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We consider a firm-value model similar to the one proposed by Black and Cox (1976).
Instead of assuming a constant and known default boundary, the default boundary is
an unobserved stochastic process. This process has a Brownian component, reflecting
the influence of uncertain effects on the precise timing of the default, and a jump
component, which relates to abrupt changes in the policy of the company, exogenous
events or changes in the debt structure. Interestingly, this setup admits a default
intensity, so the reduced form methodology can be applied.
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1 Introduction

The seminal works Black and Scholes (1973) and Merton (1974) introduced the first structural
models describing the default risk3 of companies. This paper belongs to the class of first-passage
time models, pioneered by Black and Cox (1976), where default of a company is announced at
the first time when the firm-value falls below a certain boundary. It has been shown by Leland
and Toft (1996) that under certain assumptions this behaviour is optimal for the company owner.
However, in these models it is a fundamental assumption that investors have complete information
on the firm’s asset value as well as on the default boundary. In fact, usually investors do not
have complete information and there are several approaches which deal with this issue. Most
researchers concentrate on first-passage time models. Duffie and Lando (2001) consider the case,
where investors estimate the firm’s asset value from noisy accounting reports. Coculescu, Geman,
and Jeanblanc (2006) consider a model where investors observe a correlated index and Frey and
Schmidt (2006) filter the asset value from discretely observed news. In contrast to these filtering
approaches, there is a different branch of research where the investors have incomplete information
of either firm’s asset value or default barrier (or both), but no additional information. This results
in a class of highly tractable models. For example, Giesecke (2006) considers the case where the
firm-value or default barrier (or both) may not be observed, while in Giesecke and Goldberg (2004)
the asset value is observed; both papers deal with the case of a time-independent default barrier.

This paper extends to the case where the default barrier is allowed to be a stochastic process. A
time-independent default barrier has serious drawbacks: if the firm’s asset value is observable, the
default boundary necessarily must be smaller than the minimum of the asset value on the considered
time interval, say [0, t]. If the asset value at t is far above its minimum, this implies credit spreads
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which are unrealistically small. Considering a default barrier which is a stochastic process clearly
remedies this. On the other side, structural models with a continuous asset value have difficulties
in explaining short-term credit spreads. While some models almost overcome this, see for example
Fouque, Sircar, and Sølna (2006), the model presented here is clearly able to solve this task as it
has a default intensity and hence a positive credit spread for arbitrary small maturities.

The information on the value of the firm’s assets is incorporated in two ways: on the one hand
we assume that the asset value is observed at discrete time points only. As in practice, investors
rely on frequent, but not continuous information this seems to be a reasonable assumption. The
main focus in this paper is on this kind of discrete information. On the other hand, we consider
the limit case, where the asset value would be monitored continuously and show convergence of the
discrete-time results.

The structure of the article is as follows: first, we formulate the problem in a quite general
framework and consider several special cases thereafter. One is the case where the firm’s asset
value and the default barrier follow geometric Brownian motions. Thereafter, we consider a default
barrier which incorporates a jump component and show how to handle this setting. Finally, a
small simulation study illustrates the results and shows typical credit spread curves implied by the
model.

2 The general framework

Consider a structural model, where the firm value is denoted by the process (Vt)t≥0. Following
Black and Cox (1976), it is assumed that company owners declare bankruptcy, if the firm value
falls below a certain boundary. This boundary is a stochastic process, denoted by (Dt)t≥0 with
V0 > D0. A typical interpretation of D is the level of the firm’s outstanding debt. As default of
the company occurs at the first time where V falls below D, the default time equals

τ = inf{t ≥ 0 : Vt ≤ Dt}.

We always denote the natural filtration of a stochastic process, say V , by FV , i.e. FV
t :=

σ(0 ≤ s ≤ t : Vs). If V − D is Markovian, the probability of V − D not hitting zero in the
interval (t, T ] given FV−D

t can always be written as a function of t, T and Vt − Dt and we set
H(−(Vt − Dt), t, T ) := P(infs∈(t,T ](Vs − Ds) > 0|FV−D

t ). Markovianity of V − D follows for
example from Markovianity of V and D and independence. Another example is a two-dimensional
Brownian motion with not necessarily independent components. First, we give results for general
H and later on show how to compute H in several special cases.

