a Poisson random measure on R with compensator dsdu, W is a Brownian
motion, and

Ki(Ls−,πs−; s, u) = 1
[Λ̂i−1,s,Λ̂i,s]

(u)F−1
ℓi

(
u− Λ̂i−1,s

(λ̂i)s−

)

with Λ̂i,s := Λ̂i(πs−) =
∑i

j=1(λ̂j)s−. A similar computation as in the first part of the proof
shows that L is the associated generator.

The system (A.2), (A.3) has a unique strong solution by Theorem 2.2 in Kliemann,
Koch & Marchetti (1990): conditions 1) and 2) are straightforward to verify; the associated
diffusion ((2.4) in the paper) is given by:

dL̃t,i = 1{L̃t−,i=0}E(ℓi)λ̂i(π̃t)dt,

dπ̃k
t =

∑

i∈SX

q(i, k)π̃i
tdt +α

k(π̃t)dWt.
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Given π̃, L̃ can be computed by ordinary integration. Moreover, the SDE for π̃ is the stan-
dard filter for Markov chains observed in additive Gaussian noise. Existence and uniqueness
of this SDE is well-known, see for example Exercise 3.27 from Bain & Crisan (2009).

By Theorem III.2.26 from Jacod & Shiryaev (2003) uniqueness in law of the system
(A.2), (A.3) gives uniqueness in law of the martingale problem for the generator L and we
conclude.

⊓⊔

Remark A.1 The above proof shows additionally, that the martingale part of f(t, Lt,πt)
can be written as

∑

k∈SX

t∫

0

∂πkf(·)αk(πs)
⊤dmZ

s +

t∫

0

∫

E

m∑

i=1

1{ξ=i}

(
f
(
s, Ls− + ℓei, π

1
s−

λi(1)

(λ̂i)s−
, . . . , πK

s−

λi(K)

(λ̂i)s−

)
− f(s, Ls−,πs−)

)
mL(ds, dξ, dℓ).
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Brémaud, P. (1981), Point Processes and Queues, Springer Verlag. Berlin Heidelberg New

York.
Brigo, D., Pallavicini, A. & Torresetti, R. (2009), ‘Credit Models and the Crisis, or: How I

learned to stop worrying and love the CDO’, working paper, Imperial College London.
Coculescu, D., Geman, H., & Jeanblanc, M. (2008), ‘Valuation of default sensitive claims

under imperfect information’, Finance & Stochastics 12, 195–218.
Collin-Dufresne, P., Goldstein, R. & Helwege, J. (2003), ‘Is credit event risk priced? modeling

contagion via the updating of beliefs’, Preprint, Carnegie Mellon University.
Cont, R. & Kan, Y.-H. (2008), ‘Dynamic hedging of portfolio credit derivatives’, working

paper .
Davis, M. H. A. & Marcus, S. I. (1981), An introduction to nonlinear filtering, in

M. Hazewinkel & J. C. Willems, eds, ‘Stochastic Systems: The Mathematics of Fil-
tering and Identifications and Applications’, Reidel Publishing Company, pp. 53–75.

Duffie, D., Eckner, A., Horel, G. & Saita, L. (2009), ‘Frailty correlated default’, Journal of
Finance 64, 2089–2123.

Duffie, D. & Lando, D. (2001), ‘Term structures of credit spreads with incomplete accounting
information’, Econometrica 69, 633–664.

Elliott, R. J. & Mamon, R. S. (2003), ‘A complete yield curve description of a Markov
interest rate model’, International Journal of Theoretical and Applied Finance 6, 317
– 326.

Ethier, S. & Kurtz, T. (1986), Markov Processes: Characterization and Convergence, Wiley,
New York.
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