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Summary: The forward rate curve is assumed to follow a stochastic differential equation w.r.t.
a Lévy process with infinite dimensions. Conditions under which the market is free of arbitrage
are provided for both the interest rate case and for the case of credit risk with ratings. A simulation
shows that typical movements of the yield curve are well captured by the model.

1 Introduction
A zero-coupon bond is an asset which pays one unit of money at a prespecified maturity
dateT. If the pay-off takes place with probability one, we say that the bond is default-free.
In contrast, we call this asset a defaultable bond, if there is some positive probability of
getting less than one unit of money. Zero-coupon bonds issued by corporates are the most
typical examples for defaultable bonds. The probability of default depends on economic
and firm-specific variables. This probability is usually reflected by a rating class which is
assigned by commercial rating agencies.

Various approaches for modeling defaultable bonds have been studied in literature and
they can roughlybe divided into two main groups: the firm-value models and the intensity-
based models. Recent literature stresses the advantages of intensity-based models which
build on interest rate models, see e.g. the survey [23] or one of the books [17], [1].

Up to now, mainly models based on real-valued Brownian motions were considered.
This type of models does not reflect real-world data sufficiently, since the implied normal
distribution has exponentially decaying tails in contrast to the semi-heavy tails of real-
world data. Several studies on this topic can be found—we refer to [6] as one example.
A number of credit risk models which provide more flexibility have been developed, see
e.g. [5], [24, Section 2.7], or [10]. Whereas in [7] a model based on the very flexible class
of Lévy processes is introduced.

Newer interest rate models are based on Hilbert-space valued processes in order to
model forward rate curves directly. One way of applying Hilbert-space valued Brownian

AMS 2000 subject classification: Primary: 60H15, 60G60; Secondary: 46N30, 60G51
Key words and phrases: Lévy random fields, infinite dimensional models, ratings, credit risk
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motions to credit risk can be found in [22]. Although the credit derivatives data is still
scarce, the market is believed to grow rapidly, see, for example, [11]. So calibration
procedures will be of high importance. For the special case of Gaussian random fields
explicit pricing formulas for various credit derivatives were derived in [21]. Also two
different calibration methodologies were proposed, each one serving different needs. The
first one is believed to avoid frequent re-calibration while the second one adjusts for the
scarcity of data by incorporating historical information.

This paper provides an approach which combines the advantages of the approaches
in [7] and [22] by presenting a model that is based on Lévy processes in Hilbert spaces.
There are several reasons for using a infinite dimensional model. While typically it is
argued that the characteristic movements of yield curves are covered by three factors,
for pricing of derivatives and hence calibration it is very important to cover as many
factors as possible. This is because derivatives are non-linear objects and a factor with
a small explanatory power for the variance might be highly significant in pricing, as
argued in [4]. If times of a crisis are included in an historical analysis of interest rates,
it has also been observed that ten factors were needed to explain only 90 % of the
variability, compare [20, Section 13.2.5]. As credit risky markets are much more volatile
than interest rate markets, it seems to be a good motivation to study high-dimensional
models.

If a model with ratings is considered it will turn out that the drift condition interre-
lates the forward rates in quite a complicated way. More precisely, the risk-neutral drift
depends on the whole forward rate curve. Therefore SDEs for the forward rates can not
be viewed as a set of SDEs indexed byT as pioneered in [9]. Rather a functional formu-
lation is necessary to give the risk-neutral dynamics the appropriate meaning, compare
Corollary 4.6.

The organisation of the paper is as follows. In the next section we revisit some basic
facts from Hilbert-space valued Lévy processes. In Section 3 we introduce the underlying
default-free interest rate models based on Hilbert-space valued Lévy processes, and Sec-
tion 4 describes the model for the defaultable zero-coupon bond. Finally, we give some
simulations and the conclusion.

2 Preliminaries
Consider a separable Hilbert spaceH with inner product〈·,·〉 and denote the norm on
H by ‖ · ‖. H is a subspace ofL2(R+). Elements ofH will represent the whole yield
curve at a certain time. There are several ways to chooseH depending on the required
smoothness, see [19] or [8].

Denote byL(H) the Banach space of linear operators onH . If h ∈ H and� ∈ L(H)

we write� · h for �(h).
Furthermore, we consider a finite time horizonT∗ and a Ĺevy process(Ls)s∈[0,T∗]

taking values inH . The value of the Ĺevy process at a fixed times is an element ofH
and thus may be stated either asL(s) or L(s, t) := L(s)(t). This is why we also speak of
a Lévy random field.
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Credit risk with infinite dimensional Ĺevy processes 283

The Lévy random field admits the characteristic function

φL1(z) = exp
(
i〈bL, z〉 − 1

2
〈DL · z, z〉

+
∫

H

[
ei〈z,x〉 − 1 − i〈z, x〉1B(x)

]
F(dx)

)
,

wherebL ∈ H , DL is an element ofL(H), the covariance operator of the continuous part
of (Lt), and B := {h ∈ H : ‖h‖< 1}. The Lévy measureF is a measure onH with∫

H(‖x‖2 ∧1) F(dx) < ∞ andF({0}) = 0.
The following decomposition of a Ĺevy process(L(t))t≥0 with values inH will be

useful for interchanging integration w.r.t. forward rates.

