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Summary: The forward rate curve is assumed to follow a stochastic differential equation w.r.t.
a Levy process with infinite dimensions. Conditions under which the market is free of arbitrage
are provided for both the interest rate case and for the case of credit risk with ratings. A simulation
shows that typical movements of the yield curve are well captured by the model.

1 Introduction

A zero-coupon bond is an asset which pays one unit of money at a prespecified maturity
dateT. If the pay-off takes place with probability one, we say that the bond is default-free.

In contrast, we call this asset a defaultable bond, if there is some positive probability of
getting less than one unit of money. Zero-coupon bonds issued by corporates are the most
typical examples for defaultable bonds. The probability of default depends on economic
and firm-specific variables. This probability is usually reflected by a rating class which is
assigned by commercial rating agencies.

Various approaches for modeling defaultable bonds have been studied in literature and
they can roughly be divided into two main groups: the firm-value models and the intensity-
based models. Recent literature stresses the advantages of intensity-based models which
build on interest rate models, see e.g. the survey [23] or one of the books [17], [1].

Up to now, mainly models based on real-valued Brownian motions were considered.
This type of models does not reflect real-world data sufficiently, since the implied normal
distribution has exponentially decaying tails in contrast to the semi-heavy tails of real-
world data. Several studies on this topic can be found—we refer to [6] as one example.
A number of credit risk models which provide more flexibility have been developed, see
e.g. [5], [24, Section 2.7], or [10]. Whereas in [7] a model based on the very flexible class
of Lévy processes is introduced.

Newer interest rate models are based on Hilbert-space valued processes in order to
model forward rate curves directly. One way of applying Hilbert-space valued Brownian
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motions to credit risk can be found in [22]. Although the credit derivatives data is still
scarce, the market is believed to grow rapidly, see, for example, [11]. So calibration
procedures will be of high importance. For the special case of Gaussian random fields
explicit pricing formulas for various credit derivatives were derived in [21]. Also two
different calibration methodologies were proposed, each one serving different needs. The
first one is believed to avoid frequent re-calibration while the second one adjusts for the
scarcity of data by incorporating historical information.

This paper provides an approach which combines the advantages of the approaches
in [7] and [22] by presenting a model that is based @wy processes in Hilbert spaces.
There are several reasons for using a infinite dimensional model. While typically it is
argued that the characteristic movements of yield curves are covered by three factors,
for pricing of derivatives and hence calibration it is very important to cover as many
factors as possible. This is because derivatives are non-linear objects and a factor with
a small explanatory power for the variance might be highly significant in pricing, as
argued in [4]. If times of a crisis are included in an historical analysis of interest rates,
it has also been observed that ten factors were needed to explain only 90 % of the
variability, compare [20, Section 13.2.5]. As credit risky markets are much more volatile
than interest rate markets, it seems to be a good motivation to study high-dimensional
models.

If a model with ratings is considered it will turn out that the drift condition interre-
lates the forward rates in quite a complicated way. More precisely, the risk-neutral drift
depends on the whole forward rate curve. Therefore SDEs for the forward rates can not
be viewed as a set of SDEs indexedbwgs pioneered in [9]. Rather a functional formu-
lation is necessary to give the risk-neutral dynamics the appropriate meaning, compare
Corollary 4.6.

The organisation of the paper is as follows. In the next section we revisit some basic
facts from Hilbert-space valuedlvy processes. In Section 3 we introduce the underlying
default-free interest rate models based on Hilbert-space valeegprocesses, and Sec-
tion 4 describes the model for the defaultable zero-coupon bond. Finally, we give some
simulations and the conclusion.

2 Preliminaries

Consider a separable Hilbert spadewith inner product-,-) and denote the norm on
H by | - ||. H is a subspace df2(R1). Elements ofH will represent the whole yield
curve at a certain time. There are several ways to chébdepending on the required
smoothness, see [19] or [8].

Denote byl (H) the Banach space of linear operatorgonf h € H and® € L(H)
we write @ - h for ®(h).