We assume that the firm value is observable, but the default boundary is not. Investors also
observe the default state of the company. The information available to investors is therefore repre-
sented by the filtration Gt := σ(s ∈ [0, t] : Vs,1{τ>s}).

Proposition 2.1. Assume V −D is Markovian and denote the conditional distribution of Dt given
Gt by µDt|Gt

=: µD
t . Then,

P
(
τ > T

∣∣ Gt

)
= 1{τ>t}

Vt∫

−∞
H(x− Vt, t, T ) µD

t (dx). (1)

Proof. As 1{τ>t} is measurable with respect to Gt, it can be taken out. It remains to consider
1{infs∈(t,T ](Vs−Ds)>0}. Set At := {infs∈[0,t](Vs −Ds) > 0}. Then

P
(

inf
s∈(t,T ]

(Vs −Ds) > 0
∣∣FV

t , At

)
= E

(
P
(

inf
s∈(t,T ]

(Vs −Ds) > 0
∣∣FV

t ∨ FV−D
t , At

)∣∣FV
t , At

)
.
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Because of the Markovian property the inner probability equals

P
(

inf
s∈(t,T ]

(Vs −Ds) > 0
∣∣FV

t ∨ FV−D
t , At

)
= P

(
inf

s∈(t,T ]
(Vs −Ds) > 0

∣∣Vt −Dt

)

= H(Dt − Vt, t, T ).

We therefore have

E
(
H(Dt − Vt, t, T )

∣∣FV
t , At

)
=

Vt∫

−∞
H(x− Vt, t, T ) µD

t (dx),

as the integrand is zero on {Dt > Vt}. ¥

For applications to credit risk it is an important question, if this model admits a default intensity.

Proposition 2.2. Under the above assumptions the default intensity, if it exists, on {τ > t} is
given by

λt = − lim
T→t

Vt∫

−∞

∂

∂T
H(x− Vt, t, T ) µD

t (dx). (2)

Proof. By results of Aven (1985) the default intensity equals, if it exists,

λt = − ∂

∂T

∣∣∣
T=t

lnP(τ > T
∣∣ Gt).

Then, since we are considering the set {τ > t} only and P
(
τ > t

∣∣ Gt

)
= 1,

λt = − ∂

∂T

∣∣∣
T=t
P
(
τ > T

∣∣ Gt

)

= − lim
T→t

lim
h→0

Vt∫

−∞

H(x− Vt, t, T + h)−H(x− Vt, t, T )
h

µD
t (dx).

Recall, that H(·, t, T ) is the probability of not hitting in the interval (t, T ] and therefore for h > 0
we have that H(·, t, t + h) ≤ H(·, t, t). Using monotone convergence we conclude that

λt = − lim
T→t

Vt∫

−∞

∂

∂T
H(x− Vt, t, T ) µD

t (dx). ¥

In the last equation the interchange of limit and integration is typically not allowed, as will be
seen in the later examples. In the case where D is time-independent and V is a geometric Brownian
motion an intensity does not exist, as shown in Giesecke (2006). This happens due to the fact that
a default may occur only when V is at its running minimum. Therefore the compensator of 1{τ>t}
is not absolutely continuous and hence its derivative, the default intensity, does exist.

Remark 2.3. Models where D is time-independent have difficulties if the firm’s value decreases and
thereafter rises substantially, such that V is far above its running minimum. In this case credit
spreads for small maturities are too small, as may be seen in Figure 2 in Giesecke (2006). See
also Schönbucher (2003), Section 9.6 for a discussion. Letting D be a stochastic process, and in
particular one admitting steep upward rises, clearly helps to overcome this drawback. This is also
reflected in the existence of a default intensity in the latter models. The simulations in Section 5
illustrate this achievement of the chosen model class.
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3 The Brownian case

In the structural model considered by Black and Cox (1976) the firm value follows a geometric
Brownian motion. Taking logarithms, one directly arrives at a Brownian motion with drift where
default refers to hitting an affine barrier. For simplicity, we consider below the case where D and V
are Brownian motions. The case with geometric Brownian motions is a consequence of the following
observation: if BV and B are independent Brownian motions, then

P
(

inf
s∈[0,t]

(
V0 exp(BV

s + µV s)− exp(Bs + µs)
)

> 0
)