Proposition 2.1 Suppose(Lt)t∈[0,T∗] is a Lévy processwith values in H andE‖Lt ‖2< ∞
for all t ∈ [0, T∗]. If {ek : k ∈ N } is an arbitrary orthonormal basis of H, we have the
following decomposition

Lt(u) =
∞∑

k=1

〈L(t), ek〉ek(u), (2.1)

where the series converges in L2. Furthermore, for any k∈ N the process(lk(t))t∈[0,T∗]
defined by lk(t) := 〈Lt , ek〉 is a real-valued L´evy process.

Proof: First, consider fixedt ∈ [0, T∗]. Then for anym ∈ N,

E

∣∣∣∣∣
∣∣∣∣∣

m∑
k=1

ek〈Lt , ek〉
∣∣∣∣∣
∣∣∣∣∣
2

=
m∑

k, j=1

E

(
〈Lt , ek〉〈Lt , ej 〉

)
〈ek, ej 〉

=
m∑

k=1

E

(
〈Lt , ek〉2

)

≤ E ∣∣∣∣Lt
∣∣∣∣2.

The last inequality follows from the Bessel inequality, see e.g. [27], and so the series
converges inL2.

Second, aslk(t2) − lk(t1) = 〈L(t2) − L(t1), ek〉 the processeslk have stationary
and independent increments, becauseL already has stationary and independent incre-
ments. �

In the following, we therefore always assume that the considered Lévy process
(Lt)t∈[0,T∗] has second moments, in the sense, thatE‖Lt‖2< ∞ for all t ∈ [0, T∗].

We refer to [18] for more details on stochastic integration w.r.t. Hilbert-valued Lévy
processes. However, a somewhat different approach using a series representation like
(2.1) is taken in [26]. First, we introduce a suitable class of integrands.
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284 Özkan -- Schmidt

Definition 2.2 Consider a Lévy process(Lt)t∈[0,T∗] with values in H. With the decom-
position from Proposition 2.1 we callLT∗(H) the space of all predictable processes
(σt)t∈[0,T∗] taking values in L(H) such that the process(σt)t∈[0,T∗] is locally bounded.1

Then, forσ ∈ LT the process(
∫ t

0 σ(u) · dLu)t∈[0,T∗] is anH-valued semi-martingale
and it is a local martingale, if(Lt) is.

Lemma 2.3 Consider a H-valued L´evy -process with second moments. Then, forσ ∈ LT

its stochastic integral w.r.t.(Lt)t≥0 is a local martingale.

Proof: As (σ) is locally bounded, there exists a sequence of stopping times(Tn)n≥1,
converging to infinity, such that(σt∧Tn) is bounded. Considering

I n
t =

∫ t∧Tn

0
σ(u) · dLu

this is a sequence of martingales, and the claim follows. �

From [15] we obtain the following It̂o-formula for Ĺevy random fields.

Theorem 2.4 Let (Lt)t∈[0,T∗] be a Lévy process with values in the Hilbert space H and
(σ(t))t∈[0,T∗] ∈ LT∗(H). Set Xt := ∫ t

0 σ(u) · dLu for all t ∈ [0, T∗] and denote byλk

and ek, k ∈ N the eigenvalues and eigenvectors, respectively, of DL. For an open subset
A ⊂ H and a twice differentiable function F: A → H with uniformly continuous second
derivative on bounded subsets of H it holds, that

F(Xt) = F(X0) +
∫ t

0
DF(Xu−) · dXu

+ 1

2

∫ t

0

∞∑
k=1

λkD2F(Xu−) · (σ(u) · ek, σ(u) · ek) du

+
∑
s≤t

[

F(Xs) − (

DF(Xs−) · 
Xs
)]

. (2.2)

Note that the second derivative,D2F(·) is a bilinear mapping, and we therefore write
D2F(·) · (a, b) for this derivative evaluated ata andb.

3 The default-free case
We consider a filtered probability space(�,F, Q, (Ft )0≤t≤T∗), and derive conditions
under which the measureQ is a martingale measure. IfQ is furthermore equivalent to
the objective measureP, it is an equivalent martingale measure and the market is free of
arbitrage, see [2].

