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Abstract

The defaultable term structure is modeled using stochastic differential equations in
Hilbert spaces. This leads to an infinite dimensional model, which is free of arbitrage
under a certain drift condition. Furthermore, the model is extended to incorporate
ratings based on a Markov chain.

1 Introduction

The demand for risky investments in areas different from the stock markets has increased
enormously due to their recent struggles. On possibility to achieve this, is to take credit
risk in exchange for an attractive yield and as a result methodologies for pricing and
hedging credit derivatives as well as for risk management of credit risky assets became
very important. The efforts of the Basel Committee is just one of many examples to
substantiate this. For an introduction into this area consider the surveys by Giesecke
(2004) and Schmidt and Stute (2004) or one of the excellent textbooks Schönbucher
(2003), Duffie and Singleton (2003), Lando (2004) or McNeil, Frey, and Embrechts (2005).

There are basically two classes of models for credit risk, the structural and the intensity
based ones. The latter gives a direct connection to interest rate models and therefore
allows to use the powerful machinery developed for interest rate models. For this reason,
in this article we focus on intensity based models.

A recent branch in interest rate theory deals with models allowing for infinitely many
factors and provides a lot of new insights. For example, Pang (1998) shows that the
calibration is advantageous over Heath, Jarrow, and Morton (1992) (henceforth HJM)
models. Hedges more akin to practice have been derived by Carmona and Tehranchi
(2004) and De Donno and Pratelli (2004).

In comparison to the interest rate market, the credit market is much more volatile. Quite
obvious, this is a property of investments at higher risk. Traditionally term structure

1The author is most grateful to Winfried Stute for his invaluable support. He also wants to thank
Josef Teichmann for his hospitality and fruitful comments.
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models are defined via diffusions driven by a low number of factors, usually three. This
choice enables analytical tractability and is usually justified with a view towards the
empirical fact that the first three principal components describe 95% of the observed
variance. However, Rebonato (2002, Section 13.2.5) observed, if including the period of the
Russian crisis in the analysis at least 10 factors will be needed to explain only 90% of the
variability. The additional factors are mainly due to the credit riskiness of the investments
in this markets. Viewed in this light it seems delicate not to consider a sufficient number
of factors. Furthermore, as pointed out in Cont (2005), dealing with derivatives typically
involves expectations of non-linear functions of the forward rate curve. Therefore, a model
which might explain the variance of the forward rate quite well may still lack principal
components which have a significant effect on the price of such derivatives. So it is natural
to analyse these markets within an infinite dimensional framework.

Modeling credit risk in an intensity based model may extend HJM to credit risk. There
are several ways to do this, and in the next two sections we present an approach in the
framework due to Duffie and Singleton (1999). We start by formulating the extension of
HJM using stochastic differential equations on Hilbert spaces. Our presentation uses the
so-called Musiela-parametrization which was originated in Musiela (1993). See Bagchi
and Kumar (2001), Filipović (2001) or Björk (2003) for related results in the interest rate
case.

In Section 4 we present an approach based on credit ratings. We use a Markov model in
combination with two different recovery structures. For a ratings-based recovery of market
value approach with a finite number of factors, see Acharya, Das, and Sundaram (2002),
and for a ratings-based recovery of treasury value approach, see Bielecki and Rutkowski
(2000). We extend both models using SDEs on Hilbert spaces.

The arbitrage-free conditions are presented in a fashion which clarifies the connection
between the defaultable spot rate, default intensity and the recovery structure. It seems
remarkable, that in a setting with credit risk other than the recovery of market value the
drift condition involves the whole term structure, compare Theorems 3.3, 4.3 and 4.5.
However, this only makes sense if one considers a functional approach using SDEs on
Hilbert spaces. Therefore, it is necessary in an arbitrage-free model with credit risk to
use the general framework presented here.

At this point the question naturally arises, where are the advantages of infinite dimensional
models as the term structure in typical credit risky markets seems to be quite simple –
usually there are only a low number of bonds issued per company. First, if these bonds
are pooled in a portfolio and analysed, for example, in a factor model, the number of
maturities to be considered will be quite high. A good model for the term structure
of credit spreads is of need. Second, more maturities come into play if one considers
government bonds or credit default swaps. The latter are the most liquid underlying in
credit markets.

Another argument towards infinite dimensional models is discussed in Schmidt (2004),
namely that a calibration based on such a model may show better numerical results and
may help to avoid frequent re-calibrations, while analytical tractability is maintained.
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2 An Infinite Factor HJM Extension

To develop our model with credit risk in infinite dimensions, we first discuss the method-
ology in the case without credit risk. Kennedy (1994) gives an interest rate formulation
with Gaussian random fields. This approach was extended to more general models using
SDEs on Hilbert spaces by Goldstein (2000), Santa-Clara and Sornette (1997) and Bagchi
and Kumar (2001). The framework we are presenting includes these models.

The idea of the HJM approach is to model the dynamics of the forward rates itself
rather than to model the dynamics of the instantaneous interest rate and then derive the
dynamics of the forward rates. The forward rates have a one-to-one correspondence to
bond prices, which in the continuous-time case amounts to

B(t, T ) = exp
(
−

T∫
t

f(t, u) du
)
.

Usually, the forward rate is modeled via an n-dimensional Brownian motion W as

df(t, T ) = α(t, T ) dt + σ(t, T ) · dWt, 0 ≤ t ≤ T, (1)

where α(t, T ) ∈ R and σ(t, T ) ∈ Rn form predictable processes. By · we denote the scalar
product in Rn.

Noticing that the forward-rate curve at time t, denoted by f(t, ·) : [t, t + T ∗∗] 7→ R, is a
function (of T ), one could model a stochastic process f(t) which itself takes values in a
functional space. So the question arises which functional space, say H, should be choosen.

Fix a finite time horizon T ∗. There are forward rates up to a maximum time-to-maturity
in the market, say T ∗∗, which is typically 30 years. Consequently, one can express the term
structure of forward rates by the stochastic process f(t, t + x) : [0, T ∗]× [t, t + T ∗∗] 7→ R.
This leads to the so-called Musiela parametrization, namely by considering

rt(x) := f(t, t + x).

The stochastic process (rt)t∈[0,T ∗] takes values in a functional space R[0,T ∗∗]. Sometimes
we use rt also to denote the spot rate, which is more precisely rt(0).

Therefore, we choose for H a separable Hilbert space, which consists of real-valued func-
tions on the interval [0, T ∗∗]. Using a Hilbert space allows to apply the well developed
methodology for stochastic differential equations on Hilbert spaces. We first present some
basic facts about Wiener processes on Hilbert spaces and the Itô formula in this frame-
work. For a concrete choice of H examine Filipović (2001).

2.1 Wiener Processes on Hilbert Spaces

We state some basic facts about Wiener processes in Hilbert spaces and the Itô formula
in this framework. For more details, see Da Prato and Zabczyk (1992).
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Consider a probability space (Ω,A, P) and a D-Wiener process (Xs)s≥0 with values in
H. X is a process with stationary and independent increments, such that for s < t
the increment Xt − Xs is normally distributed with zero mean and covariance operator
(t − s)D. We always denote by < , > the inner product of H and by {ek : k ∈ N} and
{λk : k ∈ N} the system of eigenvectors, and eigenvalues of D, respectively. The following
decomposition plays an important role.

