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Summary. This paper suggests a new approach to model spot prices of electricity.
It uses a shot-noise model to capture extreme spikes typically arising in electricity
markets. Moreover, the model easily accounts for seasonality and mean reversion. We
compute futures prices in closed form and show that the resulting shapes capture a
large variety of typically observed term structures. For statistical purposes we show
how to use the EM-algorithm. An estimation on spot price data from the European
Energy Exchange illustrate the applicability of the model.

1 Motivation

It is well-known that as many other commodities electricity prices exhibit
strong seasonalities. Besides this, due to the difficulty of storing electricity
and inelastic demand, electricity spot prices show extremely strong spikes.
The spot price data shown in Figure 1 clearly confirms this. In this paper, we
propose a model which naturally captures this spiking behaviour. The model
uses a type of shot-noise which is particularly suited for electricity spikes. It
is furthermore simple enough to allow for closed-form solutions of futures and
other power derivatives.

It is important to mention that electricity markets are young and small
markets. For example, in Germany it is possible to trade electricity since 2000
and currently there are about 150 market participants trading at the European
Energy Exchange, Leipzig1. Electricity prices have a number of featurs which
are necessary to capture by a good model.

First, the necessity for using a model incorporating jumps is underlined in
Eberlein & Stahl (2004) or Weron (2005). There are two approaches, which are
closely related to the model presented here. In Geman & Roncoroni (2006)
a model is proposed, where the jump component jumps up until a exoge-
neously level is reached and thereafter jumps down. The approach of Cartea

1 158 participants from 19 countries, cited from the webpage www.eex.de on Jan-
uary 2007.
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& Figueroa (2005) is a special case of ours. The authors use a jump-diffusion
to capture the spikes and the mean reversion. For an overview of existing liter-
ature on electricity models we refer to these papers. An approach using Lévy
processes may be found in Benth, Kallsen & Meyer-Brandis (2006). In contrast
to the Lévy approach, the shot-noise modelling allows for an easier estima-
tion: an efficient tool for estimating shot-noise models is the EM-algorithm.
We derive the necessary densities and apply the model to electricity prices in
Section 4.

Fig. 1. The spot prices of energy (base load) quoted from the European Energy
Exchange (www.eex.de).

The proposed model generalizes Cartea & Figueroa (2005) and offers more
flexibility in capturing the statistical properties of the spot price as well as in
calibrating to the futures curve. On the other side, the approach to modelling
spikes seems more natural as in Geman & Roncoroni (2006), and in contrast
to this model, we are able to compute prices of derivatives in closed form.

It seems important to note the specific characteristics of futures traded
on electricity markets in contrast to futures, for example, from interest rate
markets2. Electricity futures offer delivery of electricity over a certain period,
typically a month, a quarter or a year. In a certain way this is a practica-
ble approach to insure against extreme price fluctuations, because the payoff

2 See, for example, the European Energy Exchange (EEX) Contract Specifications,
downloadable from www.eex.de.
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smoothes singular effects like spikes. On the other side, futures with a yearly
delivery period also loose the dependence on the seasonalities. We take this
into account and derive prices of futures on electricity markets.

2 Setup

Consider a filtered probability space (Ω,F , (Ft)t≥0, P) which admits a Brow-
nian motion (Wt)t≥0, a Poisson process (Nt)t≥0 and iid rvs Yi, i = 1, 2, . . . ,
all independent of each other. We generalize simple shot-noise approaches as
eg in Altmann, Schmidt & Stute (2006) in a way suitable for electricity spot
prices. A close analysis of electricity prices reveals that the arising spikes ei-
ther have an up-jump and then a strong decline or a sharp rise followed by a
strong decline. The following function h will be able to capture this behaviour.
For more general types of shot-noise processes we refer to Schmidt & Stute
(2007).

For a, b > 0 define h : (R+)2 × R :7→ R+ by3

h(t, γ, Y ) := Y ·

{

exp(a(t − γ)) if 0 ≤ t < γ,

exp(−b(t − γ)) if t ≥ γ.