1 Here we consider the spaceL(H) endowed with the operator topology, which makes it a Banach space.
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The parameterization of [3] turns out to be useful in the considered context. Denote
by

rt(x) := f(t, t + x)

the instantaneous forward rate at timet with time-to-maturityx. The stochastic process
(rt)t≥0 is assumed to take values in the Hilbert spaceH which is a subspace ofL2(R+).
The bond prices depend on the forward rates in the following way:

B(t, T) = exp

(
−
∫ T−t

0
rt(v) dv

)
.

It is important to state the dependence onT instead ofx for the bond prices. If we
consider for a moment a bond with time-to-maturityx denoted byBt(x) then, for fixedx,
(Bt(x))t≥0 refers to a price process which does not exist in this form in the market. This
is becauseBt1(x) andBt2(x) are different bonds (fort1 �= t2).

Let {St : t ∈ R+} denote the semigroup of right shifts, defined bySt g(·) = g(· + t),
for any functiong : R+ �→ R. Assume that(A(t))t∈[0,T∗] is a predictable stochastic
process with values in the Hilbert spaceH and(σ(t))t∈[0,T∗] is an element ofLT∗(H),
see Definition 2.2. The shift operator acts as follows: bySt−u A(u) we mean the element
in H obtained by shiftingA(u) for fixedu, i.e.v �→ A(u)(v + t − u).

The above introduced parametrization suggests the following dynamics, compare [3]
or [8],

rt = Str0 +
∫ t

0
St−u A(u) du +

∫ t

0
St−uσ(u) · dLu, (3.1)

where furthermore,(Lt)t∈[0,T∗] is a Lévy process with values inH . We assume that
(Lt) is a martingale, more precisely that(Lt) has no drift and the jump part is already
compensated. IfE‖ L1 ‖< ∞, then(Lt) can be stated in the following form:

Lt = Wt +
∫ t

0

∫
H

x
(
µL − νL

)
(ds, dx),

whereW is a DL -Wiener process onH andµL is the random measure of jumps with
Q-compensatorνL(ds, dx) = ds F(dx). That is, for any Borel setT of R+ and any Borel
set ofH , µL denotes the number of jumps in the time intervalT which have sizes in�,

µL(T ,�) =
∑
s∈T

1�(
Ls).

We will need exponential moments for(L), which are guaranteed by the following
condition. ∫

11{‖x‖>1} e〈c,x〉ν(dx) < ∞, ∀c ∈ H. (3.2)

It has been shown in [13] that under some mild conditions the HJM-drift condition already
ensures the existence of exponential moments.
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286 Özkan -- Schmidt

To shorten the notation, we defineA∗(u, T) := ∫ T−u
0 A(u, v) dv and alsoσ∗

k (u, T)

:= ∫ T−u
0 [σ(u) · ek](v) dv.

Furthermore, we assume in the following that
∫ T∗

0 A(u) du ∈ H almost surely and
σ ∈ LT∗(H). The processes(σ∗

k (t, T))t∈[0,T∗] will appear in the dynamics ofB, such
they need to be locally bounded for eachT ∈ [0, T∗]. Note that this follows from
σ ∈ LT∗(H).

Define the discounting processβt := exp(− ∫ t
0 ru(0) du), such that in the considered

market the numeraire is given byβ−1(t). By the fundamental theorem of asset pricing, the
market is free of arbitrage if there exists an equivalent measure under which discounted
assets are local martingales.

In this paper we use the so-called martingale approach, i.e. we directly consider
a measureQ which is equivalent to the objective probability measure and state conditions
under whichQ is also a martingale measure. So the following theorem allows to classify
the martingale measures.

Theorem 3.1 All discounted bond prices are local martingales, iff for all(t, T ) with
0 ≤ t ≤ T ≤ T∗ the following condition holds Q-a.s.:

0 = − A∗(t, T ) + 1

2

∞∑
k=1

λk
[
σ∗

k (t, T )
]2

+
∫

H

[
exp

(∫ T−t

0
[σ(t) · x](v) dv

)
− 1 −

∫ T−t

0
[σ(t) · x](v) dv

]
F(dx). (3.3)

Proof: Denote

y(t, T ) := −
∫ T−t

0
rt(v) dv.