Proposition 2.1. Consider a D-Wiener process (Xs)s≥0 and define

βk(s) :=< Xs, ek > .

Then, for any k ∈ N such that λk > 0, 1√
λk

βk(s) are mutually independent Brownian
motions. Moreover, we have the decomposition

Xs =
∞∑

k=1

βk(s)ek, (2)

and the series in (2) converges in L2(Ω,A, P).

Denote the norm on H by || · ||. For a covariance operator D the space H0 := D
1
2 (H) is

again a Hilbert space. By L2(H0, H) we denote the space of all Hilbert-Schmidt operators
from H0 into H, that is, continuous, linear operators T with

∑
k < Te0

k, T e0
k >2 being

finite, where {e0
k : k ∈ N} is an orthonormal basis of H0.

For a predictable process (Φ(s))s∈[0,T ∗] with values in L2(H0, H) the stochastic integral∫ t

0
Φ(s) · dXs is a square-integrable martingale if

|||Φ|||T ∗ :=
[
E

(
||

T ∗∫
0

Φ(s) · dXs||2
)] 1

2
< ∞,

where we denote Φ(s) · h for Φ(s)(h) whenever h ∈ H0.

The Itô-formula for H-valued semimartingales is a consequence of Taylor’s formula2.

Theorem 2.2. For an open subset A of the Hilbert space H, let f : A 7→ H be a
function, whose first and second derivative is uniformly continuous on bounded subsets
of A. Assume that the process (Y (t))t∈[0,T ∗] admits the following representation, with∫ T ∗

0
||αu|| du < ∞ P-a.s. and |||Φ|||T ∗ < ∞,

Y (t) = Y (0) +

t∫
0

αu du +

t∫
0

Φ(u) · dXu.

Then, for t ∈ [0, T ∗], we have P-a.s.

f
(
Y (t)

)
= f

(
Y (0)

)
+

t∫
0

Df
(
Y (u)

)
· dY (u)

+
1

2

t∫
0

∞∑
k=1

λkD2f
(
Y (u)

)(
Φ(u) · ek, Φ(u) · ek

)
du. (3)

2This version of the Itô formula is derived, for example, in Filipović (2001) or Schmidt (2003). Note,
that the second derivative D2f is a continuous bilinear mapping of H ×H into H. In this case we use
the notation D2f(f, g).
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Our presentation will frequently use processes which are mild solutions of stochastic partial
differential equations, see Da Prato and Zabczyk (1992) for a thorough discussion. Denote
by A the generator of the shift-semigroup and consider

dYt = (AYt + F (t, Yt)) dt + B(t, Yt) dXt. (4)

Let {S(t)|t ∈ R+} denote the semigroup of right-shifts, defined by S(t)g(x) = g(x + t),
for any function g : R+ 7→ R. Then a predictable, H-valued process (Yt)t∈[0,T ] is the mild
solution of (4), if

Yt = S(t)Y0 +

t∫
0

S(t− u)F (u, Yu) du +

t∫
0

S(t− u)B(u, Yu) dXu.

Sufficient conditions for the existence of such a mild solution are given in Da Prato and
Zabczyk (1992, Theorem 7.4).

2.2 The Model

First, we restate the dynamics of the forward rates in terms of rt(x). To make a notational
difference, we write αt(x) for α(t, t + x) and σt(x) for σ(t, t + x). Therefore, we obtain
from (1), setting x := T − t

rt(x) = r0(t + x) +

t∫
0

αu(t− u + x) du +

t∫
0

σu(t− u + x) · dWu.

Recall that S was the right-shift operator. This enables us to obtain a consistent formu-
lation within a functional setting by

rt(x) = S(t)r0(x) +

t∫
0

S(t− u)αu(x) du +

t∫
0

S(t− u)σu(x) · dWu

⇔ rt = S(t)r0 +

t∫
0

S(t− u)αu du +

t∫
0

S(t− u)σu · dWu,

where r0, αu are themselves elements of Rn while σu is a n×n-matrix. In this formulation
the shift operator arises naturally, as forward rates with fixed maturity correspond to
forward rates with decreasing time-to-maturity.

In the following we will generalize the dW -integral to Wiener processes on the Hilbert
space H. Consider stochastic processes α : [0, T ∗] × Ω 7→ H and σ : [0, T ∗] × Ω 7→
L2(H0; H), both predictable w.r.t. (Ft)t≥0, satisfying P(

∫ T ∗

0
α(s) ds < ∞) = 1 and

|||σ|||T ∗ < ∞. Further on, assume that (X(t))t≥0 is a D-Wiener process. Assume the
forward rate dynamics to follow

rt = S(t)r0 +

t∫
0

S(t− u)αu du +

t∫
0

S(t− u)σu · dXu. (5)
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Note that rt takes values in H, so it represents the whole forward-rate curve, otherwise
denoted by f(t, t + x). For α we could explicitly write αt(x) while this is not possible
for σ. Still, even if the index x does not appear directly, it is not obsolete. As the last
integral is an element of H for all t we can write it either as

t∫
0

S(t− u)σu · dXu =: I(t) ∈ H (6)

or directly as I(t, x).

We will make use of the eigenvalue expansion of X, see Equation (2), and therefore denote

σk(u, v) :=
(
σ(u) · ek

)
(v),

where {ek : k ∈ N} are the orthonormalized eigenvectors of D .

We derive the analogue of the drift condition of Heath, Jarrow, and Morton (1992) in
an infinite dimensional setting. Starting with a model under some measure Q, which is
assumed to be equivalent to the objective measure P , we derive a condition under which
Q is a martingale measure. Then Q is called an equivalent martingale measure (EMM)
and, as shown by Björk, di Masi, Kabanov, and Runggaldier (1997), the market is free of
arbitrage. In the above notation, we get the following

Theorem 2.3. Set σ∗k(t, x) :=
∫ x

0
σk(u, v) dv. Then all discounted bond prices are mar-

tingales iff

αt(x) =
∞∑

k=1

λk σ∗k(t, x) σk(t, x) ∀t ∈ [0, T ∗], x ∈ [0, T ∗∗]. (7)

Equation (7) is often referred to as the drift condition. Note that the drift condition
derived by Heath, Jarrow, and Morton (1992) is the special case corresponding to λk = 0
after some finite number n. Filipović (2001, Lemma 4.3.3) obtains a similar result, using a
different method which mainly relies on the eigenvalue expansion (2) to obtain the proof.

Intuitively, the drift condition means that, once the volatility (and dependence) structure
is specified, the dynamics under the arbitrage-free measure are fixed. As a change of
measure does not change the volatility structure, this could be estimated using historical
data, cf. Shreve (2004, Sec. 10.3.6) or Schmidt (2004).

Forward rates observed in the market have a time-to-maturity of up to 20 years or more,
while the time horizon for credit derivatives is relatively small. This implies for our model
that T ∗∗ > T ∗, which plays a role, for example, in the drift condition.

If the drift-condition is satisfied, then the market is free of arbitrage. Completeness follows
if the equivalent martingale measure is unique. To the best of our knowledge conditions
under which this holds true in the above setting are not yet available.