Furthermore, we consider a finite time horizdh and a lévy processLs)se(o,T+]
taking values inH. The value of the Bvy process at a fixed tingis an element oH
and thus may be stated eitherla®) or L(s,t) := L(9)(t). This is why we also speak of
a Lévy random field.

“Jap|oy JybuAdoa ayy Aq uoissiwiad uapLm yym pamojje Ajuo si asn JayjQ "Ajuo asn jeuosiad inoK 1o} ajoie siyy aynquisip pue Adoa Aew no, me| JybAdoo uewas Aq pajoajoid si ajane siyj



Credit risk with infinite dimensional évy processes 283
The Lévy random field admits the characteristic function

. 1
9L,@ = exp(ifbL, 2) — 5(DL-2.2)

_|_fH [eNZvX) —1—-i(z x)1B(x)] F(dX)),

whereb. € H, D is an element ok (H), the covariance operator of the continuous part
of (L), andB := {h € H :||h|< 1}. The Lévy measurd- is a measure ol with
[ (X% AL) F(dx) < co andF({0}) = 0.

The following decomposition of a&vy processgL ())t>o with values inH will be
useful for interchanging integration w.r.t. forward rates.

Proposition 2.1 SupposéLt)icjo, T+ IS aLévy processwith valuesin H afid| L+ %< oo
forallt € [0, T*]. If {ex : k € N} is an arbitrary orthonormal basis of H, we have the
following decomposition

[e.e]

Le(w) = D (L), edex(u), (2.1)

k=1

where the series converges iR.I[Furthermore, for any ke N the processlk(t))tero, 7+
defined byl(t) := (L, &) is a real-valued EeVy process.

Proof: First, consider fixed € [0, T*]. Then for anym € N,

2

m m
E|I> adleed]| = Y B((LeadLe &) (@ &)
k=1 K j=1
m
= > E((Le 80?)
k=1
< B

The last inequality follows from the Bessel inequality, see e.g. [27], and so the series
converges in_2.

Second, adk(tp) — Ik(t1) = (L(t2) — L(t1), &) the processek have stationary
and independent increments, becausalready has stationary and independent incre-
ments. O

In the following, we therefore always assume that the considefq lprocess
(Lt)tefo, 1+ has second moments, in the sense, gt ||2< oo for all t € [0, T*].

We refer to [18] for more details on stochastic integration w.r.t. Hilbert-valuad/L
processes. However, a somewhat different approach using a series representation like
(2.1) is taken in [26]. First, we introduce a suitable class of integrands.

“Jap|oy JybuAdoa ayy Aq uoissiwiad uapLm yym pamojje Ajuo si asn JayjQ "Ajuo asn jeuosiad inoK 1o} ajoie siyy aynquisip pue Adoa Aew no, me| JybAdoo uewas Aq pajoajoid si ajane siyj



284 Ozkan - Schmidt

Definition 2.2 Consider a levy processLt)te[o, 7+ With values in H. With the decom-
position from Proposition 2.1 we callt«(H) the space of all predictable processes
(ot)te[o, 7+ taking values in I(H) such that the proces®t)iefo, 7+ is locally bounded.

Then, foro € L1 the proces$f(§ o(u) - dLy)teqo, 7+ is anH-valued semi-martingale
and it is a local martingale, ifL;) is.

Lemma 2.3 Consider a H-valuedévy -process with second moments. Theng ferCt
its stochastic integral w.r.{L+):>o is a local martingale.

Proof: As (o) is locally bounded, there exists a sequence of stopping tiMes>1,
converging to infinity, such thabtT,) is bounded. Considering

tATh
Itn = f U(u) . dLu
0

this is a sequence of martingales, and the claim follows. |
From [15] we obtain the following &-formula for Levy random fields.