Y is the jump height and typically will be positive, while not necessarily. For
γ = 0 this resembles simple shot-noise as a special case. If γ > 0, then h
jumps at zero to Y exp(−aγ), then rises to Y at γ and thereafter it declines
exponentially. For the shot-noise component we propose

Jt :=
∑

τi≤t

h(t − τi, γi, Yi). (1)

Example 1. A simple example would be to assume that γi ∈ {0, γ̃} with pγ :=
P(γ1 = 0). In this case one has classical shot-noise with probability pγ and
the “steep rise followed by sharp decline” case with probability 1 − pγ .

The diffusive part is responsible for mean-reversion and seasonalities. As
the focus of the paper is mainly on the jump part, we stay quite simple in the
assumptions on the diffusion. Assume that D is the strong solution of

dDt = κ(θ(t) − Dt)dt + σdBt, (2)

where B is a standard Brownian motion. Under the above specification we
say that

S = D + J

follows a Vasicek/shot-noise process with parameters (a, b, fγ , fY , λ, κ, θ(·), σ).

3 We set R+ := {x ∈ R : x ≥ 0}.
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The process given in (2) is the well-known dynamics proposed by Vasiček
(1977) for interest rate models. This process has a stochastic mean-reversion to
the level θ(t). A different form of mean-reversion is obtained, if Dt = θ(t)+D̃t

is chosen, where D̃t is mean-reverting to the level 0. This was done in Cartea
& Figueroa (2005). Contrary, in the stochastic mean-reversion, as chosen here,
the mean reversion speed depends on the distance of D to the mean reversion
level. Thus, if |θ(t) −Dt| is large, the process is pulled strongly back towards
(θ), while if this difference is low, the mean-reversion is not so strong.

It is straightforward to extend the given setup to more general dynamics
of D. For example, using the formulas obtained in Gaspar & Schmidt (2007),
one immediately obtains closed-form solutions for electricity futures using
generalized quadratic models for the diffusive part. For example, the well-
known CIR-Modell (see Cox, Ingersoll & Ross (1985)) moreover guarantees
positivity of D. In contrast to interest rate-models, polynomials of order higher
than two can also be considered4.

2.1 Changing measure

On one side, statistical estimation, as we consider in Section 4, is always done
under the real-world measure P while on the other side pricing of derivatives
takes place under the risk-neutral measure Q. There is a vast of literature
on specific choices of the risk-neutral measure. However, in this paper we
consider a rather pragmatic approach which serves the need of applicability
on one side and retains a reasonable amount of flexibility on the other side:
we assume that the chosen model retains its structure while changing from P

to Q although it of course will have different parameter values under Q.
The Girsanov theorem5 gives all possible changes of measure. For our

purposes, we restrict to a sufficiently flexible measure change. Define Lt :=
E(dQ

dP
|Ft), t ≥ 0 and assume that L is given by

Lt =
∏

τi≤t

( λ̃f̃Y (Yi)

λfY (Yi)

)

exp

(

−

t
∫

0

a(s)dWs +

t
∫

0

(b −
1

2
a2(s))ds

)

, (3)

where a(s) = (θ(t) − θ̃(t))σκ−1 for a deterministic function θ̃(t) and b =
∫

(λ̃f̃Y (z)−λfY (z))dz. The following result precisely states the obtained model
under Q.

Proposition 1. Assume that S is a Vasicek/shot-noise process with parame-
ters (a, b, fγ , fY , λ, κ, θ(·), σ) under P and the measure change dQ/dP is given
by the likelihood process in (3). Then S is a Vasicek/shot-noise process under
Q with parameters (a, b, fγ , f̃Y , λ̃, κ, θ̃(·), σ).

4 The degree problem in interest rate models was observed in Filipović (2002).
5 Compare Protter (2004) for a suitably general version.
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Intuitively spoken, this means that under Q, (Wt +
∫ t

0
a(s)ds)t≥0 is a stan-

dard Brownian motion, N is a Poisson process with intensity λ̃. The distribu-
tion of Y may be changed in a quite general fashion, provided they are still
equivalent. For practical purposes it might be reasonable to choose a para-
metric family and assume that the parameters change from P to Q while the
Y stays in the parametric family. We assume the distribution of γ does not
change to retain the shot-noise type. However, it is straightforward to also
incorporate a change of the distribution of γ.