Proof of Theorem 2.3. In the Musiela parametrization, the bond price equals

B(t, T ) = exp
(
−

T−t∫
0

rt(v) dv
)
.
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As we want to consider
∫ T−t

0
rt(v) dv, we introduce

y(t, x) = F (rt, x) :=

x∫
0

rt(v) dv,

where F : H×R+ 7→ H. Consider x as fixed. Then, as F is linear, we immediately obtain
that the Frèchet-derivative of F is F itself. Of course, the second derivative is zero. Thus,
applying the Itô -formula (3) yields

F (rt, x) = F (r0, x) +

t∫
0

DF · ∂

∂x
ru du +

t∫
0

DF · αu du +

t∫
0

DF · σu · dXu.

We suppress the dependence of the derivative on x. For example, DF · αu =
∫ x

0
αu(v) dv.

Defining Φ : [0, T ∗]2 × Ω 7→ L(H; H) by

Φ(u, x) · f :=

x∫
0

[σu · f ](v) dv,

and α∗(t, x) := F (αt, x) =
∫ x

0
αt(v) dv, we obtain the dynamics of F (rt, x) as

dF (rt, x) =
[
rt(x)− rt(0) + α∗(t, x)

]
dt + Φ(t, x) · dXt.

The second step is to derive the dynamics of the bond price B(t, T ) = exp(−y(t, T )). To
apply Itô’s formula, we define

F̃ : A 7→ H, g(·) → exp(g(·)).

Here A is chosen in such a way, that exp(g(·)) is again an element of H. Then we have
B(t, ·) = [F̃ (−y(t))](·) or B(t) = F̃ (−y(t)), respectively.

We calculate the first and second derivative of F̃ . First, define for f, g ∈ H the product

of f and g by (f × g)(·) := f(·)g(·). Then F̃ (g(·)) =
∑∞

k=1
g(·)k

k!
. The derivative of g2 is

D(g2)(x) = 2g(x)× id,

where id is the identity on H. The derivative of gn is easily obtained by induction and
we conclude

DF̃ (g) = F̃ (g)× id and D2F̃ (g) = F̃ (g)× id× id .

It is very important to distinguish between the bond dynamics in Musiela parametrization
and the canonical dynamics. To clarify this, we write just for the following formula
B(t, t + x) and B0(t, T ), respectively. Then, the connection of both formulations is

dB0(t, T ) = dB(t, x)
∣∣∣
x=T−t

− ∂

∂x
B(t, x)

∣∣∣
x=T−t

dt.
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Therefore, applying Itô’s formula yields for the canonical dynamics

dB(t, T ) = DF̃
(
B(u)

)
·
[
−

(
rt(T − t)− rt(0) + α∗(t, T − t)

)
dt− Φ(t, T − t) · dXt

]
+

1

2

[ ∞∑
k=1

λkD2F̃
(
B(t)

) (
Φ(t, T − t) · ek, Φ(t, T − t) · ek

)
+ rt(T − t)B(t, T − t)

]
dt

= B(t, T )
[(

rt(0)− α∗(t, T − t)
)
dt− Φ(t, T − t) · dXt

+
1

2

∞∑
k=1

λk[σ
∗
k(t, T − t)]2 dt

]
.

Define the discounting process Dt := exp
(
−

∫ t

0
ru du

)
. Note that Dt is of finite variation.

Applying the common Itô-formula therefore yields

d[DtB(t, T )] = DtB(t, T )

{[
rt(0)− rt(0)− α∗(t, T − t) +

1

2

∞∑
k=1

λk[σ
∗
k(t, T − t)]2

]
dt

−Φ(t, T − t) dXt

}
. (8)

Note that we stress the dependence on (rt(0)− rt), which is in this case equal to 0. In the
case with credit risk we consider r̄t(0) instead of the rt(0) and this term will not vanish.
Consequently the discounted bond price is a martingale under |||σ|||T ∗ < ∞, iff

α∗(t, T − t) =
1

2

∞∑
k=1

λk[σ
∗
k(t, T − t)]2 dt, ∀T ∈ [t, t + T ∗∗],

which is equivalent to

x∫
0

αt(v) dv =
1

2

∞∑
k=1

λk

[ x∫
0

σk(t, v) du
]2

dv dt. (9)

Taking the partial derivative w.r.t. x, we arrive at (7). Conversely, (9) immediately follows
from (7) and hence the conclusion. �

We are not able to conclude that the market is complete, because there is, to our best
knowledge, yet no result on uniqueness available.

2.3 Change of Measure

Up to now we considered the model under a measure Q and obtained conditions, under
which Q is a martingale measure. In fact, the observed dynamics take place under the
objective measure P , and we have to perform a change of measure to obtain the risk-
neutral dynamics, which are necessary for pricing and hedging.

The main tool for doing this is Girsanov’s Theorem, which might be found in Da Prato
and Zabczyk (1992, Section 10.2.1) in a formulation suitable to our framework. Once
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the drift condition is obtained, the procedure for obtaining Q is similar throughout all
models. Thus, if (Xs)s∈[0,T ∗] is a D-Wiener process under P ,

X̃s := Xs +

s∫
0

µu du

is a D-Wiener process under Q, where dQ := E(µ)dP , (µs)s∈[0,T ∗] is a predictable process

with values in H0 = D
1
2 (H). Denoting Φ(s)(·) := < µs, · >0, the density has the form

E(µ) := exp
(
−

T ∗∫
0

Φ(s) · dXs −
1

2

T ∗∫
0

|µs|20 ds
)
.

We obtain the following

Proposition 2.4. If a predictable process (µs)s∈[0,T ∗] exists, which satisfies E(E(µ)) = 1
and [

σt · µt

]
(x) = αt(x)−

∞∑
k=1

λk σ∗k(t, x) σk(t, x),

for all t ∈ [0, T ∗] and x ∈ [0, T ∗∗], then the measure Q as defined above is an equivalent
martingale measure.

Proof. The process (X̃s)s≥0 is a D-Wiener process under Q and the dynamics of the
forward rates equal

rt = S(t)r0 +

t∫
0

S(t− u)αu du +

t∫
0

S(t− u) σu · d
(
X̃u −

u∫
0

µ(v) dv
)

= S(t)r0 +

t∫
0

S(t− u)
[
αu − σu · µ(u)

]
du +

t∫
0

S(t− u) σu · dXu.

Therefore, Q is an equivalent martingale measure, if the drift condition is satisfied for the
drift (α− σ · µ), that is

αt(x)−
[
σ(t) · µ(t)

]
(x) =

∞∑
k=1

λk σ∗k(t, x) σk(t, x). �

If credit risk is incorporated into this setting, the change of measure furthermore results in
a change of the intensity. This is also true for the ratings model of Section 4, cf. Bielecki
and Rutkowski (2002, Sections 4.4 and 7.2).

3 Models with Credit Risk

At this point we incorporate default risk into our model. In the finite-dimensional HJM
framework this was first considered by Duffie and Singleton (1999). In the following we
extend their results to infinite dimensions.
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The following is a basic assumption for the next two sections and summarizes the infinite
dimensional setting for the defaultable forward rates. As before, we consider a separable
Hilbert space H, whose elements are assumed to be functions f : [0, T ∗∗] 7→ R.

Assumption (A1): Let ᾱ : [0, T ∗]×Ω 7→ H and σ̄ : [0, T ∗]×Ω 7→ L(H; H) be stochastic

processes, which are predictable w.r.t. (Ft)t≥0, with finite |||σ̄|||T ∗ and P(
∫ T ∗

0
ᾱ(s) ds <

∞) = 1. Furthermore, the defaultable forward rate follows

r̄t = S(t)r̄0 +

t∫
0

S(t− u) ᾱu du +

t∫
0

S(t− u) σ̄u · dX̄u,

where (X̄s)s∈[0,T ∗] is a D̄-Wiener process.