Theorem 2.4 Let (Lt)tefo, 7+ be a LEvy process with values in the Hilbert space H and
(@()tejo,7+ € L1+(H). Set X = J5 o(u) - dLy for all t € [0, T*] and denote by
and g, k € N the eigenvalues and eigenvectors, respectively, of For an open subset
A C H and atwice differentiable function FA — H with uniformly continuous second
derivative on bounded subsets of H it holds, that

t
F(X0) = F(Xo) + / DF(X_) - dX4
0

1t
+ E/(; Z)‘kDZF(Xu—) - (o(U) - &, o(U) - &) du
k=1
+ 2 [AF(Xs) — (DF(Xs-) - AXS)]. (2.2)
s<t

Note that the second derivativie?F(-) is a bilinear mapping, and we therefore write
D2F(.) - (a, b) for this derivative evaluated atandb.

3 Thedefault-free case

We consider a filtered probability spac®, F, Q, (Ft)o<t<T*), and derive conditions
under which the measui@ is a martingale measure. @ is furthermore equivalent to

the objective measur®, it is an equivalent martingale measure and the market is free of

arbitrage, see [2].

1 Here we consider the spaté&H) endowed with the operator topology, which makes it a Banach space.
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The parameterization of [3] turns out to be useful in the considered context. Denote
by

re(x) := f(t,t +x)

the instantaneous forward rate at tilneith time-to-maturityx. The stochastic process
(r)t=0 is assumed to take values in the Hilbert sphicerhich is a subspace @f2(RT).
The bond prices depend on the forward rates in the following way:

Tt
B, T) = exp(—/ re(v) dv) .
0

It is important to state the dependenceTimstead ofx for the bond prices. If we
consider for a moment a bond with time-to-matusitgenoted byB; (x) then, for fixedx,
(Bt(X))t>0 refers to a price process which does not exist in this form in the market. This
is becausdsy, (x) and B, (x) are different bonds (for # to).

Let{S : t € R4} denote the semigroup of right shifts, defined®yg(-) = g(- + t),
for any functiong : Ry — R. Assume that A(t))te[0,7+ iS a predictable stochastic
process with values in the Hilbert spakeand (o(t))te[o0, 7+ is an element oL« (H),
see Definition 2.2. The shift operator acts as followsSay, A(u) we mean the element
in H obtained by shiftingA(u) for fixedu, i.e.v — A(U)(v+t —u).

The above introduced parametrization suggests the following dynamics, compare [3]
or [8],

t t
ro= Sro+ / S_uA(U) du + f S_uo(U) -dLy, (3.1)
0 0

where furthermore(Lt)te[o,7+] IS @ Leévy process with values iil. We assume that
(Lt) is a martingale, more precisely th@dt;) has no drift and the jump part is already
compensated. IE | L1 || < oo, then(Lt) can be stated in the following form:

t
Lt=vvt+/ f x (it~ ) (ds oo,
0 JH

whereW is a D--Wiener process ol and b is the random measure of jumps with
Q-compensator® (ds, dx) = ds Rdx). Thatis, for any Borel sef of R* and any Borel
set ofH, u" denotes the number of jumps in the time inter7alvhich have sizes i,

uS(T,A) = 1x(ALs).
seT
We will need exponential moments fok), which are guaranteed by the following
condition.

/1{||xn>1} e®*u(dx) < oo, VceH. (3.2)

It has been shown in [13] that under some mild conditions the HIM-drift condition already
ensures the existence of exponential moments.
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To shorten the notation, we defide(u, T) := fOT’“ A(u, v) dv and alsooy (u, T)
= fo M) - ad(v) dv.

Furthermore, we assume in the following trf@Tt A(u) du € H almost surely and
o € L1+(H). The processe&y (t, T))teo,7+) Will appear in the dynamics oB, such
they need to be locally bounded for eathe [0, T*]. Note that this follows from
o € L1+ (H).

Define the discounting procegs:= exp(— fé ru(0) du), such that in the considered
market the numeraire is given 8y 1(t). By the fundamental theorem of asset pricing, the
market is free of arbitrage if there exists an equivalent measure under which discounted
assets are local martingales.

In this paper we use the so-called martingale approach, i.e. we directly consider
a measuré& which is equivalent to the objective probability measure and state conditions
under whichQ is also a martingale measure. So the following theorem allows to classify
the martingale measures.