Proof. The claim follows directly from the Girsanov theorem. First, note that
a, b, σ and κ do not change under equivalent measure changes. Second, (Wt +
∫ t

0 a(s)ds)t≥0 is a Q-Brownian motion and hence

dDt = κ(θ(t) − σ
θ(t) + θ̃(t)

σ
− Dt)dt + σ(dWt + a(t)dt)

= κ(θ̃(t) − Dt)dt + σ(dWt + a(t)dt).

Furthermore, the jump component of L immediately reveals that Yi, i ≥ 1
are again i.i.d. under Q with densities f̃Y ; moreover N is a Poisson process
with intensity λ̃ (see, for example, Brémaud (1981), Section VIII.3, Theorem
T10). This yields the claim. ⊓⊔

It is important to note that there is no kind of no-arbitrage restriction on
Q as the spot price, which is modeled here, is not a traded asset; see also the
next section for further details. Any other asset what we consider later on will
be an expectation of its discounted payoffs under Q and hence by definition
be in line with no-arbitrage.

Thanks to Proposition 1, we can consider from now on Vasicek/shot-noise
processes under P as well as under Q. Note that, still, estimated parameters
are under P while parameters for pricing as well as calibrated parameters are
under Q throughout and typically do not coincide. A comparison analysis of
calibrated prices with estimated parameters could clarify on the market prices
or risk chosen by the market and would make a link possible.

2.2 Pricing of electricity futures

To price electricity futures we mainly follow Teichmann (2005), hence we
assume that futures are traded for time-to-maturity of at least a small value,
say ǫ. As fluctuations in electricity markets are quite large in comparison to
interest rate markets, it is reasonable to assume zero interest rates. Then the
futures price of a contingent claim X is EQ(X|Ft), where the expectation is
taken under an equivalent martingale measure Q.

The futures actually traded in electricity markets are not futures on a
single spot rate. Instead, they offer electricity for a certain period of length L.
More precisely, the future offers delivery of electricity in the period [T, T +∆],
with the value
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∑

Ti∈[T,T+∆]

STi

where Ti ∈ [T, T +∆] refers to the respective trading days in the period under
consideration. We assume that the mesh of the trading days is equidistant,
i.e. Ti − Ti−1 := δ for all i. In the following, we approximate the sum by an

integral,
∑

Ti∈[T,T+∆] STi
≈ 1/δ

∫ T+∆

T Su du. This is not necessary and is just
used to simplify the formulas. It is an easy exercise to compute the explicit
formulas for

∑

Ti∈[T,T+∆] STi
instead of the integral.

Using the approximation we consider the following futures price:

F (t, T, ∆) =
1

δ
EQ

(

T+∆
∫

T

Sudu|Ft

)

.

We take this formula as a starting point and compute futures prices under
the proposed shot-noise model. First, notice that as S is a sum of a diffusive
and a shot-noise part, for pricing the futures it is sufficient to price the diffu-
sive and the shot-noise part separately. As already mentioned, it is therefore
straightforward to incorporate more general dynamics for D. Later on, in Ex-
ample 2 case (3.) we also show how to consider an exponential model for D.
In particular in the german market, spot prices show higher volatilities for
higher prices, which can be captured well by an exponential model. This is
not the case in the model considered in Benth et al. (2006).

From now on, assume that S is a Vasicek/shot-noise model with param-
eters (a, b, fγ , fY , λ, κ, θ(·), σ) under Q. First, we give an auxiliary lemma. It
basically shows how to compute certain expectations of shot-noise processes
on different levels of generality. For an U [0, 1]-distributed rv, independent of
γ1 and Y1, define

S̄(t) := EQ
(

h
(

t(1 − U1), γ1, 1
))

.