Consider a hazard-rate model, that is, for a given filtration (Gt)t≥0 of general market
information, the default time τ has an intensity (λt)t≥0 which is adapted to (Gt)t≥0. Here
Gt := σ(X̄s, Xs : s ≤ t) with the usual augmentation and Ft := Gt ∨ σ(1{τ≤s} : s ≤ t). For
details see, for example, Lando (1998) or Schmidt (2003).

3.1 Recovery of Market Value

For methods using SDEs the recovery of market value model is particularly well suited. In
this model the dynamics before a default occurs are modeled analogously to the risk-free
case. If a default occurs, say at τ , the bond loses a random fraction qτ of its pre-default
value, where (qs)s∈[0,T ∗] is a predictable process with values in [0, 1]. The remaining value
is immediately paid to the bond holder, and therefore no longer at risk to the default.

The pre-default dynamics of the bond B̄ are modeled by specifying the dynamics of the
forward rates, denoted by r̄t(x). Hence,

1{τ>t}B̄(t, T ) = 1{τ>t} exp
(
−

T−t∫
0

r̄t(u) du
)
.

If the bond defaults within its lifetime its value at default is assumed to become

1{τ≤T}B̄(τ, T ) = 1{τ≤T}(1− qτ )B̄(τ−, T ).

In contrast to other recovery models the value of the bond immediately before default has
some influence on the repayment, which seems reasonable.

The value of (1− qτ )B̄(τ−, T ) is immediately available to the bond owner at default and
no more at risk. Therefore, the value of the defaultable bond can be represented by

B̄(t, T ) = 1{τ>t} exp
(
−

T−t∫
0

r̄t(u) du
)

+ 1{τ≤t} exp
( t∫

τ

ru du
)
(1− qτ )B̄(τ−, T ).

Denote by {ēk : k ∈ N} and {λ̄k : k ∈ N} the eigenvectors and eigenvalues of D̄. Set

σ̄k(u, v) := (σ̄u · ēk)(v) and σ̄∗k(u, T ) :=
∫ T−u

0
σ̄k(u, v) dv. Then we can state the following
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Theorem 3.1. Assume that ᾱs(x) is continuous in s for any x ∈ [0, T ∗∗] and assump-
tion (A1) holds. Under the recovery of market value model, discounted bond prices are
martingales, iff the following two conditions hold on {τ > t}:

(i) For any t ∈ [0, T ∗], x ∈ [0, T ∗∗]

ᾱt(x) =
∞∑

k=1

λ̄k σ̄∗k(t, x) σ̄k(t, x). (10)

(ii) For any t ∈ [0, T ∗]

r̄t(0) = rt(0) + qtλt. (11)

Proof. If we denote the discounting factor by Dt = exp
(
−

∫ t

0
ru du

)
, the discounted gains

process G(t, T ) := DtB̄(t, T ) equals

G(t, T ) = 1{τ>t}DtB̄(t, T ) + 1{τ≤t} exp
(
−

τ∫
0

ru du
)
(1− qτ )B̄(τ−, T )

= 1{τ>t}DtB̄(t, T ) + 1{τ≤t}Dτ (1− qτ )B̄(τ−, T )

= 1{τ>t}DtB̄(t, T ) +

t∫
0

Ds(1− qs)B̄(s−, T ) dΛs.

For the last representation we set Λs := 1{τ≤s}. The t-dynamics of G(t, T ) becomes

dG(t, T ) = d
(
(1− Λt)DtB̄(t, T )

)
+ (1− qt)DtB̄(t−, T ) dΛt =: (1) + (2).

Taking into account that Λt is of finite variation the first summand equals

(1) = −dΛt DtB̄(t, T ) + (1− Λt) d
(
DtB̄(t, T )

)
.

The calculation of the discounted bond’s dynamics is analogous to the risk-free case.
Using expression (8) with λ̄k, β̄k, respectively and setting α̃(u, T ) :=

∫ T−u

0
ᾱ(u, v) dv as

well as σ̃k(u, T ) :=
∫ T−u

0
σ̄k(u, v) dv, we obtain

d[DtB̄(t, T )] = DtB̄(t, T )

{[
r̄t(0)− rt − α̃(t, T ) +

1

2

∞∑
k=1

λ̄k[σ̃k(t, T )]2
]
dt

−
∞∑

k=1

σ̃k(t, T ) dβ̄k(t)

}
. (12)

r̄s(·) is continuous in s, because ᾱ(s, ·) is continuous by assumption and X̄s by definition.
Therefore, on {τ > t}, we have B̄(t−, T ) = B̄(t, T ).

By definition of (λs)s≥0, we have that Λs −
∫ s∧τ

0
λs ds is a F -martingale, which implies

that
dM̃t := dΛt − 1{t≤τ}λt dt = dΛt − (1− Λt)λt dt

11



is the differential of an F -martingale, see Bielecki and Rutkowski (2002, Lemma 4.2.1).
This leads to

dG(t, T ) =
(
−DtB̄(t, T ) + (1− qt)DtB̄(t, T )

)
dΛt

+ (1− Λt) DtB̄(t, T )

{[
r̄t(0)− rt − α̃(t, T ) +

1

2

∞∑
k=1

λ̄k[σ̃k(t, T )]2
]
dt

−
∞∑

k=1

σ̃k(t, T ) dβ̄k(t)

}
= DtB̄(t, T )

{
− qtdM̃t −

∞∑
k=1

σ̃k(t, T ) dβ̄k(t)

+ (1− Λt)
[
− qtλt + r̄t(0)− rt − α̃(t, T ) +

1

2

∞∑
k=1

λ̄k[σ̃k(t, T )]2
]
dt

}
.

Hence the dt-term represents the drift. As (G(t, T ))t≥0 is a martingale, iff the drift is zero,
it is a martingale, iff for all t ≤ T

1{τ>t}

[
− qtλt + r̄t(0)− rt − α̃(t, T ) +

1

2

∞∑
k=1

λ̄k[σ̃k(t, T )]2
]

= 0. (13)

Note that this is needed only for t < τ . This is due to the assumption that the recovery
value is immediately paid to the bond holder and therefore there is no risky dynamics
after default. Consequently, equation (13) is true under (10) and (11).

For the converse, since this equation must hold for any t ≤ τ ∧ T and the α̃ and σ̃ -terms
equal zero if T = t we obtain (10) and then (11). �

Remark 3.2. If one prefers a drift condition which does not depend on a particular real-
ization of τ , one can assume that conditions (10) and (11) hold true for any t ∈ [0, T ∗]
and x ∈ [0, T ∗∗]. Then Q is an EMM as the discounted bond prices are martingales. Of
course, Q being an EMM still yields (10) and (11) on {τ > t} only.

3.2 Recovery of Treasury

There are different models of recovery, as discussed, for example, in Schmidt (2003). An
alternative to the recovery of market value is the recovery of treasury formulation. In this
model, the default entails a reduction of the face value by a pre-specified constant. The
reduced face value, denoted by δ, is assumed to be no longer at the default risk and is
paid to the bond holder at maturity T . This is certainly equivalent to paying δB(τ, T )
immediately at default.