Theorem 3.1 All discounted bond prices are local martingales, iff for @l T) with
0 <t < T =< T* the following condition holds Q-a.s.:

1 2
0= — A"t T)+ Ekz_;xk [0 (t, T)]

T—t T—t
+ / [exp(/ [o(®) - X](v) dv) -1- / [o(t) - X](v) dvi| F(dx). (3.3)
H 0 0

Proof: Denote

Tt
Yt T) = — / 1 (0) .
0

First, we want to derive the dynamics of the procégs))t>o. Using the dynamics of
(re), (3.1), we obtain

T—t t
yt, T) = —/ [ro(v+t)+/ A(U,v+t—u)du

0 0

t
+ [/ S_uo(u) ~dLu:| (v)i| dv. (3.4)
0
Note that
Tt T Tt
—f row+tdv = y(0,T)+f ro(v) dv—/ ro(v+t)dv
0 0 0

t
— yO.T)+ /O fo(v) do. (3.5)
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As we need to show that discounted bond prices are martingalesQnidés convenient
when the short rate explicitly appears in the dynamicg. &from (3.1) we deduce

t t t o
/ r,(0)dv = / ro(v) dv + / / A(u, v — u) dudv
0 0 0 JO

t v
0 0

Inserting (3.5) and (3.6) into (3.4) yields

t

yt, T) = y(O,T)+/ r,(0)dv
0

t v T pt
—// A(u,v—u)dudv—/ / A(u, v — u) dudv
0 Jo t Jo
T—t t t v
—f [/ S_uo(u) - dLu:| (v) dv — / [/ S_uo(u) -dLu:| (0) dv.
0 0 0 LJo

Using Fubini’s theorem we can interchange the order ofAkintegrals, which leads to
the following expression for the sum of tifeintegrals

t T
—/ / A(u, v — u) dvdu. (3.7)
0 Ju

Interchanging the order in the last two terms requires using the eigenvalue expansion of
L, which yields

t 0 t
[ /0 s_ua(uydLu} W=y /0 [o(W) - e (v + t — u) dix(u)
k=1

0 .t
:Zf ok(U, v+t — u) dig(u),
k=10

where we sety (U, v) := [o(u) - &](v). This holds, because € L1+ (H).
Furthermore, this condition allows to apply the stochastic Fubini theorem, and we get

the following
Tt t
/ [/ S_uo(u) - dLui| (v) dv
0 0
T—t © ot
=/ Z/ ox(u, v+t — u) dig(u) dv
0o /o
© Lt AT
= Z/ / ok(u, v — u) dvdig(u)
= /o Jt
as well as

t v 00 t t
/ [/ s,ua(u).dLu} ) dv = Z/ / ok(U, v — u) dv dli(u).
o LJo ko170 Ju
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These expressions can be summed up and we obtain a considerably easier formulation
of y,

t t T
yt, T) =y(O,T)+/ rU(O)dv—/ / A(u, v —u)dvdu
0 0 Ju

x t T
- Zfo / ok(U, v — u) dv dlg(u).
k=1 u

We use the abbreviation&*(u, T) andoy (u, T) defined just before the theorem and
obtain the dynamics of,

t t
yit,T) = y(O,T)+/ rv(O)dv—/ A*(u, T)du
0 0
o0 t
—Z/ o (u, T) dik(u). (3.8)
k=10

Note that the existence of these integrals is ensured by the assumptiof &ratlocally
bounded. To apply thedtformula (2.2) we need a more functional analytic representation
of the above equation. Therefore, defibe [0, T*] x @ — L(H, H) by

[PW) - f1() :=/ [o(u) - f](v —u) dv.

u

Then

t t
/0 (@) - dXWI(T) = 3 /O [B(U) - 8 (T) dlW)
k

t T
- Z[ / [o(u) - &](v — u) dvdlk(u)
K 0 Ju
t
L Z/ op(u, T) dik(u).
K 0

Settingm(u, -) :=ry(0) — A*(u, -) we obtain

t t

Yt = y(0) + /0 m(u) du — /0 o) - dLy. (3.9)
We define
FiHo H  g)— expge).