First, we want to derive the dynamics of the process(y(t))t≥0. Using the dynamics of
(rt), (3.1), we obtain

y(t, T ) = −
∫ T−t

0

[
r0(v + t) +

∫ t

0
A(u, v + t − u) du

+
[∫ t

0
St−uσ(u) · dLu

]
(v)

]
dv . (3.4)

Note that

−
∫ T−t

0
r0(v + t) dv = y(0, T ) +

∫ T

0
r0(v) dv −

∫ T−t

0
r0(v + t) dv

= y(0, T ) +
∫ t

0
r0(v) dv. (3.5)
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As we need to show that discounted bond prices are martingales underQ, it is convenient
when the short rate explicitly appears in the dynamics ofy. From (3.1) we deduce∫ t

0
rv(0) dv =

∫ t

0
r0(v) dv +

∫ t

0

∫ v

0
A(u, v − u) du dv

+
∫ t

0

[∫ v

0
Sv−uσ(u) · dLu

]
(0) dv. (3.6)

Inserting (3.5) and (3.6) into (3.4) yields

y(t, T ) = y(0, T ) +
∫ t

0
rv(0) dv

−
∫ t

0

∫ v

0
A(u, v − u) du dv −

∫ T

t

∫ t

0
A(u, v − u) du dv

−
∫ T−t

0

[∫ t

0
St−uσ(u) · dLu

]
(v) dv −

∫ t

0

[∫ v

0
Sv−uσ(u) · dLu

]
(0) dv.

Using Fubini’s theorem we can interchange the order of theA-integrals, which leads to
the following expression for the sum of theA-integrals

−
∫ t

0

∫ T

u
A(u, v − u) dv du. (3.7)

Interchanging the order in the last two terms requires using the eigenvalue expansion of
L, which yields[∫ t

0
St−uσ(u) · dLu

]
(v) =

∞∑
k=1

∫ t

0
[σ(u) · ek](v + t − u) dlk(u)

=
∞∑

k=1

∫ t

0
σk(u, v + t − u) dlk(u),

where we setσk(u, v) := [σ(u) · ek](v). This holds, becauseσ ∈ LT∗(H).
Furthermore, this condition allows to apply the stochastic Fubini theorem, and we get

the following ∫ T−t

0

[∫ t

0
St−uσ(u) · dLu

]
(v) dv

=
∫ T−t

0

∞∑
k=1

∫ t

0
σk(u, v + t − u) dlk(u) dv

=
∞∑

k=1

∫ t

0

∫ T

t
σk(u, v − u) dv dlk(u)

as well as∫ t

0

[∫ v

0
Sv−uσ(u) · dLu

]
(0) dv =

∞∑
k=1

∫ t

0

∫ t

u
σk(u, v − u) dv dlk(u).
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These expressions can be summed up and we obtain a considerably easier formulation
of y,

y(t, T ) = y(0, T ) +
∫ t

0
rv(0) dv −

∫ t

0

∫ T

u
A(u, v − u) dv du

−
∞∑

k=1

∫ t

0

∫ T

u
σk(u, v − u) dv dlk(u).

We use the abbreviationsA∗(u, T ) andσ∗
k (u, T ) defined just before the theorem and

obtain the dynamics ofy,

y(t, T ) = y(0, T ) +
∫ t

0
rv(0) dv −

∫ t

0
A∗(u, T ) du

−
∞∑

k=1

∫ t

0
σ∗

k (u, T ) dlk(u). (3.8)

Note that the existence of these integrals is ensured by the assumption thatσ∗
k are locally

bounded. To apply the Itô-formula (2.2) we need a more functional analytic representation
of the above equation. Therefore, define� : [0, T∗] × � → L(H, H) by

[�(u) · f ](·) :=
∫ ·

u
[σ(u) · f ](v − u) dv.

Then ∫ t

0
[�(u) · dX(u)](T ) =

∑
k

∫ t

0
[�(u) · ek](T ) dlk(u)

=
∑

k

∫ t

0

∫ T

u
[σ(u) · ek](v − u) dv dlk(u)

=
∑

k

∫ t

0
σ∗

k (u, T ) dlk(u).

Settingm(u, ·) := ru(0) − A∗(u, ·) we obtain

y(t) = y(0) +
∫ t

0
m(u) du −

∫ t

0
�(u) · dLu. (3.9)

We define
F : H → H, g(·) �→ exp(g(·)),

where exp(g(·)) is the functionh, s.t. h(x) = exp(g(x)),∀x ∈ R+. Then we have
B(t, ·) = F(y(t, ·)). For two real-valued functionsg, h we denote(g × h)(·) := g(·)h(·).
Then it is easily seen, thatDF(x) = F(x) × id and D2F(x) = F(x) × id × id. Thus,
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applying It̂o’s formula yields

B(t) = B(0) +
∫ T

0
DF(y(u−)) · [m(u) du − �(u) · dL(u)]

+1

2

∫ t

0

∞∑
k=1

λk D2F(y(u−)) · (�(u) · ek,�(u) · ek) du

+
∑
s≤t

[
F(ys) − F(ys−) − DF(y(s−)) · �(s) · 
Ls

]
,

and we obtain inserting the derivatives ofF

B(t) = B(0) +
∫ t

0
B(u−) × m(u) du −

∫ t

0
B(u−) × �(u) · dLu

+1

2

∫ t

0

∑
k

λkB(u−) × (�(u) · ek) × (�(u) · ek) du

+
∑
s≤t

[

B(s) − B(s−) × [�(s) · 
Ls]

]
.