Therefore the value of the defaultable bond in this model is

B̄(t, T ) = 1{τ>t} exp
(
−

T−t∫
0

r̄t(u) du
)

+ 1{τ≤t}δB(t, T ), 0 ≤ t ≤ T.

12



Theorem 3.3. Assume a recovery of treasury model and the riskless bond market to be
arbitrage-free. Under assumption (A1), discounted defaultable bond prices are martingales,
iff on {τ > t} for any t ∈ [0, T ∗], T ∈ [t, t + T ∗∗]

r̄t(0) = rt + λt

(
1− δ

)
(14)

and the following drift condition holds

α(t, x) =
∞∑

k=1

λ̄kσ
∗
k(t, x)σ̄k(t, x) + δλt F (rt, r̄t)(x). (15)

Here F is a mapping taking values in H defined for suitable g, h ∈ H by

F (g, h)(x) :=
∂

∂x
exp

( x∫
0

(
h(u)− g(u)

)
du

)
. (16)

In the HJM setup the SDEs on f(t, T ) are treated separately for each T . Note that the
above drift condition relates the forward rates for different T to each other (via the term
with F ), so a joint formulation is necessary. This term with F has a simple interpretation,
as

F (rt, r̄t)(x) =
∂

∂x

B(t, t + x)

B̄(t, t + x)
=

(
r̄t(x)− rt(x)

) B(t, t + x)

B̄(t, t + x)
.

Of course, the situation is different, if one uses the decomposition of B̄ in (1 − δ) zero-
recovery and δ risk-free bonds. Then, just a condition on the zero-recovery bonds is
needed and this is given by Theorem 3.1.

Proof. With the notation of the previous proof, the discounted gains process in this model
becomes

G(t, T ) = DtB̄(t, T ) = (1− Λt)Dt exp
(
−

T−t∫
0

r̄t(u) du
)

+ ΛtδDtB(t, T )

with dynamics

dG(t, T ) = (1− Λt) d
[
Dt exp

(
−

T−t∫
0

r̄t(u) du
)]

−Dt exp
(
−

T−t∫
0

r̄t(u) du
)

dΛt + Λtδd
(
DtB(t, T )

)
+ δDtB(t, T )dΛt.

Taking into account that on {τ > t}, exp
(
−

∫ T−t

0
r̄t(u) du

)
= B̄(t, T ), the value of

13



d
(
DtB̄(t, T )

)
is given in equation (12). This yields

dG(t, T ) = (1− Λt)DtB̄(t, T )

{[
r̄t(0)− rt(0)− α̃(t, T ) +

1

2

∞∑
k=1

λ̄k[σ̃k(t, T )]2
]
dt

−
∞∑

k=1

σ̃k(t, T ) dβ̄k(t)

}
+ Λtδd

(
DtB(t, T )

)
+

[
−Dt exp

(
−

T−t∫
0

r̄t(u) du
)

+ δDtB(t, T )
][

dM̃t + (1− Λt)λt dt
]

= (1− Λt)DtB̄(t, T )

{
r̄t(0)− rt(0)− λt − α̃(t, T )

+
1

2

∞∑
k=1

λ̄k[σ̃k(t, T )]2
}

dt + δDtB(t, T ) (1− Λt)λt dt + dM̄t,

where we denote the sum of all martingale terms by M̄t. Note that DtB(t, T ) is a mar-
tingale, as we assumed the riskless bond market to be free of arbitrage. Consequently the
drift of (G(t, T ))t≥0 is zero, iff on {τ > t} for all 0 ≤ t ≤ T

0 = B̄(t, T )

{
r̄t(0)− rt(0)− λt − α̃(t, T ) +

1

2

∞∑
k=1

λ̄k[σ̃k(t, T )]2
}

+ δB(t, T )λt

⇔ 0 = r̄t(0)− rt − λt + δλt
B(t, T )

B̄(t, T )
− α̃(t, T ) +

1

2

∞∑
k=1

λ̄k[σ̃k(t, T )]2.

Setting t = T yields (14). Taking partial derivatives in the above equation we arrive at

α(t, x) =
∞∑

k=1

λ̄kσ
∗
k(t, x)σ̄k(t, x) + δλt

B(t, t + x)

B̄(t, t + x)

(
r̄t(x)− rt(x)

)
.

Note that the last term involves the whole term structure at time t. We write it more
concisely as F (rt, r̄t)(x) with

F (g, h)(x) :=
∂

∂x
exp

( x∫
0

h(u)− g(u) du
)

=
(
h(x)− g(x)

)
exp

( x∫
0

h(u)− g(u) du
)
.

Similar arguments as for Theorem 3.1 yield the desired result. �

3.3 Models with Infinite Factors

In this section we present several applications of infinite factor models, two of them in
the interest rate context.

First, assuming that σ̄ : [0, T ∗] 7→ L(H; H) is deterministic immediately results in a
Gaussian model. In analogy to Vargiolu (1998) a historical estimation of the covariance
structure using the Karhunen-Loève decomposition is possible. The procedure requires
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two steps. Firstly, the covariance operator is estimated using historical data. In the second
step the first eigenvectors /values are obtained, say up to a number N̄ . This results in a
N̄ -factor HJM model which is used as an approximation of the infinite factor model.

Let us consider the procedure in further detail. The covariance operator of r̄(t) equals3

Var
(
r̄(t)

)
=

t∫
0

(
σ̄(s)D

1
2

) (
σ̄(s)D

1
2

)∗
ds.

Assuming we consider a time interval which is small enough so that variations of σ̄(s) do
not play a significant role, one could use4

Dn(tn)

tn − t1
:=

1

n

n∑
i=1

r̄(ti)⊗ r̄(ti)

as an estimator of (σ̄(t)D
1
2 ) (σ̄(t)D

1
2 )∗, where t = tn (or t1, respectively tn/2).

Focusing on the error of a finite dimensional approximation rather than pre-specifying the
dimension naturally involves the Karhunen-Loève decomposition in the following way. The
first N̄ eigenvalues and eigenvectors of Dn(tn) can be obtained as follows. Fix k0 ∈ H
and define

kn+1 := Dn(tn) · kn.

Then kn+1 itself is an element of H. Vargiolu (1998) shows that

kn → e1 and
‖ kn+1 ‖
‖ kn ‖

→ λ1, as n →∞.

Using D1 := Dn(tn)− λ1e1 ⊗ e1, and applying the procedure to D1 yields e2 and λ2 and
so on. This is the classical Mises-Geiringer procedure.

The number of eigenvectors, N̄ , will be chosen such that the desired precision is obtained.
Finally, we approximate (

σ̄(t)D
1
2

)
'

N̄∑
k=1

λ
1
2
k ek,

and this represents the approximating n̄-factor classical HJM model.

Second, in the work of Gisdakis (2004) the decomposition in Theorem 2.1 is used for a
parsimonious model of so-called shape factors. This model is a special case of ours and
seems to be a promising approach for applications in credit risk pricing.

Third, Cont (2005) proposed a model using stochastic processes in Hilbert spaces and
showed that certain statistical features of the term structure of interest rates, which were
observed in empirical studies, can be reproduced. In particular, the model captures the

3With
(
σ̄(s)D

1
2
)∗ we denote the adjoint operator of σ̄(s)D

1
2 .