where expg(-)) is the functionh, s.t. h(x) = exp(g(x)),¥x € R*. Then we have
B(t, -) = F(y(t, -)). For two real-valued functiong h we denotgg x h)(-) := g(-)h().
Then it is easily seen, thddF(x) = F(x) x id and D2F(x) = F(x) x id x id. Thus,
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applying [©’s formula yields
T
B(t) = B(0) +/ DF(y(u—)) - [m(u) du — ®(u) - dL(u)]

Q
1 t
+§ /0 Z)‘k DZF(Y(U—)) (P (u) - &, P(u) - ) du
k=1

+ 3" [F(ys) — F(¥s-) — DF(y(s-)) - () - ALs],

s<t

and we obtain inserting the derivativesiof

t t

B(t) = B(O)—|—f B(u—) x m(u) du—/ B(u—) x ®(u) - dLy
0 0

1 t
+5 [ C B x (@ 00 x (0w ey
k
+) [AB(9) — B(s—) x [@(9) - ALs]].
s<t

EvaluatingB(t, -) at maturityT reveals
t
Bt T) = B(O,T)+/ B(u—, T)[ru(0) — A*(u, T)ldu
0

t
_ Z/ B(u—, T)op(u, T) dii(u)
K 0

1 t
+5 / B(u—. T) ) iklog(u, T)1*du
0 k

+ Z [B(s, T) — B(s—, T) — B(s—, T) [®(5) - AL(9)](T)].

s<t

Now we have to find the martingale parts in this expression. Of course, if we consider the
discounted bond price the term with(0) vanishes in the above dynamics.
Because oB(s) = F(y(s)) we obtainB(s)/B(s—) = exp(®(S)ALs) and thus

BsT) _ 1}
B(s—, T)

— B(s—, T) (exp([@(s) : ALS](T)) A 1).

AB(S, T) = B(s—, T) |:

This leads to
ZAB(S, T)— B(s—, T[P(S) - AL(S](T)

s<t

=Y B, T)(exp([cb(s) : ALS](T)) 1 [ ALS](T)).

s<t
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This term can also be expressed as

t
[ [ BT (exp(109) - x1T)) ~ 1= 199 XI(T)) s .
0 JH
Note that(B:)t>0 is real valued and of finite variation. Then, b@’# formula,
d[BtB(t, T)] = (=rt—(0))Bi—B(t—, T) dt + pi— dB(t, T)

and therefore

t
BHB(, T) = B0)B0O, T) — f Bu—)Bu—, T)A*(u, T)du (3.10)
0

t
—Z/O B(u—)B(u—, THop(u, T) dik(u)
k
1 t
+ 5/0 ﬂ(u—)B(u—,T)Z/\k [alj‘(u,T)]2 du
k

+f0t/Hﬂ(U—)B(U—,T)[exp([cb(u)~x](T))—1
—[®(u) - x](T)] (/LL(du, dx) — vt (du, dx))
+ /Ot /H BU—)BU—, T)[ expl® () - XI(T)) — 1
— [®(u) - x](T)] F(dx) du.

The Lévy processek are local martingales by assumption. The integral wu-t— vt
is a real-valued square integrable martingale according to [14, Theorem 3.4.5] if the
integrand is bounded. A localizing argument reveals that this is indeed only a local
martingale under the weaker assumptiorsoiNoticing, thatf® (u) - X](T) = ftT [o(u) -
x](v) dv, we conclude. O

It is a suitable property to the forward rates that they are positive. If this is the case,
the bond prices will also be true martingales as they are bounded.

4 Aninfinite factor Lévy model of credit risk

In this section we want to incorporate default risk in the previous model. We directly
present a model of default ratings, as the model without ratings is a special case.