Furthermore, we set Ȳ := E(Y1). Throughout we assume Ȳ , S̄(t) < ∞ for all
t ≥ 0.

Lemma 1. Consider t, ∆ > 0 and a function h : [0,∞)2 × R 7→ R. For the
shot-noise process J , defined in (1) we have that

EQ(Jt) = λtȲ S̄(t), EQ

(

t+∆
∫

t

Judu

)

= λȲ

t+∆
∫

t

uS̄(u) du.

This small lemma illustrates the typical procedure for computing expectations
of shot-noise processes. First, one conditions on the number of jumps in the
desired interval. Second, under this condition the jump-times are distributed
as order statistics of i.i.d. uniformly distributed random variables Ui. Third,
using the i.i.d. property of the other ingredients, on can interchange the order
of the Ui and finally ends up with a nice formula.
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Proof. We have that

EQ(Jt) =
∑

k≥0

e−λt (λt)k

k!
EQ

( k
∑

i=1

h
(

t − tUi:k, γi, Yi

)

)

,

where U1, U2, . . . are i.i.d. U [0, 1]. As the random variables γi and Yi are also
i.i.d. one can interchange the oder of the second sum and obtains

EQ(Jt) =
∑

k≥0

e−λt (λt)k

k!
EQ

( k
∑

i=1

Yi h
(

t − tUi, γi, 1
)

)

.

The expectation equals kȲ S̄(t) and the first result follows. The second asser-
tion follows by interchanging expectation and the integral. ⊓⊔

Denote the Laplace-Transform of γ1 by ϕγ(c) := EQ(exp(−cγ1)) and as-
sume φγ(c) < ∞ at least for c ∈ {a,−b}.

Theorem 1. The price of the electricity future offering electricity in the time-
period [T, T + ∆] at t ≤ T − ǫ, which we denote by F (t, T, T + ∆), computes
according to:

δ · F (t, T, T + ∆) = F̃ (t, T, T + ∆)

+ λ∆Ȳ

[

∆
(1 − ϕγ(a)

a
+

1

b

)

+
ϕγ(−b)e−b(T−t)

b2

(

e−b∆ − 1
)

]

−
Dt

κ

(

e−κ(T+∆) − e−κT
)

+ κ

T+∆
∫

T

u
∫

t

eκsθ(s) ds du, (4)

where we denote the Ft-measurable part of shot-noise component by

F̃ (t, T, T + ∆) :=

T+∆
∫

T

∑

τi≤t

h(u − τi, γi, Yi)du.

The term F̃ captures the part of the past shot-noise effects. In practice, if the
market at t is not in a extreme spike, F̃ can be safely neglected.

Proof. Following Teichmann (2005), the price of the future is given by an
expectation under the risk-neutral martingale measure Q. Hence6,

δ · F (t, T, T + ∆) = Et

(

T+∆
∫

T

Su du
)

= Et

(

T+∆
∫

T

Du du
)

+ Et

(

T+∆
∫

T

Ju

)

.

6 We use the short notation Et(·) for EQ(·|Ft).
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We first consider the expectation of the diffusive part and second the expecta-
tion of the shot-noise part. It is well-known7 that (2) has the following explicit
solution:

Dt = e−κt
(

D0 + κ

t
∫

0

eκsθ(s)ds
)

+ σ

t
∫

0

eκ(s−t)dBs.

Then, for u > t we obtain Du = e−κu(Dt +κ
∫ u

t eκsθ(s)ds)+σ
∫ u

t eκ(s−u)dBs,
such that

T+∆
∫

T

Et(Du) du = −
Dt

κ

(

e−κ(T+∆) − e−κT
)

+ κ

T+∆
∫

T

u
∫

t

eκsθ(s) ds du.

Second, consider the shot-noise part. Observe that

Et

(

T+∆
∫

T

Ju du
)

=

T+∆
∫

T

Et

(

∑

τi>t

h(u − τi, γi, Yi)
)

du

+

T+∆
∫

T

∑

τi≤t

h(u − τi, γi, Yi)du.