EvaluatingB(t, ·) at maturityT reveals

B(t, T ) = B(0, T ) +
∫ t

0
B(u−, T )[ru(0) − A∗(u, T )] du

−
∑

k

∫ t

0
B(u−, T )σ∗

k (u, T ) dlk(u)

+1

2

∫ t

0
B(u−, T )

∑
k

λk[σ∗
k (u, T )]2 du

+
∑
s≤t

[
B(s, T ) − B(s−, T ) − B(s−, T ) [�(s) · 
L(s)](T )

]
.

Now we have to find the martingale parts in this expression. Of course, if we consider the
discounted bond price the term withru(0) vanishes in the above dynamics.

Because ofB(s) = F(y(s)) we obtainB(s)/B(s−) = exp(�(s)
Ls) and thus


B(s, T ) = B(s−, T )

[
B(s, T )

B(s−, T )
− 1

]

= B(s−, T )
(
exp

(
[�(s) · 
Ls](T )

)
− 1

)
.

This leads to∑
s≤t


B(s, T ) − B(s−, T )[�(s) · 
L(s)](T )

=
∑
s≤t

B(s−, T )
(

exp
(
[�(s) · 
Ls](T )

)
− 1 − [�(s) · 
Ls](T )

)
.
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This term can also be expressed as∫ t

0

∫
H

B(s−, T )
(

exp
(
[�(s) · x](T )

)
− 1 − [�(s) · x](T )

)
µL(ds, dx).

Note that(βt)t≥0 is real valued and of finite variation. Then, by Itô’s formula,

d[βt B(t, T )] = (−rt−(0))βt−B(t−, T ) dt + βt− dB(t, T )

and therefore

β(t)B(t, T ) = β(0)B(0, T ) −
∫ t

0
β(u−)B(u−, T )A∗(u, T ) du (3.10)

−
∑

k

∫ t

0
β(u−)B(u−, T )σ∗

k (u, T ) dlk(u)

+ 1

2

∫ t

0
β(u−)B(u−, T )

∑
k

λk
[
σ∗

k (u, T )
]2 du

+
∫ t

0

∫
H

β(u−)B(u−, T )
[

exp([�(u) · x](T )) − 1

− [�(u) · x](T )
] (

µL(du, dx) − νL(du, dx)
)

+
∫ t

0

∫
H

β(u−)B(u−, T )
[

exp([�(u) · x](T )) − 1

− [�(u) · x](T )
]

F(dx) du.

The Lévy processeslk are local martingales by assumption. The integral w.r.t.µL − νL

is a real-valued square integrable martingale according to [14, Theorem 3.4.5] if the
integrand is bounded. A localizing argument reveals that this is indeed only a local
martingale under the weaker assumption onσ . Noticing, that[�(u) · x](T ) = ∫ T

t [σ(u) ·
x](v) dv, we conclude. �

It is a suitable property to the forward rates that they are positive. If this is the case,
the bond prices will also be true martingales as they are bounded.

4 An infinite factor Lévy model of credit risk
In this section we want to incorporate default risk in the previous model. We directly
present a model of default ratings, as the model without ratings is a special case.

Assumption 4.1 Assume that there are K−1 ratings, where1 denotes the highest rating
and K−1 the lowest, while K is associated with default. Denoting byK = {1, . . . , K −1}
the set of possible ratings and puttingK̄ = K ∪ {K}, we assume that the rating i forward
rate satisfies

r i
t = Str

i
0 +

∫ t

0
St−u Ai (u) du +

∫ t

0
St−u σ i (u) · dLi (u), i ∈ K,
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where(Li (t))t∈[0,T∗] are H-valued Lévy processes. The covariance operator of the con-
tinuous part of Li is denoted by Di and the jump measure byνi , respectively. Furthermore,
Ai : [0, T∗] × � �→ H andσ i : [0, T∗] × � �→ L(H) are stochastic processes, which
are predictable w.r.t.(Ft)t≥0 and satisfyP(

∫ T∗
0 Ai (s) ds ∈ H) = 1 andσ i ∈ LT∗(H), for

all i ∈ K.

As previously, we introduce the termsAi∗(u, T ) := ∫ T−u
0 Ai (u, v) dv andσ i∗

k (u, T )

:= ∫ T−u
0 [σ i (u) ·ek](v) dv. To ensure existence of the appearing integrals, we assume that

the processes(σ i (t))t∈[0,T∗] ∈ LT∗ for eachi ∈ K.
The process describing the current rating of the bond,(C1(t))t∈[0,T∗], takes values in

K̄ and is assumed to be a Markov process. We denote byC2(t) the previous rating before
C1(t). If there were no changes in rating up to timet we setC2(t) = C1(t). The default
τ occurs at the first time, when the stateK is reached,τ = inf{t ∈ [0, T∗] : C1(t) = K}.
We setτ = T∗ + 1 if the inf is empty.