Assumption 4.1 Assume that there are K 1 ratings, wherel denotes the highest rating
and K— 1the lowest, while K is associated with default. Denotinglby {1, ..., K—1}
the set of possible ratings and puttifig= K U {K }, we assume that the rating i forward
rate satisfies

. ) t ) t . )
r{=3r‘o+/o s[,uA'<u>du+/0 SuolW-di@, ek,
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where(L! (D)tefo,7+) are H-valued levy processes. The covariance operator of the con-

tlnuous partof I is denoted by band the jump measure by, respectively. Furthermore,
1[0, T*] x  — H ando' : [0, T*] x i L (H) are stochastic processes, which

are predictable w.r.t(Ft)i>0 and satlsfyIP(fO Al(s)ds € H) = 1ando' € L1+ (H), for

ali e K.

As previously, we introduce the terndg*(u, T) := OT’“ Al (u, v) dv ando*(u, T)

= 0 Yot (u)- &J(v) dv. To ensure existence of the appearing integrals, we assume that
the processe@r (t)tefo, 7+ € L1+ for eachi € K.

The process describing the current rating of the bQﬁéI(t))tE[O,T*], takes values in
K and is assumed to be a Markov process. We deno@?tty the previous rating before
CL(t). If there were no changes in rating up to titnee setC2(t) = C1(t). The default
T occurs at the first time, when the stdtds reachedy = inf{t € [0, T*] : C1(t) = K}.
We setr = T* 4 1 if the inf is empty.

We follow [7] to enlarge the probability spac€, F, Q, (Ft)o<t<T+) t0 (2,6, Q.
(Gt)o<t<T*). The filtration(Gt)o<t<T+ iS Obtained by adding the information Q@tl) to
(Fv).

Denote the conditional infinitesimal generator@¥ given G; under the measur®
by

A11(t) Ar2(t)  Azs(®) e Atk (D)
A21(t) Az22(t)  Aza(t) e A2k (D)
At = : : - : ,
Ak-1,10) Ak—12(0 - Ak—1k-1(D) Ak—1k®
0 0 .. 0
fort € [0, T*]. Each(jj (1)) is a(Gt)-adapted process, satisfying
Ni()==> xj), forallte[o,T*]. (4.1)
i#

Assume the ratingrecovery rateqi (t)te[o, 7+ to be a nonnegative stochastic process
which is predictable w.r.tF for all i € K. In extension to the previous section, we model
the defaultable bond with rating transitions by

A 1 T i
B(t, T) = Licrpy~k) €XP| — ; re o (u)du

2 t
s 1{C1(t)=K}q‘L(’: ® B('C—, T) eXp </ My du) b (42)
T

We call this recovery modelingating based recovery of market valugee [22] for
arating based recovery of treasuryhe proposed methods also apply to this case.

DenoteB'(t, T) := exp[ — fOT_t ri(u) dul.

Theorem 4.2 Assume arating based recovery of market value model and that Assumption
4.1 holds under the measu@. Then all discounted bond prices are local martingales
underQ, iff the following conditions are satisfig@-a.s. on{r > t}.
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1. Forany(t, T) such thatte [0, T*]and T > t,
1 1
00 = 1@+ (1- 67" ) her k ®-

2. Forany(t, T) such thatte [0, T*] and T > t,

1S 2
0= —AO T+ 53 a0 O [0l " T
k=1
— [ Bi(t, T)

+ X |t geman
Clt
j=1,j#Ck®) B AP

T-t 1
+/ [exp(/ [ac O ) . x] (v) du> ~1
H 0

i| )“Cl(t), J (t) .

Tt
- / [acl(t)(t)-x] (v) dvi| F SO (dx).
0

(4.3)

(4.4)

Proof: The rating based recovery of market value leads to the discounted gains process

K-1
Gt T) =Bt Y Liciy—B't.T)
i—1
K—1 _
+B(D) Liciy=k) Y Licz=idBx—, T).
i—1

Note that the indicators have finite variation, just [{i8g), and therefore &'s formula

yields the dynamics

K-1
dG(t, T) = ) Licip—pd(BOB'E, T))
i=1
K-1 [
+ ) Bt—)B(t—, T)dLcr i)
i=1

K-1
+ d (Z 1{Cl(t)=K,C2(t)=i}) q.lr ﬂ(f—) B(T—, T)

i=1
For the last term,
9. B(r—)B(z—, T )AL 1=K, c2(t)=i}
= q{ ﬁ(t—) BI (t—, T )d]I'{Cl(t)=K,C2(t)=i}’

as the indicator changes only at= t. Furthermore with probability one we have

B(z—,T) = BS@ (¢, T).
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Proposition 11.3.1 in [1] yields that the following processes,