As a Poisson process has independent and stationary increments, the expec-
tation on the r.h.s. computes to

Et

(

∑

t<τi≤u

h(u − τi, γi, Yi)
)

= EQ
(

Nu
∑

i=Nt+1

h(u − τi, γi, Yi)
)

= EQ
(

Nu−t
∑

i=1

h(u − t − τi, γi, Yi)
)

= E(Ju−t).

This expectation can be computed using Lemma 1 We therefore compute S̄:

S̄(t) = EQ

(

ea[t(1−U1)−γ1]1{t(1−U1)∈[0,γ1]} + e−b[t(1−U1)−γ1]1{t(1−U1)>γ1}

)

=

∞
∫

0

[

1−v/t
∫

0

e−b[t(1−u)−v]du +

1
∫

1−v/t

ea[t(1−u)−v]du

]

Fγ(dv),

where the distribution of γ is denoted by Fγ . Computing the integrals we
obtain that

7 For example, see Schmidt (1997).
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S̄(t) =

∞
∫

0

[

1

bt

(

1 − e−b(t−v)
)

+
1

at

(

1 − e−av
)

]

Fγ(dv)

=
1

bt

(

1 − e−btϕγ(−b)
)

+
1

at

(

1 − ϕγ(a)
)

.

Finally, we have to compute the following integrals of S̄:

T−t+∆
∫

T−t

uS̄(u) du =

T−t+∆
∫

T−t

[1 − e−buϕγ(−b)

b
+

1 − ϕγ(a)

a

]

du

= ∆
(1 − ϕ(a)

a
+

1

b

)

+
ϕγ(−b)e−b(T−t)

b2

(

e−b∆ − 1
)

.

Using Lemma 1 with the above expressions proves the theorem.

Coming back to the simple case in Example 1 where γ was zero with
probability pγ and γ̃ otherwise, we obtain a simple Laplace transform as
ϕγ(c) = pγ + (1− pγ) exp(−cγ̃). Of course, there are many other possibilities
where the Laplace transform is obtained in closed form (eg. Beta distribution,
log-normal distribution or others).

Example 2. There are several interesting special cases or modifications of the
above setting:

1. If θ(u) = θ, then the second line in (4) simplifies considerably to

θ∆ −
Dt − θ

κ

(

e−κ(T+∆−t) − e−κ(T−t)
)

.

2. For incorporating seasonalities one frequently uses a mean-reversion level
similar to θ(s) = sin(ωs). In this case we have that

κ

T+∆
∫

T

u
∫

t

eκsθ(s) ds du =
κ

(κ2 + ω2)
2

(

ω∆ cos(ωt)eκt(κ2 + ω2)

+ eκ(∆+T )
(

(κ2 − ω2) sin((T + ∆)ω) − 2κω cos(ω(T + ∆))
)

− κ∆ sin(ωt)eκt
(

κ2 − ω2
)

+ eκT
(

2κω cos(ωT ) + sin(ωT )(ω2 − κ2)
)

)

.

And hence we also obtain a closed-form expression for θ(s) = ω0 +
sin(ω1s) + sin(ω2s).

3. The chosen Gaussian mean-reverting Diffusion may become negative. If
the parameters are suitably chosen this probability might be small, but
still positive. To overcome this difficulty one can use St = exp(Dt) + Jt.
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It is also straightforward to compute the price of the future in this case
as then

Et(Du) = exp(Dt)Et

(

exp(Dt − Du)
)

= exp

(

−
Dt

κ

(

e−κ(T+∆) − e−κT
)

+ κ

T+∆
∫

T

u
∫

t

eκsθ(s) ds du

+
1

2
σ2

T+∆
∫

t

(

T+∆
∫

T∨s

eκ(s−u)du
)2

ds

)

,

where the last line computes to

1

2
σ2

{

4e−κ(T+∆−t) − 3 − e−2κ(T+∆−t) +
(

e∆κ − 1
)2 (

1 − e−2κ(T+∆−t)
)

2κ3

+
T + ∆ − t

κ2

}

.