We follow [7] to enlarge the probability space(�,F, Q, (Ft )0≤t≤T∗) to (�̃,G, Q̃,

(Gt)0≤t≤T∗). The filtration(Gt)0≤t≤T∗ is obtained by adding the information on(C1
t ) to

(Ft).
Denote the conditional infinitesimal generator ofC1 givenGt under the measurẽQ

by

�t =




λ11(t) λ12(t) λ13(t) · · · λ1K (t)
λ21(t) λ22(t) λ23(t) · · · λ2K (t)

...
...

. . . · · · ...

λK−1,1(t) λK−1,2(t) · · · λK−1,K−1(t) λK−1,K (t)
0 0 · · · · · · 0


 ,

for t ∈ [0, T∗]. Each(λi j (t)) is a(Gt)-adapted process, satisfying

λii (t) = −
∑
j �=i

λi j (t), for all t ∈ [0, T∗]. (4.1)

Assume the ratingi recovery rate(qi (t))t∈[0,T∗] to be a nonnegative stochastic process
which is predictable w.r.t.F for all i ∈ K. In extension to the previous section, we model
the defaultable bond with rating transitions by

B̄(t, T ) = 11{C1(t) �=K} exp

(
−
∫ T−t

0
r C1(t)
t (u) du

)

+ 11{C1(t)=K}qC2(t)
τ B̄(τ−, T ) exp

(∫ t

τ

ru du

)
. (4.2)

We call this recovery modelingrating based recovery of market value. See [22] for
a rating based recovery of treasury. The proposed methods also apply to this case.

DenoteBi (t, T ) := exp
[− ∫ T−t

0 r i
t (u) du

]
.

Theorem 4.2 Assume a rating based recovery of market value model and that Assumption
4.1 holds under the measurẽQ. Then all discounted bond prices are local martingales
underQ̃, iff the following conditions are satisfied̃Q-a.s. on{τ > t}.
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292 Özkan -- Schmidt

1. For any(t, T ) such that t∈ [0, T∗] and T ≥ t,

r C1(t)(0) = rt(0) +
(
1 − qC1(t)

t

)
λC1(t),K(t). (4.3)

2. For any(t, T ) such that t∈ [0, T∗] and T ≥ t,

0 = −AC1(t)∗(t, T ) + 1

2

∞∑
k=1

λ
C1(t)
k

[
σ

C1(t)∗
k (t, T )

]2
(4.4)

+
K−1∑

j=1, j �=C1(t)

[
1− Bj (t, T )

BC1(t)(t, T )

]
λC1(t), j (t).

+
∫

H

[
exp

(∫ T−t

0

[
σC1(t)(t) · x

]
(v) dv

)
− 1

−
∫ T−t

0

[
σC1(t)(t) · x

]
(v) dv

]
F C1(t)(dx).

Proof: The rating based recovery of market value leads to the discounted gains process

G(t, T ) = β(t)
K−1∑
i=1

11{C1(t)=i}Bi (t, T )

+β(τ) 11{C1(t)=K}
K−1∑
i=1

11{C2(t)=i}qi
τ B̄(τ−, T ).

Note that the indicators have finite variation, just like(βt), and therefore It̂o’s formula
yields the dynamics

dG(t, T ) =
K−1∑
i=1

11{C1(t)=i}d(β(t)Bi (t, T ))

+
K−1∑
i=1

β(t−)Bi (t−, T )d11{C1(t)=i}

+ d

(
K−1∑
i=1

11{C1(t)=K,C2(t)=i}

)
qi
τ β(τ−)B̄(τ−, T ).

For the last term,

qi
τ β(τ−)B̄(τ−, T )d11{C1(t)=K,C2(t)=i}

= qi
t β(t−)Bi (t−, T )d11{C1(t)=K,C2(t)=i},

as the indicator changes only att = τ. Furthermore with probability one we have
B̄(τ−, T ) = BC2(τ)(τ−, T ).
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Proposition 11.3.1 in [1] yields that the following processes,

Mi (t) := 11{C1(t)=i} −
∫ t

0
λC1(u),i du (4.5)

and

M̃i (t) := 11{C2(t)=i,C1(t)=K} −
∫ t

0
λiK 11{C1(u)=i} du, (4.6)

are martingales.