, t
Ml(t) = ]]'{Cl(t):i} —A )LCl(u)’i du (45)

and

» t

MI (t) = 1{Cz(t)=i,Cl(t):K} - /(; )\.iK ]I'{Cl(U)Zi} du, (46)
are martingales.

BB (t, T) = B(O)B'(0,T)

t
/ BU—)Bi(u—, T) (rL(O) —ry(0) — A‘*(u,T)) du
0

(o,0] t | ) .
—Z/ B(u—)B' (u—, T)ol*(u, T) dii(u)
k=170
t 00
+5 [ pumBe- DY o] a
0 k=1

t . .

+ / f Bu—)B (u—, TH[ exp[®' () - XI(T)) — 1
0 JH

—[®@' (u) - X](T)]u' (du, dx).

Combining this with the equations (4.5) and (4.6) it leads to

K-1
A6t T) = 3 L1y At—)Bi t—, T){ (rti 0 — rt(O)) dt

i=1

. 1 .r . 2 .
— AL T) dt+ S [af(*(t,T)] dt + gi Ai k (1) dt

+/H [exp([®' (D) - X](T)) — 1—[@' ® - x](T)]F'(dx) dt}

K-1

+ 3 BB (t—. T)Ac, dt + dM,
i=1

where we added the martingale terms upMe. Under the integrability conditions,
(G(t, T))=0 is a martingale, iff the drift term equals zero. B&)B'(t, T) > 0 this is
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equivalent to

1 1 1 1
0=B%0g, T){rtC D) —re(0) = AV, T) + of Prcrq .k ®
1. cly [ _cle 2
+5 kz_;xk [ak *t, T)]

+ / [exp([@%"Ot) - x](T)) = 1— [0 V) - x](T)]F Cl(“(dx)}
H

K-1

+ Y Bt Trcig,- (4.7)
i=1

At this point it is important to observe that (4.7) has to hold forall ) with0 <t < T*
andt < T. Note that all terms depending dnequal zero, if we sd¢t= T. This allows us
to split the above equation into two parts. But first we have to note that by equation (4.1)
we obtain
— BT

I eI P
cit CL(t),i
= BSOLT)

KZl AN Aci. (D) + A t)
- RCLn 5 T, CLOi Clh),Cl)
i=1,i£CL(t) B~ T)

“ [ BT
BC'O(, T)

1} )\‘Cl(t),i (t) - )\‘Cl(t), K (t)
i=1,i£CL(t)

The first part is
1 1 1
D1t := BS O, T[r V0 = 10 + 4 Vrcag k]
while we the second part contains the terms also dependiiig on

1o 2
D2 T) = A% T) 5 3 i [ e )]
k=1

K—-1 :
B'(t, T)
+ > [7—1})\@ 10
cl() (®,i
i=1,i£CL(t) B €. T)

+ / [exp([®C O M) - X](T)) — 1= [@C Ot) - x](T)]F ' Odx)
H

and we haveD,(t,t) = 0. Furthermore, if condition (4.4) holds, th&y is zero and of
courseD; (t) = 0 is equivalent to (4.3). We conclude that if bdh and D, equal zero,

which holds under the presented conditions, discounted bond prices are local martingales.
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If, for the converseQ is a martingale measure, (4.7) holds.Bsdoes not depend on
T, we have that, settinf = t, D1 equals zero foratl < T* and hence mudd,(t, T) =0
for all consideredt, T) and we conclude. O

It is possible to relax the needed assumptions, if the model is considered directly in
the HIM-parametrization as done in [12].

Remark 4.3 The credit risky model without ratings is a special case of the presented
framework. This may be seen by settiig= 2 and

nom (50 00).