3 Illustration

In this section we give some simulated paths, which illustrate the proper-
ties of the model. It should be noted that if the model is used for pricing,
the specification under the risk-neutral measure matters. As used in Propo-
sition 1, from a practical viewpoint it is reasonable that the model follows a
Vasicek/shot-noise process under P as well as under Q, of course with different
parameters.

We assume constant θ, i.e. no seasonality. The seasonalities have been
discussed deeply in the literature, compare for example Lucia & Schwartz
(2002), Cartea & Figueroa (2005) or Geman & Roncoroni (2006). As noted in
Geman & Roncoroni (2006), it might be profitable to choose a non-constant
λ.

In Figure 2 we give several paths of the proposed model under the speci-
fications in (1) and (2). It is clearly seen that the shot-noise model is mean-
reverting (in this case to the constant level θ = 20) and the spikes capture the
empirically observed up-and-down shape.

In Figure 3 we give examples of computed futures price which illustrate
the large variety of shapes which can be captured by the proposed model.
Here we use θ(t) = ω0 + sin(ω1t) which in turn leads to the wavy structure
of the futures curves. The left picture gives an example of a decreasing term
structure. This is due to the different diffusion levels D0. Note that the effect
of F̃ , thus the effect of past spikes declines rapidly due to the fast decay rate
of the shot noise. Therefore the influence of a high spot electricity due to a
spike on the futures curve is quite low, as it should be. The right plot shows
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κ θ σ a, b λ φγ Y =

0.5 20 20 40 4 0.5(1 + e−0.05c) 10 + 5 ∗ t2, t ∼ t3

Fig. 2. Simulations of the proposed shot-noise process over a horizon of 5 years.
The parameters are as given above. The jump height Yi ∼ 10 + 5 ∗ Ỹ 2

i , where Ỹi are
i.i.d. t-distributed with 3 degrees of freedom. Note that this specification does not
include any seasonalities.

an example of an increasing term structure. This is due to an increasing mean
reversion level, such that the spot prices are expected to increase and therefore
also the futures.
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Fig. 3. Computed futures prices F (0, T, ∆) with ∆ = 1 month for the model as in
Figure 2, but with seasonality of the type θ(t) = ω0 + sin(ω1t). Maturity T varies
from 0 to 5 years. Left: futures price for varying D0 = 5, 10, . . . , 30. Right: futures
price for varying ω0 = 0.02, . . . , 0.1.

4 Estimation

One of the main points is of course estimation of the proposed model from
historical data. This sections explores the use of the EM-algorithm for esti-
mating shot-noise processes. The estimation of seasonalities is quite standard
and we refer to Hylleberg (1992) for further reading. It therefore remains to
estimate the shot-noise as well as the diffusive part; a plot of the data after
removal of seasonalities is given in Figure 4. We first give a short outline of
the EM-algorithm in our setting, and provide the estimation results on daily
data provided by the EEX8. Note that estimation always takes place under
the real-world measure P.

4.1 The EM-algorithm

Consider a pair of r.v. X = (Y, Z), Y ∈ Rn, Z ∈ Rm. Think of Y as observable
quantities, and Z of unobservable quantities. The aim is to estimate the dis-
tribution of Y w.r.t. a parametric family {fY (·; φ) : φ ∈ Θ ⊂ Rd}. However,
the ML-estimate of Y might not always be at hand, such that we need to

8 EEX- European Energy Exchange, www.eex.de
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Fig. 4. The spot prices of energy (base load) after removal of seasonalities. Compare
also Figure 1.

make use of Z. The EM-algorithm maximizes the density of X = (Y, Z) w.r.t.
the distribution of Z which is iteratively improved.

To this, let

L(φ; φ̃) := Eφ̃

(

ln fX(y, z; φ)|Y = y
)

=

∫

ln fX(y, z; φ) fZ|Y (z|y; φ̃)dz.

By Bayes’ rule we are able to compute the conditional density of Z given Y :

fZ|Y (z|Y ; φ) ∝ fY |Z(y|z; φ) fZ(z; φ).