= P
(

inf
s∈[0,t]

(
BV

s + Bs + (µV − µ)s + ln
V0

D0

)
> 0

)

This claim follows from

inf
s∈[0,t]

(
V0 exp(BV

s + µV s)−D0 exp(Bs + µs)
)

> 0

⇔ V0 exp(BV
s + µV s) > D0 exp(Bs + µs), ∀s ∈ [0, t]

⇔ ln
V0

D0
+ BV

s + Bs + (µV − µ)s > 0, ∀s ∈ [0, t]

⇔ inf
s∈[0,t]

(
BV

s + Bs + (µV − µ)s + ln
V0

D0

)
> 0.

3.1 Observations at discrete time points

In this section we consider a setting where the firm’s value of the company is observed only at
discrete time points. On the one hand, this is very much in line with practice, where investors do
not have full access to the firm’s asset value and rely on frequent reports from analysts or accounting
reports. On the other hand, we show in Proposition 3.5 that the conditional distribution based on
discretely monitored information converges to the continuously monitored one. Thus the results
in this section can also be used as an approximation for a model with continuous information;
note that in the continuous case the conditional distribution of V can not be computed in a closed
form. The following results give the conditional distribution of V and, as already mentioned, this
is sufficient to compute the default probabilities.

In this section we throughout make the following assumption:

Assumption 3.1. BV and B are two independent standard Brownian motions. The process V is
given by Vt = v0 + σV BV

t , σV > 0 and v0 > 0 and Dt = σDBt + g(t) with σD > 0, where g is a
twice continuously differentiable function.

The function g refers to the (expected) level of debt at time t. The debt level, or the default
boundary, thus consists of a systematic component g and a random (unobserved) component σDB.
The default happens at the first time when V hits D, i.e. τ = inf{s ≥ 0 : Vs = Ds}.

Furthermore, we fix a current time point t and assume that the investors observe V only at
discrete points in time; a default, however, is immediately announced. More precisely, consider
n ∈ N and let ti = it2−n, i = 0, . . . , 2n. The investor information is

Gn
t = σ

(
Vti : ti ≤ t,1{τ>s} : 0 ≤ s ≤ t

)
.

We are then interested in the default probability P
(
τ > T

∣∣ Gn
t

)
. As a first step, we analyze

P
(
τ > T

∣∣ Gt

)
. Since the boundary is no longer affine this probability can not be computed in a

closed form.

In the following we need to consider the intervals [0, t] and (t, t + ∆]. t is current time. The first
interval represents the history, where information was accumulated. The second interval refers to
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the future time. We want to estimate the conditional distribution of D at time t + ∆ (required
e.g. to price corporate securities). The discrete time points in the first interval are denoted by ti,
while the time points in the future time interval are denoted by t̃i. Denote the distribution of Dt

conditioned on Gn
t by µD,n

t .

Proposition 3.2. For ∆, t > 0, let t̃i := t + i∆2−n, i = 0, . . . , 2n and gn be the piecewise linear
function with gn(t̃i) = g(t̃i). Then, with σ :=

√
(σV )2 + (σD)2, we have on {τ > t}

P
(

inf
s∈(t,T ]

(Vs − (σDBs + gn(s))) > 0
∣∣ Gn

t

)
=

Vt∫

−∞
Hn

(
gn(·)− g(t) + x− Vt)

)
µD,n

t (dx), (3)

where Hn is given by

Hn(ĝ) := E

(
2n−1∏

i=0

pn

(
ĝ(t̃i), ĝ(t̃i+1);Bt̃i

, Bt̃i+1

))
,

with pn(g1, g2; x1, x2) = 1− exp
(
− 2(x1− g1

σ
)+(x2− g2

σ
)+

2−n

)
.

Hn(ĝ) is the probability of a Brownian motion with volatility σ staying above ĝ in [t, t + ∆].
Note that pn is the probability of a Brownian bridge (in this case a Brownian motion with fixed
endpoints) staying above an affine boundary. If g itself is a piecewise linear function, the above
formula (3), of course, directly gives the default probability. From the proof (given below) it is
obvious that

P
(

inf
s∈(t,T ]

(Vs − (σDBs + gn(s))) > 0
∣∣ Gt

)
=

Vt∫

−∞
Hn(x− Vt, T − t, σ) µD

t (dx).