4Here ⊗ denotes the tensor product of elements of H. The decomposition of a linear operator D into
its eigenvectors ek and eigenvalues λk then can be written in the form D =

∑∞
k=1 λk ek ⊗ ek.
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imperfect correlation between maturities, mean reversion and the structure of principal
components of term structure deformations.

Fourth, Collins-Dufresne and Goldstein (2003) generalized the affine framework to ran-
dom field models. Their focus is on models which posses quasi-analytic solutions for the
characteristic functions. Therefore, closed-form solutions for many types of fixed income
derivatives can be derived.

4 Models Using Ratings

As ratings are readily available and a widely used tool in markets subject to credit risk,
a model should be capable of using this information. In this section we lay out the
framework for a model in infinite dimensions that incorporates different rating classes.
We present two alternative recovery structures with recovery levels dependent on the
pre-default rating.

The basic assumption of the next two sections describes the behavior of the defaultable
forward rates with respect to the current rating.

Assumption (A2). Assume that there are K − 1 ratings, where 1 denotes the highest
rating and K − 1 the lowest, while K is associated with default. Denoting by K =
{1, . . . , K − 1} the set of possible ratings and putting K̄ = K ∪ {K}, we assume that the
rating i forward rate satisfies for t ∈ [0, T ∗]

ri
t = S(t)ri

0 +

t∫
0

S(t− u)αi(u) du +

t∫
0

S(t− u)σi(u) · dX i(u),

where (X i(t))t∈[0,T ∗] is a Di-Wiener process. Furthermore, αi : [0, T ∗] × Ω 7→ H and
σi : [0, T ∗] × Ω 7→ L(H; H) are stochastic processes, which are predictable and satisfy∫ T ∗

0
ᾱi(s) ds < ∞ a.s. and |||σ̄i|||T ∗ < ∞, for all i ∈ K.

To exclude arbitrage we furthermore assume that

rK−1
t (x) > · · · > r1

t (x) > rt(x) ∀x ∈ [0, T ∗∗].

This corresponds to the fact that higher rated bonds are more expensive than lower rated
ones. If this were not the case the rating of the bond would seem to be wrong. This could
happen because of speculative behavior or if the rating is delayed by some other effects
and is not modeled here.

The above relation could equivalently be stated by the condition that the inter-rating
spreads must be positive, see Acharya, Das, and Sundaram (2002).

The process which describes the current rating of the bond, (C1(t))t≥0, takes values in K̄
and is assumed to be a Markov process at this state. Intuitively this means that for this
particular bond the “history of ratings” does not influence the price nor default risk of the
bond, only the current rating does. We denote by C2(t) the previous rating before C1(t).
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If there were no changes in the rating up to time t we set C2(t) = C1(t). The default τ
occurs at the first time, when the state K is reached, τ := inf{t ≥ 0 : C1(t) = K}.

Denote the conditional infinitesimal generator of C1 given Gt under the measure Q by
λ11(t) λ12(t) λ13(t) · · · λ1K(t)

...
...

. . . · · · ...
λK−1,1(t) λK−1,2(t) · · · λK−1,K−1(t) λK−1,K(t)

0 0 · · · · · · 0

 .

Each (λij(t))t≥0 is a (Gt)t≥0-adapted process satisfying the condition

λii(t) = −
∑

i,j∈K̄,j 6=i

λij(t), for all t ≥ 0. (17)

We state the following proposition which is proven, for example, in Bielecki and Rutkowski
(2002, Prop. 11.3.1).

Proposition 4.1. For any function f : K̄ 7→ R the following process is a martingale:

M̃(t) = f(C1(t))−
t∫

0

K∑
j=1

λC1(u),jf(j) du. (18)

For the rating transition to the default state, using equation (11.51) of Bielecki and
Rutkowski (2002), we immediately conclude

Proposition 4.2. The process (M i(t))t≥0 is a martingale for any i ∈ K:

M i(t) = 1{C2(t)=i,C1(t)=K} −
t∫

0

λiK(u)1{C1(u)=i} du. (19)

4.1 Rating Based Recovery of Market Value

Assume that for i ∈ K, the rating i recovery rate (qi(t))t≥0 to be a nonnegative stochastic
process which is predictable for all i ∈ K. In extension to Section 3.1 we model the
defaultable bond with rating transitions for all t ∈ [0, T ∗] and T ∈ [t, t + T ∗∗] by

B̄(t, T ) = 1{C1(t) 6=K} exp
(
−

T−t∫
0

r
C1(t)
t (u) du

)

+ 1{C1(t)=K}q
C2(t)
τ B̄(τ−, T ) exp

( t∫
τ

ru du
)
. (20)

We call this recovery modeling rating based recovery of market value. This may be com-
pared to the case without ratings in Section 3.1. The advantages of the recovery of market
value model carry through to this model.
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At this point we can compute the defaultable forward rate, the forward rate offered by
the bond B̄(t, T ) = B̄(t, t + x)

r̄t(x) = − ∂

∂x
ln B̄(t, t + x)

=
−1

B̄(t, t + x)

∂

∂x

{
1{C1(t) 6=K} exp

(
−

x∫
0

r
C1(t)
t (u) du

)

+ 1{C1(t)=K}q
C2(t)
τ B̄(τ−, t + x) exp

( t∫
τ

ru du
)}

.

Computing the derivative yields

r̄t(x) = 1{C1(t) 6=K}r
C1(t)
t (x) + 1{C1(t)=K}r

C2(t)
τ (x + t− τ).

Interestingly, this expression does not depend on the different recovery rates, which is due
to the fact that the forward rates describe the behavior of relative price changes. So the
defaultable forward rate equals the forward rate with respect to the bond’s rating. If the
bond defaulted, the forward rate curve remains static, as the post-default movement is
parallel to the risk-free interest.

For any i ∈ K we denote by {ei
k : k ∈ N} and {λi

k : k ∈ N} the eigenvectors and

eigenvalues of Di and set σi
k(u, v) := (σi(u) · ēi

k)(v) and σi∗
k (u, T ) :=

∫ T−u

0
σi

k(u, v) dv. Set

Bi(t, T ) := exp
(
−

T−t∫
0

ri
t(u) du

)
and recall the mapping F from (16). Then we can state the following

Theorem 4.3. Assume that (A2) and (20) hold under the measure Q. Then discounted
defaultable bond prices are martingales under Q iff the following two conditions are sat-
isfied on {τ > t}:

(i) For any t ∈ [0, T ∗], T ∈ [t, t + T ∗∗],

r
C1(t)
t (0) = rt +

(
1− q

C1(t)
t

)
λC1(t),K(t). (21)

(ii) For any t ∈ [0, T ∗], x ∈ [0, T ∗∗],

αC1(t)(t, x) =
∞∑

k=1

λ
C1(t)
k σ

C1(t)∗
k (t, x)σ

C1(t)
k (t, x)

+
K−1∑
j=1

λC1(t),j(t) F (rj, rC1(t))(x). (22)
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Under the conditions of the above theorem and, if Q is equivalent to the objective measure
P , Q is an equivalent martingale measure and so the market is free of arbitrage.

Proof. Recall that G(t, T ) = DtB̄(t, T ). Using equation (20), we determine the discounted
gains process

G(t, T ) = Dt

K−1∑
i=1

1{C1(t)=i}B
i(t, T )

+ Dτ 1{C1(t)=K}

K−1∑
i=1

1{C2(t)=i}q
i
τ B̄(τ−, T ).