With this notation at hand we are able to state the EM-algorithm. Fix an
initial value φ0. The iteration φk → φk+1 consists of two steps:

E-Step Compute L(φ; φk)
M-Step Choose φk+1 as maximizer of L(φ; φk):

φk+1 := arg max
φ∈Θ

L(φ; φk).

These steps are repeated until |fY (φk+1) − fY (φk)| < ǫ.
Of course, the computation of L(φ; φk) might be far from trivial depending

on the considered model. For a large number of examples and applications we
refer to McLachlan & Krishnan (1997). The convergence of the EM-algorithm
is proved in Wu (1983).
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4.2 Application to the proposed model

The application of the EM-algorithm to the proposed model is done as follows.
We consider Example 1 and are interested in estimating the parameter vector
φ = (κ, σ, a, b, c, λ, pγ)⊤ and we assume that the distribution of Y1 is described
by a parameter c, i.e. Y1 ∼ fY (·; c). The observation consists of spot prices9,
for which we write S = (S1, . . . , Sn). Meanwhile Si is a sum of a diffusive
part and a shot-noise part, s.t. Si = Di + Ji. In the formulation of the EM-
algorithm we therefore consider X = (S, N, J), with Nt =

∑

τi≤t. Note that
S is observable and N, J are not. Clearly, D = S − J .

We make the assumption that jumps occur directly at the considered time
points and at a specific time point at most one jump occurs. This is reasonable
if the chosen time grid is fine enough. Denote the time step by ∆. To compute
the likelihood function L it is sufficient to have the common density of S, N
and J . Due to the dynamic nature of the processes we compute the density
iteratively by

fXn
=

n
∏

i=1

fXi|Xi−1,...,X1
(xi|xi−1, . . . , x1).

First, observe that the Euler discretisation of (2) immediately gives that

Di|Di−1 ∼ N (Di−1(1 − κ∆), σ2∆).

Second, as N is a Poisson(λ)-process, we have that

P(Ni = Ni−1|Ni−1) = exp(−λ∆).

As the third and last step we give the distribution of J given N . Note that the
process is piecewise deterministic. The process J is not Markovian if a 6= 0.
In the literature techniques for piecewise deterministic Markov processes have
been applied to shot-noise processes of this type, compare Dassios & Jang
(2003). We treat the two cases separately.

Markovian case

Assume that a = 0. Then J is Markovian. Note that Ji is a deterministic
function of Ji−1 if no jump occurs, as in this case Ji = Ji−1 exp(−b∆). Oth-
erwise, if a jump occurred at time i, which is equivalent to Ni > Ni−1, then
Ji = Ji−1 exp(−b∆) + Y·, where the Y· are i.i.d. with density fY . We obtain

dfJi|Ji−1
(ji) =

{

δ{ji=ji−1 exp(−b∆)}, if Ni = Ni−1

fY

(

ji − ji−1 exp(−b∆)
)

dji, otherwise.

9 Formally, we of course observe data on a certain time scale t1, . . . , tn such that the
observations are St1 , . . . , Stn , which we do not consider for expository purposes.
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Non-Markovian case

If a is not zero, the case is more complicated. We just consider the case of
Example 1, more general cases following similarly. Now we have to distinguish
more cases. To begin with, note that there are two kinds of jumps. Jumps,
where also γ· = 0 (which we call jumps of type 1) and jumps where γ· = γ̃
(called jumps of type 2). We additionally assume that γ̃ is sufficiently small
such that we may neglect two jumps of type 2 in any interval of length up to
γ̃. This leads to the following cases: first, if no jump of type 1 occurred at i
and the last jump of type 2 is before i− γ̃. Then Ji = Ji−1 exp(−b∆). Second,
if a jump of type 1 occurred at i, hence Ji = Ji−1 exp(−b∆) + Y·. Third, if a
jump of type 2 occurred at j ∈ {i− γ̃, . . . , i}. Then Ji = Jj exp(−b∆(i− j))+
Y· exp(a∆(i − j)). Summarizing we obtain that dfJi|Ji−1

(ji) equals























fY

(

ji − ji−1 exp(−b∆)
)

dji, if Ni > Ni−1 and γNi
= 0

fY

(

(

ji − ji−1 exp(−b∆)
)

exp(−a∆)
)

dji if Ni > Ni−1 and γNi
= γ̃

δ{ji=jj exp(−b∆(i−j))+YNj
exp(a∆(i−j))} if Ni = Nj > Nj−1, γNj

= γ̃

δ{ji=ji−1 exp(−b∆)}, otherwise.