Proof. First,
{

inf
s∈(t,T ]

(Vs − (σDBs + gn(s))) > 0
}

=
{

inf
s∈(t,T ]

(Vs − Vt − σD(Bs −Bt)− (gn(s)− g(t))) > Dt − Vt

}

Note, that Vs−Vt−σD(Bs−Bt) = σV (BV
s −BV

t )−σD(Bs−Bt) is a Gaussian process, independent
of Vt and Dt, which is equivalent (in distribution) to σB. Hence, we have

P
(

inf
s∈(t,T ]

(Vs − Vt − σD(Bs −Bt)− (gn(s)− g(t))) > Dt − Vt|Dt = x
)

= P
(

inf
s∈(t,T ]

(
σBs −

(
gn(s)− g(t) + x− Vt

))
>

)
.

This consideration together with the well-known formula for boundary crossing probabilities (see
e.g. Borovkov and Novikov (2005), Equation (8), or Wang and Pötzelberger (1997)) implies Propo-
sition 3.2. ¥

Convergence of Hn when gn converges to g is shown in Borovkov and Novikov (2005) as well as
convergence rates are given (as being of order O(n−2) ). To obtain a default probability the next
step is a computation of conditional distribution of Vt −Dt, i.e. µD,n.



3 The Brownian case 6

The conditional distribution. To determine the conditional distribution we study the cumulative
distribution function. For x < Vt,

P
(
Dt ≤ x

∣∣ Gn
t

)
=
P
(
Dt ≤ x, infs∈[0,t](Vs −Ds) > 0

∣∣ FV,n
t

)

P
(

infs∈[0,t](Vs −Ds) > 0
∣∣ FV,n

t

) (4)

where FV,n
t := σ(Vti : i = 0, . . . , 2−n). First, we consider the numerator, the denominator is

obtained for x →∞.

This time we consider the interval [0, t] and approximate g and the observation therein. As in
practice financial data is observed at discrete time points, the results have its own value in this
respect. Denote Dn

t := σDBt + gn(t).

Proposition 3.3. For fixed t > 0 and n ∈ N, set ti = it2−n, i = 0, . . . , 2n. Then

P
(
Dn

t ≤ x, inf
s∈[0,t]

(Vs −Dn
s ) > 0

∣∣ Vt0 = v0, . . . , Vt2n = v2n

)

= E

(
1{Bt≤x−g(t)

σD }

2n−1∏

i=0

pn

(
g(ti), g(ti+1);

vi − σDBti

σ
,
vi+1 − σDBti+1

σ

))
. (5)

Proof. First, by definition, {Dn
t ≤ x} = {Bt ≤ x−g(t)

σD }. Next, observe that

{ inf
s∈[0,t]

(Vs −Dn
s ) > 0} = { inf

s∈[0,t]

(
σV BV

s − σDBs − gn(s)
)

> 0}.

Using the tower property of conditional expectations, we obtain that for any A ∈ σ(Bt),

P
(

A, inf
s∈[0,t]

(
σV BV

s − σDBs − gn(s)
)

> 0
∣∣ Fn

t

)

= E
[
P

(
A, inf

s∈[0,t]

(
σV BV

s − σDBs − gn(s)
)

> 0
∣∣ Bti , B

V
ti : 0 ≤ i ≤ 2n

) ∣∣ Fn
t

]

= E

[
1A

2n−1∏

i=0

pn

(
g(ti), g(ti+1);

σV BV
ti − σDBti

σ
,
σV BV

ti+1
− σDBti+1

σ

)]
,

where the last equality follows again from Equation (8) in Borovkov and Novikov (2005). Using
the independence of B and BV we arrive at (5). ¥

The formula (5) may be evaluated using an 2n-fold integral over the normal distribution or
alternatively, Monte Carlo methods. For the computation as 2n-fold integral we give a recursive
formulation.