Note that the indicators have finite variation, just like (Dt)t≥0, and therefore Itô’s formula
yields the dynamics

dG(t, T ) =
K−1∑
i=1

1{C1(t)=i}d
(
DtB

i(t, T )
)

+
K−1∑
i=1

DtB
i(t, T )d1{C1(t)=i}

+ d
( K−1∑

i=1

1{C1(t)=K,C2(t)=i}

)
qi
τ B̄(τ−, T )Dτ .

For the last term,

qi
τ B̄(τ−, T )Dτd1{C1(t)=K,C2(t)=i} = qi

t Bi(t, T )Dtd1{C1(t)=K,C2(t)=i},

as the indicator changes only at t = τ . Furthermore, due to the continuity of the forward
rates, B̄(τ−, T ) = BC2(τ)(τ, T ). Using (18) with f i(x) = 1{x=i} for i ∈ K, we have

d1{C1(t)=i} = d
(
M̃ i(t) +

t∫
0

K∑
j=1

λC1(u),jf
i(j) du

)

= d
(
M̃ i(t) +

t∫
0

λC1(u),i du
)

= dM̃ i(t) + λC1(t),i dt. (23)

Analogously to the default-free case (see 12) the dynamics of each i-rated bond for t ∈
[0, T ∗] and T ∈ [t, t + T ∗∗] can be expressed as

d
(
DtB

i(t, T )
)

= DtB
i(t, T )

{(
ri
t(0)− rt(0)− α̃i(t, T ) +

1

2

∞∑
k=1

λi
k[σ̃

i
k(t, T )]2

)
dt

−
∞∑

k=1

σ̃i
k(t, T ) dβi

k(t)

}
, (24)

with α̃i(t, T ) =
∫ T−t

0
αi(t, u) du and σ̃i

k(t, T ) :=
∫ T−t

0
σi

k(t, v) dv.
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Use (19) to obtain

dG(t, T ) =
K−1∑
i=1

1{C1(t)=i}DtB
i(t, T )

{[
ri
t(0)− rt(0)− α̃i(t, T )

+
1

2

∞∑
k=1

λi
k[σ̃

i
k(t, T )]2

]
dt−

∞∑
k=1

σ̃i
k(t, T ) dβi

k(t)

}

+
K−1∑
i=1

DtB
i(t, T )

(
dM̃ i(t) + λC1(t),i(t) dt

)
+

K−1∑
i=1

qi
t Bi(t, T )Dt

(
dM i(t) + λi,K(t)1{C1(t)=i} dt

)
=

K−1∑
i=1

DtB
i(t, T )

{
1{C1(t)=i}

[
ri
t(0)− rt(0) + qi

t λi,K(t)

−α̃i(t, T ) +
1

2

∞∑
k=1

λi
k[σ̃

i
k(t, T )]2

]
+ λC1(t),i(t)

}
dt + dM̄t,

where we denoted the sum of the martingale parts by M̄t. The dt-term yields the drift,
and G(t, T ) is a martingale, iff the drift is zero. Again, we separate the terms depending
on t only from the terms depending also on T . Note that the drift-term is equal to

1{C1(t) 6=K}

{
BC1(t)(t, T )

[
r

C1(t)
t (0)− rt(0) + q

C1(t)
t λC1(t),K(t)− α̃C1(t)(t, T )

+
1

2

∞∑
k=1

λ
C1(t)
k [σ̃

C1(t)
k (t, T )]2

]
+

K−1∑
j=1

Bj(t, T )λC1(t),j(t)

}
.

The drift has to be zero. Setting T = t and using (17) we arrive at (21). For the remaining
part of the drift we obtain on {C1(t) = c} with c 6= K

α̃c(t, T ) =
1

2

∞∑
k=1

λc
k[σ̃

c
k(t, T )]2 +

K−1∑
j=1

[Bj(t, T )

Bc(t, T )
− 1

]
λc,j(t).

We take the partial derivative w.r.t. T and get

αc(t, x) =
∞∑

k=1

λc
kσ

c∗

k (t, x)σc
k(t, x) +

K−1∑
j=1

λc,j(t) F (rj, rc)(x),

such that (26) follows. The converse is easily seen. �

Remark 4.4. Again, if one prefers a drift condition not depending on a particular realiza-
tion of (C1(t))t≥0, equivalence in Theorem 4.3 cannot be maintained, see Remark 3.2. In
this case we require the above equations to be satisfied for any i ∈ K, which leads to the
following conditions for t ∈ [0, T ∗], T ∈ [t, t + T ∗∗]

(i) ri
t(0) = rt(0) + (1− qi

t)λi,K(t).

(ii) αi
t(x) =

∞∑
k=1

λi
k σi∗

k (t, x) σi
k(t, x) +

K−1∑
j=1

λi,jF (rj, ri)(x).
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4.2 Ratings-Based Recovery of Treasury

Another recovery model is the recovery of treasury model proposed by Bielecki and
Rutkowski (2000). With the notations of the previous section, the defaultable bond
with is modeled for t ∈ [0, T ∗] and T ∈ [t, t + T ∗∗] by

B̄(t, T ) = 1{C1(t) 6=K} exp
(
−

T−t∫
0

r
C1(t)
t (u) du

)
+ 1{C1(t)=K}δC2(t)B(t, T ). (25)

The rating i-recovery rate δi is assumed to be constant. This recovery modeling is referred
to as rating based recovery of treasury.

Calculating the defaultable forward rate in this model yields

r̄t(x) = 1{C1(t) 6=K}r
C1(t)
t (x) + 1{C1(t)=K}rt(x).

This is similar to the ratings-based recovery of market value setting, and, of course,
differences appear just for the behavior after default. In particular, the post-default
forward rate equals the default-free rate, but part of the invested money is lost.

Theorem 4.5. Assume that (A2) and (25) hold under the measure Q. Recall the mapping
F from (16) and define the following RK valued processes:

λt :=
(
λC1(t),1 , . . . , λC1(t),K

)>
,

Ft(x) :=
(
F (r1, rC1(t))(x) , . . . , F (rK−1, rC1(t))(x) , δC1(t)F (r, rC1(t))(x)

)>
.

Then discounted defaultable bond prices are martingales under Q, iff for any t ∈ [0, T ∗],
T ∈ [t, t + T ∗∗] on {τ > t}

r
C1(t)
t (0) = rt + λC1(t),K(t)

(
1− δC1(t)

)
(26)

and the following drift condition holds:

αC1(t)(t, x) =
∞∑

k=1

λ
C1(t)
k σ

C1(t)∗
k (t, x) σ

C1(t)
k (t, x) + λt · Ft(x). (27)

where the mapping F is defined in (16).

Proof. Using the notation of Theorem 4.3, the dynamics of B̄(t, T ) become

dB̄(t, T ) =
K−1∑
i=1

[
1{C1(t)=i}dBi(t, T ) + Bi(t, T ) d1{C1(t)=i}

]
+

K−1∑
i=1

[
1{C1(t)=K,C2(t)=i}δi dB(t, T ) + B(t, T )δi d1{C1(t)=K,C2(t)=i}

]
.
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Note that the differentials of the indicators are −1 or 1 when a jump occurs and zero
otherwise. Using (23), we have

K−1∑
i=1

Bi(t, T )d1{C1(t)=i} =
K−1∑
i=1

Bi(t, T )(dM̃ i(t) + λC1(t),i dt).