Thus,(At)te[o, 7+ is the default intensity as introduced, for example, in [16].
From Theorem 4.2 we immediately obtain

Corollary 4.4 If Q is an arbitrage-free measure, the defaultable bond price satisfies the
risk-neutral valuation formula

~ T
B, T) =EtQ[eXp<—/ lu dU) ]I'{Cl(T);éK}
t

T o
+ eXp(—/ lu du) 1{c1(t):|<}q$ ©B(r—, T)].
t

Remark 4.5 If a drift condition, not depending on a particular realization©t(t)), is
preferred we require the above equations to be satisfied for any kitig which leads
to the following conditions:

1. Fort € [0, T*] andT > t,
r'(0) = re(0) + (1 — ghAi K (D).
2. Fort € [0, T*]andT > t,
i\ 1 T i 2
0= A" T)+5 Zk:)\;( [crf( , T)] (4.8)
K-1 i
BitT)].
+ Z .[1_ Bi(t,T)}A"‘(t)
j=1j#
T-t .
+/ [exp(/ [a'(t).x] (v)dv) _1
H 0

T-t . .
— / [0' ) - x] (v) dv:| Fidx).
0
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Although conditions similar to (4.4) have been stated in literature, it was not yet
pointed out that this condition relates the drift of the forward rate to the whole yield
curve. This is not the case for the defaultable model without ratings or the risk-free case.
Therefore, a functional setting foy is needed to make sense of the model under which
the drift condition holds.

Simply deriving (4.8) leads to the following corollary. Of course, a formulation which
relates to the drift condition (4.4) is easily obtained proceeding similarly.

Corollary 4.6 The drift condition(4.8)is equivalent to the following condition on A

AT —0=Y Mopt T —0o(t.T)
k

+/ [ai ® - x](T - 1)( o o' X dv _ 1) Fi(dx)
H

K-1 _
~ 3 ol (T—t,rti,rt‘),

j=1j#

where |: RT x H x H — Ris given by

X
(X, u, v) = exp(/ (U@ — v(2) dz) (U(X) — v(x)). (4.9)
0

At this point it becomes clear that the drift of any forward réfedepends on all other
forward rates through the last term. Moreover, it does not only depend on the single value
at a certain maturityl, but rather on the full curve through the bond prices, respectively
integrals in (4.9).

5 Simulations

To illustrate the approach withdvy random fields we present some simulation results.
Proposition 2.1 suggests that @ly random field can be simulated by choosing a suitable
basis ofH and simulating one-dimensionakly fields. Using the first three elements of
the Fourier basis, we can capture typical movements of the interestrate curve. In Figure 5.1
we show a Normal Inverse Gaussian random field as well as a Variance Gamma random
field. For an introduction into the simulation oflzy processes see [25]. We find that
the movements of the simulated process very well capture typical movements of the term
structure, as parallel shifts, changes in slope and curvature. Furthermore, abrupt changes
in the whole interest rate curve are also produced by the presented model.

This simulation can just give a short hint about the usefulness of infinite dimensional
Lévy processes in modeling credit risky interest rates. However, a thorough simulation
study of such process seems to lead too far away from the focus of this article.
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Figure5.1Both graphs showé&vy random fields which were simulated using the decomposition
2.1 and choosing; = 1,e& = cogX), e3 = cog2x), X € [0, =]. The upper graph shows

a Normal Inverse Gaussian random field, while the lower graph shows a Variance Gamma
random field. Note that in contrast to random fields w.r.t. Wiener processés, ¢ime Levy
random fields admit jumps and therefore show abrupt movements in the whole interest rate
curve.

6 Conclusion

This article is the starting point for a new class of models in credit risk usiwy kandom

fields. After revisiting basic facts ondvy random fields and discussing the default-free
case, the main theorem (Theorem 4.2) states the no-arbitrage drift condition for the credit
risk framework. This condition is the basis for the risk-neutral valuation formula. The
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next steps—which are beyond the scope of this article—will be presenting numerical
results and the pricing of credit derivatives as well as a calibration to option prices.
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