Proposition 3.4. Consider a piecewise linear function g whose discontinuity points are ti =
it2−n = i∆, i = 0, . . . , 2n. Let a = a(y) := 2

∆σ

(
Vt − σDy − g(t)

)+ and

E2n(x, y, g) := Φ
(x− g(t)− σDy

σD
√

∆

)
− e−a(Vt−σDy−g(t))+

a2(σD)2∆
2 Φ

(x− σDy − g(t)
σD
√

∆
− aσD

√
∆

σ

)

as well as, for i = 0, . . . , 2n − 2,

Ei+1(x, y, g) :=
∫

p
(
g(ti), g(ti+1);

Vti − σDy

σ
,
Vti+1 − σD(y +

√
∆z)

σ

)
· Ei+2(x, z

√
∆ + y, g)φ(z)dz,

where p(g1, g2; x1, x2) = 1− exp
(
− 2(x1− g1

σ
)+(x2− g2

σ
)+

∆

)
. Then

P
(
D0 + σDBt + g(t) ≤ x, inf

s∈[0,t]
(D0 + σDBs + g(s)− Vs) > 0|FV,n

t

)
= E1(x, 0, g + D0).
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The proof is given in the appendix.

Convergence. Set
P (t, g, x) := P

(
Dt ≤ x, inf

s∈[0,t]
(Vs −Ds) > 0

∣∣ FV
t

)
.

We approximate P (t, g, x) by

Pn(t, gn, x) := P
(
σDBt + gn(t) ≤ x, inf

s∈[0,t]
(Vs − (σDBs + gn(s))) > 0

∣∣ FV,n
t

)
= (5),

where gn was the piecewise linear approximation of g with g(ti) = gn(ti). The following result gives
the desired convergence.

Proposition 3.5. Assume that Assumption 3.1 is in force and fix t > 0. For ti = tni := it2−n, i =
0, . . . , 2n and the piecewise linear interpolation gn of g with g(ti) = gn(ti) and for x ∈ R we have
that

Pn(t, gn, x) −−−→
n→∞ P (t, g, x)

almost surely.

Proof. The proof consists of two parts. First, we show that Pn(t, g, x) converges to P (t, g, x) almost
surely and then we estimate the difference between Pn(t, gn, x) and Pn(t, g, x).

To this, note that FV,n
t is an increasing sequence with FV,n

t → FV
t . Then Pn(t, g, x) is a regular

martingale. Hence, by Lévy ’s theorem4 Pn(t, g, x) → P∞(t, g, x) = P (t, g, x) with probability one.

For the second part we use the Girsanov theorem to estimate the difference Pn(t, gn, x) −
Pn(t, g, x). For any A ∈ FV

t it holds that

δn := P
(
Dt ≤ x, inf

s∈[0,t]
(Vs −Ds) > 0|A)− P(σDBt + gn(t) ≤ x, inf

s∈[0,t]
{Vs − (σDBs + gn(s))} > 0|A)

=
1

P(A)
E

(
(Zt − 1)1{σDBt+gn(t)≤x,infs∈[0,t](Vs−(σDBs+gn(s)))>0}∩A

)
,

where the density Zt = Z̃t/E(Z̃t) with

Z̃t := exp
( t∫

0

g′(s)− g′n(s)
σD

dBs

)
.

The density is used for a change to an equivalent measure P̃, such that (σDBs + gn(s))0≤s≤t =
(σDB̃s + g(s))0≤s≤t and B̃ is a Brownian motion under P̃. Then

|δn| ≤ 1
P(A)

E
(
1A |Zt − 1|

)
= E

(
|Zt − 1|

)
,

as A and Z are independent. An estimate of this expression may be found in Novikov, Frishling,
and Kordzakhia (1999) and we obtain

E
(
|Zt − 1|

)
≤ 1√

2π

( t∫

0

(g′(s)− g′n(s))2

σ2
D

ds

)1/2

.

4See, e.g. Shiryaev (1996, Theorem VII.4.3).
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For a linear interpolation with step size ∆ = 2−n we have that

sup
0≤s≤t

|g′(s)− g′n(s)| ≤ σD C∆2,

where C is a generic constant and we used that g is twice continuously differentiable. This implies
that |Pn(t, gn, x) − Pn(t, g, x)| ≤ C∆3/2 = C2−3n/2 and, as Pn(t, g, x) → P (t, g, x) (almost surely)
we obtain that with n →∞

Pn(t, gn, x) → P (t, g, x)

almost surely. ¥

4 Including Jumps

Up to now, D was a (geometric) Brownian motion with deterministic drift which excludes abrupt
and random changes. In this section we relax the conditions and incorporate a jump-like behavior.
Basically, the idea is to have a random drift g. However, g will still be piecewise linear to stay in
the up to now developed framework.