With the above densities at hand the EM-algorithm is easily implemented.
In the following section we apply the suggested method to electricity prices
obtained from the EEX.

4.3 Estimation of the model on EEX data

We directly work on data where the seasonalities have been removed with
standard methods, to illustrate the applicability of the method. A full statis-
tical analysis and comparison with other models is beyond the scope of the
article and will be pursued in future work (Reiche & Schmidt (2007)).

Parameter κ σ σY µY π1 π2 π3 c

Estimate 0.2865 4.5762 60.34 17.4122 0.838 0.054 0.108 0.95

Table 1. Estimation results for the shot-noise model. See the text for details.

In Figure 5 the analysed data is plotted as well as the filtered shot-noise
parts. The graph on the top shows the data decomposed in the diffusive part
(lines) as well as the shot-noise part (circles). The graph on the bottom shows
the shot-noise part only. As there are negative as well as positive jumps in the
time series we assume that the jumps Yi are normally distributed with mean
µY and standard deviation σY .

For simplicity we consider the case with pγ = 0 only. A further simplifica-
tion speeds up the estimation process significantly: assuming that the decay
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Fig. 5. Filtered shot-noise process from electricity data. The data consists of spot
prices for base load from the European Energy Exchange, Leipzig.

rate c is high enough (which is reasonable as the intention is to model extreme
spikes by the shot-noise part) the effect of a jump is negligible after a small
number of time steps. Then the diffusive and the jump part can be treated in
one step distinguishing three cases: first, no jump occurs (exponential decay
with rate κ); second, a jump occurred (exponential decay plus jump); third, a
small time interval after the jump (exponential decay at rate κ of the diffusive
part plus exponential decay at rate c of the jump part). Denote the probabil-
ities to be in either case by π1, π2 and π3, respectively. The estimation results
are given in Table 1. π̂1 = 0.838, which corresponds to a jump intensity of
0.77, i.e. an average number of 13 jumps per year. In particular in the end
of 2006 and the beginning of 2007 a large number of spikes were identified.
The volatility of the diffusive part, σ = 4.57, shows the high variation in the
data set. The standard deviation of the jumps, σY = 60.34, is of course much
higher, reflecting the extreme shocks captured by the shot-noise part. Finally,
the decay rate of the jump part, c = 0.95, shows that the shot-noise part
indeed drifts back very fast after occurring jumps.
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Of course, the above analysis mainly suffices for an illustration of the con-
cept and shows applicability of the proposed model as well as the estimation
procedure. A deeper statistical analysis as well as a comparison to other mod-
els will be covered in Reiche & Schmidt (2007).

5 Conclusion

This paper introduces a new model for spot electricity prices which easily cap-
tures the typical properties of electricity prices, namely seasonalities, extreme
spikes and stochastic mean reversion. Moreover, the model allows for closed-
form solutions of futures prices. Due to the flexibility of the model a large
variety of shapes for the term structure of futures prices can be captured. It
is shown how to use the EM-algorithm for statistical estimation of the model.
The model is estimated using data from the European Energy Exchange.
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Vasiček, O. (1977), ‘An equilibrium characterization of the term structure’, Journal
of Financial Economics 5, 177–188.

Weron, R. (2005), ‘Heavy tails and electricity prices’, The Deutsche Bundesbank’s
2005 Annual Fall Conference (Eltville) .

Wu, C. F. J. (1983), ‘On the convergence properties of the EM algorithm’, The
Annals of Statistics 11, 95–103.


	Modelling Energy Markets with Extreme Spikes
	Thorsten Schmidt