β(t)Bi (t, T ) = β(0)Bi (0, T )

·
∫ t

0
β(u−)Bi (u−, T )

(
r i
u(0) − ru(0) − Ai∗(u, T )

)
du

−
∞∑

k=1

∫ t

0
β(u−)Bi (u−, T )σ i∗

k (u, T ) dl ik(u)

+1

2

∫ t

0
β(u−)Bi (u−, T )

∞∑
k=1

λi
k

[
σ i∗

k (u, T )
]2

du

+
∫ t

0

∫
H

β(u−)Bi (u−, T )
[

exp([�i (u) · x](T )) − 1

−[�i (u) · x](T )
]
µi (du, dx).

Combining this with the equations (4.5) and (4.6) it leads to

dG(t, T ) =
K−1∑
i=1

11{C1(t)=i}β(t−)Bi (t−, T )

{(
r i
t (0) − rt(0)

)
dt

− Ai∗(t, T ) dt + 1

2
λi

k

[
σ i∗

k (t, T )
]2

dt + qi
t λi,K (t) dt

+
∫

H

[
exp

([
�i (t) · x

]
(T )

)− 1 − [
�i (t) · x

]
(T )

]
F i (dx) dt

}

+
K−1∑
i=1

β(t−)Bi (t−, T )λC1(t),i dt + dMt ,

where we added the martingale terms up toMt . Under the integrability conditions,
(G(t, T ))t≥0 is a martingale, iff the drift term equals zero. Asβ(t)Bi (t, T ) > 0 this is
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equivalent to

0 = BC1(t)(t, T )

{
r C1(t)
t (0) − rt(0) − AC1(t)∗(t, T ) + qC1(t)

t λC1(t),K (t)

+1

2

∞∑
k=1

λ
C1(t)
k

[
σ

C1(t)∗
k (t, T )

]2

+
∫

H

[
exp

([
�C1(t)(t) · x

]
(T )

)− 1 − [
�C1(t)(t) · x

]
(T )

]
F C1(t)(dx)

}

+
K−1∑
i=1

Bi (t, T )λC1(t),i . (4.7)

At this point it is important to observe that (4.7) has to hold for all(t, T ) with 0 ≤ t ≤ T∗
andt ≤ T. Note that all terms depending onT equal zero, if we sett = T. This allows us
to split the above equation into two parts. But first we have to note that by equation (4.1)
we obtain

K−1∑
i=1

Bi (t, T )

BC1(t)(t, T )
λC1(t),i (t)

=
K−1∑

i=1,i �=C1(t)

Bi (t, T )

BC1(t)(t, T )
λC1(t),i (t) + λC1(t),C1(t)(t)

=
K−1∑

i=1,i �=C1(t)

[
Bi (t, T )

BC1(t)(t, T )
− 1

]
λC1(t),i (t) − λC1(t),K(t).

The first part is

D1(t) := BC1(t)(t, T )
[
r C1(t)
t (0) − rt(0) + qC1(t)

t λC1(t),K(t)
]

while we the second part contains the terms also depending onT

D2(t, T ) := AC1(t)∗(t, T ) + 1

2

∞∑
k=1

λ
C1(t)
k

[
σ

C1(t)∗
k (t, T )

]2

+
K−1∑

i=1,i �=C1(t)

[
Bi (t, T )

BC1(t)(t, T )
− 1

]
λC1(t),i (t)

+
∫

H

[
exp

([
�C1(t)(t) · x

]
(T )

)− 1 − [
�C1(t)(t) · x

]
(T )

]
F C1(t)(dx)

and we haveD2(t, t) = 0. Furthermore, if condition (4.4) holds, thenD2 is zero and of
courseD1(t) = 0 is equivalent to (4.3). We conclude that if bothD1 andD2 equal zero,
which holds under the presented conditions, discounted bond prices are local martingales.
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If, for the converse,̃Q is a martingale measure, (4.7) holds. AsD1 does not depend on
T, we have that, settingT = t, D1 equals zero for allt ≤ T∗ and hence mustD2(t, T ) = 0
for all considered(t, T ) and we conclude. �

It is possible to relax the needed assumptions, if the model is considered directly in
the HJM-parametrization as done in [12].

Remark 4.3 The credit risky model without ratings is a special case of the presented
framework. This may be seen by settingK := 2 and

�t :=
(−λ(t) λ(t)

0 0

)
.

Thus,(λt)t∈[0,T∗] is the default intensity as introduced, for example, in [16].

From Theorem 4.2 we immediately obtain

Corollary 4.4 If Q̃ is an arbitrage-free measure, the defaultable bond price satisfies the
risk-neutral valuation formula

B̄(t, T ) =EQ̃
t

[
exp

(
−
∫ T

t
ru du

)
11{C1(T ) �=K}

+ exp

(
−
∫ τ

t
ru du

)
11{C1(t)=K}qC2(τ)

τ B̄(τ−, T )
]
.