Furthermore, use (19) and (24) to obtain

dB̄(t, T ) =
K−1∑
i=1

1{C1(t)=i}B
i(t, T )

{[
ri
t(0)− α̃i(t, T ) +

1

2

∞∑
k=1

λi
k[σ̃

i
k(t, T )]2

]
dt

−
∞∑

k=1

σ̃i
k(t, T ) dβi

k(t)

}

+
K−1∑
i=1

δiB(t, T )
[
λi,K(t)1{C1(t)=i} dt + dM i

t

]
+

K−1∑
i=1

1{C1(t)=K,C2(t)=i}δi dB(t, T )

+
K−1∑
i=1

Bi(t, T )
[
λC1(t),i(t)dt + dM̃ i

t

]
.

Separating the drift and martingale parts, this leads to

dB̄(t, T ) =
K−1∑
i=1

1{C1(t)=i}B
i(t, T )

[
ri
t(0)− α̃i(t, T ) +

1

2

∞∑
k=1

λi
k[σ̃

i
k(t, T )]2

]
dt

+
K−1∑
i=1

Bi(t, T )λC1(t),i(t)dt + 1{C1(t)=K,C2(t)=i}δi dB(t, T )

+
K−1∑
i=1

δiB(t, T )λi,K(t)1{C1(t)=i} dt

−
K−1∑
i=1

1{C1(t)=i}B
i(t, T )

∞∑
k=1

σ̃i
k(t, T ) dβi

k(t)

+
K−1∑
i=1

Bi(t, T )dM̃ i(t) + δiB(t, T ) dM i(t).
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If we denote the discounting factor by Dt the discounted bond price equals

d(DtB̄(t, T )) = (−rt)DtB̄(t, T ) dt + DtdB̄(t, T )

= −rtDt

[ K−1∑
i=1

1{C1(t)=i}B
i(t, T ) +

K−1∑
i=1

1{C1(t)=K,C2(t)=i}δiB(t, T )
]
dt

+ Dt

{ K−1∑
i=1

1{C1(t)=i}B
i(t, T )

[
ri
t(0)− α̃i(t, T ) +

1

2

∞∑
k=1

λi
k[σ̃

i
k(t, T )]2

]
dt

+
K−1∑
i=1

Bi(t, T )λC1(t),i(t)dt + 1{C1(t)=K,C2(t)=i}δi dB(t, T )

+
K−1∑
i=1

δiB(t, T )λi,K(t)1{C1(t)=i} dt

}
+ d ˜̃Mt,

where we added the martingale parts up to d ˜̃Mt. As the discounted risk-free bond is
a martingale by assumption, we conclude that the 1{C1(t)=K,C2(t)=i}-terms sum up to a
martingale. We have

d(DtB̄(t, T )) = Dt

{ K−1∑
i=1

1{C1(t)=i}B
i(t, T )

[
− rt(0) + ri

t(0)− α̃i(t, T )

+
1

2

∞∑
k=1

λi
k[σ̃

i
k(t, T )]2

]
dt +

K−1∑
i=1

Bi(t, T )λC1(t),i(t)dt

+
K−1∑
i=1

δiB(t, T )λi,K(t)1{C1(t)=i} dt

}
+ dM̄t,

denoting the martingale part by M̄t.

Therefore, DtB̄(t, T ) is a martingale, iff on {C1(t) 6= K}

0 = BC1(t)(t, T )
[
r

C1(t)
t (0)− rt(0)− α̃C1(t)(t, T ) +

1

2

∞∑
k=1

λ
C1(t)
k [σ̃

C1(t)
k (t, T )]2

]
+ δC1(t)B(t, T )λC1(t),K +

K−1∑
j=1

Bj(t, T )λC1(t),j(t). (28)

Again, we separate the above equation by setting T = t. This leads to condition (26).
The remaining part yields

α̃C1(t)(t, T ) =
1

2

∞∑
k=1

λ
C1(t)
k [σ̃

C1(t)
k (t, T )]2 + δC1(t)

[ B(t, T )

BC1(t)(t, T )
− 1

]
λC1(t),K

+
K−1∑
j=1

[ Bj(t, T )

BC1(t)(t, T )
− 1

]
λC1(t),j(t).
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Taking the partial derivative w.r.t. T we finally arrive at

αC1(t)(t, x) =
∞∑

k=1

λ
C1(t)
k σ

C1(t)∗
k (t, x) σ

C1(t)
k (t, x) + δC1(t)λC1(t),KF (rt, r

C1(t))(x)

+
K−1∑
j=1

λC1(t),j(t)F (rj, rC1(t))(x).

Using the short notation with λ and F we arrive at (27). As in the previous proofs the
converse follows easily. �

Remark 4.6. Similar to Remark 3.2, we obtain the following condition, which does not
depend on C1 but implies an arbitrage-free market together with ri

t(x) = rt+λi,K(t)(1−δi):

αi(t, x) =
∞∑

k=1

λi
kσ

i∗
k (t, x) σi

k(t, x) + λi
t · Fi

t(x),

where λi and Fi are obtained from λ and F by simply replacing C1(t) with i.

It seems natural that condition (11) extends to the rating model. Equation (26) represents
the no-arbitrage relationship between the interest offered by a bond rated i, the likelihood
of rating changes and recovery while the inter-relationship of risky and default-free term
structures enters into (27).

An equivalent but more concise version of (28) is obtained on {C1(t) = i} setting

ai(t, T ) := −rt(0) + ri
t(0)− α̃i(t, T ) +

1

2

∞∑
k=1

λi
k[σ̃

i
k(t, T )]2.

Recall that i ∈ K. Substituting λii(t) = −
∑K

j=1,j 6=i λij(t), we obtain

0 = Bi(t, T )ai(t, T ) + δiB(t, T )λi,K(t)

+
K−1∑

j=1,j 6=i

Bj(t, T )λi,j(t)−Bi(t, T )
K∑

j=1,j 6=i

λi,j(t)

and hence have the equivalent representation of (28),

0 = Bi(t, T )ai(t, T ) +
K−1∑

j=1,j 6=i

(
Bj(t, T )−Bi(t, T )

)
λi,j(t)

+
(
δiB(t, T )−Bi(t, T )

)
λi,K(t).

The first part of this expression relates to the drift of the bond itself, while the other
parts refer to the possible changes into a different rating class. A change of the rating
immediately entails a change of the bond’s price. These are multiplied with the rate, that
such a change may happen, see also Prop. 4.1. Note, however, that this is not a drift
condition. It is rather a general condition which identifies an arbitrage-free model.
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4.3 Pricing

Pricing in credit risky models is usually done via calculation of the expectation of the
discounted contingent claim, see for example Lando (1998), Duffie and Singleton (1999)
or Bielecki and Rutkowski (2002). A series of examples where we were able to obtain
closed form solutions in a Gaussian random field setup may be found in Schmidt (2004).

5 Conclusion

The paper is a starting point for modeling infinite factor models for credit risk with
stochastic differential equations on Hilbert spaces. Several models were proposed. A first
class of models reflects different recovery scenarios, while a second class of models also
incorporates rating migration based on a Markov chain. These models are shown to be
free of arbitrage opportunities under certain drift conditions.

The main goal is to provide a substantially new framework for credit risk models which
allow for an infinite dimensional factor structure. These models have been successfully
applied to interest rate models and seem promising for the credit risk framework.
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