Remark 4.5 If a drift condition, not depending on a particular realization of(C1(t)), is
preferred we require the above equations to be satisfied for any ratingC1(t), which leads
to the following conditions:

1. Fort ∈ [0, T∗] andT ≥ t,

r i (0) = rt(0) + (1 − qi
t )λi,K (t).

2. Fort ∈ [0, T∗] andT ≥ t,

0 = −Ai∗(t, T ) + 1

2

∑
k

λi
k

[
σ i∗

k (t, T )
]2

(4.8)

+
K−1∑

j=1, j �=i

[
1 − Bj (t, T )

Bi (t, T )

]
λi, j (t)

+
∫

H

[
exp

(∫ T−t

0

[
σ i (t) · x

]
(v) dv

)
− 1

−
∫ T−t

0

[
σ i (t) · x

]
(v) dv

]
F i (dx).
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Although conditions similar to (4.4) have been stated in literature, it was not yet
pointed out that this condition relates the drift of the forward rate to the whole yield
curve. This is not the case for the defaultable model without ratings or the risk-free case.
Therefore, a functional setting forrt is needed to make sense of the model under which
the drift condition holds.

Simply deriving (4.8) leads to the following corollary. Of course, a formulation which
relates to the drift condition (4.4) is easily obtained proceeding similarly.

Corollary 4.6 The drift condition(4.8) is equivalent to the following condition on A

Ai (t, T − t) =
∑

k

λi
kσ

i
k(t, T − t) σ i∗

k (t, T )

+
∫

H

[
σ i (t) · x

]
(T − 1)

(
e
∫ T−t

0 [σ i (t)·x](v) dv − 1
)

F i (dx)

−
K−1∑

j=1, j �=i

λi, j (t) I
(

T − t, r i
t , r j

t

)
,

where I : R+ × H × H �→ R is given by

I(x, u, v) = exp

(∫ x

0

(
u(z) − v(z)

)
dz

) (
u(x) − v(x)

)
. (4.9)

At this point it becomes clear that the drift of any forward rateAi depends on all other
forward rates through the last term. Moreover, it does not only depend on the single value
at a certain maturityT, but rather on the full curve through the bond prices, respectively
integrals in (4.9).

5 Simulations

To illustrate the approach with Lévy random fields we present some simulation results.
Proposition 2.1 suggests that a Lévy random field can be simulated by choosing a suitable
basis ofH and simulating one-dimensional Lévy fields. Using the first three elements of
the Fourier basis, we can capture typical movements of the interest rate curve. In Figure 5.1
we show a Normal Inverse Gaussian random field as well as a Variance Gamma random
field. For an introduction into the simulation of Lévy processes see [25]. We find that
the movements of the simulated process very well capture typical movements of the term
structure, as parallel shifts, changes in slope and curvature. Furthermore, abrupt changes
in the whole interest rate curve are also produced by the presented model.

This simulation can just give a short hint about the usefulness of infinite dimensional
Lévy processes in modeling credit risky interest rates. However, a thorough simulation
study of such process seems to lead too far away from the focus of this article.



T
h

is
 a

rtic
le

 is
 p

ro
te

c
te

d
 b

y
 G

e
rm

a
n

 c
o

p
y
rig

h
t la

w
. Y

o
u

 m
a
y
 c

o
p

y
 a

n
d

 d
is

trib
u

te
 th

is
 a

rtic
le

 fo
r y

o
u

r p
e
rs

o
n

a
l u

s
e
 o

n
ly

. O
th

e
r u

s
e
 is

 o
n

ly
 a

llo
w

e
d

 w
ith

 w
ritte

n
 p

e
rm

is
s
io

n
 b

y
 th

e
 c

o
p

y
rig

h
t h

o
ld

e
r. 

Credit risk with infinite dimensional Ĺevy processes 297

Figure 5.1 Both graphs show Ĺevy random fields which were simulated using the decomposition
2.1 and choosinge1 = 1, e2 = cos(x), e3 = cos(2x), x ∈ [0, π]. The upper graph shows
a Normal Inverse Gaussian random field, while the lower graph shows a Variance Gamma
random field. Note that in contrast to random fields w.r.t. Wiener processes onH , the Lévy
random fields admit jumps and therefore show abrupt movements in the whole interest rate
curve.

6 Conclusion
This article is the starting point for a new class of models in credit risk using Lévy random
fields. After revisiting basic facts on Lévy random fields and discussing the default-free
case, the main theorem (Theorem 4.2) states the no-arbitrage drift condition for the credit
risk framework. This condition is the basis for the risk-neutral valuation formula. The
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next steps—which are beyond the scope of this article—will be presenting numerical
results and the pricing of credit derivatives as well as a calibration to option prices.
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