Assumption 4.1. Consider a Poisson process Ñ with intensity l and jump times (τi)i≥1. As-
sume that (Ji)i≥1 are independent, identically distributed (i.i.d.) random variables with cumulative
distribution function FJ and E(J1) < ∞. Moreover, (Ji) are independent of Ñ ,B and BV .

Fix ε > 0 and set h(t) = min(t,ε)
ε 1{t≥0}. Then h is piecewise linear and so is the process M

defined by

Mt :=
∑

i≥1

Jih(t− τi) =
∑

τi≤t

Jih(t− τi). (6)

The process M resembles so-called shot-noise processes, where h is typically of the form h(t) =
exp(−at)1{t≥0}; see Schmidt and Stute (2007) for more details and references. It is straightforward
to include a time inhomogeneous intensity or to consider a Cox process instead of the Poisson
process, which we do not pursue here for notational simplicity.

4.1 First hitting time distribution

We derive the probability of a Brownian motion B hitting M in the time interval [0, T ]. Write
short dµk

J,u(mk) for µk
J,u(dj1, . . . , djk, du1, . . . , duk) := FJ(dj1) · · ·FJ(djk) du1 · · · duk. µk

J,u relates to
the distribution of the jumps and the jump times, conditioned on having k jumps.

For a piecewise linear function g denote by N(g) := P(infs∈[0,t](Bs − gs) > 0). If the non-
differentiable points of g are t1 < · · · < tn then

N(g) = E
( n−1∏

i=1

(
1− exp

(−2(Bti − g(ti))+(Bti+1 − g(ti+1))+

ti+1 − ti

))
,

(compare Borovkov and Novikov (2005)). A numerical scheme for computing N was introduced in
Proposition 3.4. Using N , we are able to compute the probability that B stays above M in the
interval [0, t].

Proposition 4.2. Fix t > 0 and set for 0 ≤ s ≤ t

Mk(s,mk) = Mk(s, j1, . . . , jk, u1, . . . , uk) :=
k∑

i=1

jih(s− tui).
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Under Assumption 4.1, the following holds for any x < B0

P
(

inf
s∈[0,t]

(Bs −Ms) ≥ x
)

=
∞∑

k=0

e−lt (lt)
k

k!

∫

[0,1]k×Rk

N
(
Mk(·,mk) + x

)
dµk

J,u(mk).

Proof. Note that a Poisson process and a Brownian motion adapted to the same filtration are
necessarily independent, so Ñ , B and BV are mutually independent. We condition on the number
of jumps in the interval, such that

P
(

inf
s∈[0,t]

(Bs −Ms) ≥ x
)

=
∞∑

k=0

P
(
Ñt = k, inf

s∈[0,t]
(Bs −Ms − x) ≥ 0

)
. (7)

The conditional distribution of the τi’s can be replaced by an unconditional one5, because

L
(
τÑ1

, . . . , τÑt

∣∣Ñt = k
)

= L
(
η1:k, . . . , ηk:k

)
,

where the ηi are i.i.d. U [0, t]. Hence,

(7) =
∞∑

k=0

e−lt (lt)
k

k!
P
(

inf
s∈[0,t]

(
Bs −

k∑

i=1

Jih(s− ηi:k)− x
)
≥ 0

)
.

As the Ji are interchangeable, L (
∑k

i=1 Jih(s − ηi:k)) = L (
∑k

i=1 Jih(s − ηi)). Now we condition
on the jump times and the jump sizes. Then

P
(

inf
s∈[0,t]

(
Bs −

k∑

i=1

Jih(s− ηi)− x
)
≥ 0

)

=
∫

[0,1]k×Rk

N
( k∑

i=1

jih(· − tui) + x
)

FJ(dj1) · · ·FJ(djk) du1 · · · duk

=
∫

[0,1]k×Rk

N
(
Mk(·,mk) + x

)
dµk

J,u(mk). ¥

For practical purposes, it is important to note that for small l the series converges very fast, as
the integral is bounded by 1.

The next step is to consider the distribution of the first hitting time if only discrete information
is available, i.e. to consider the case where we condition on FV,n

t . To this, note that

P
(

inf
s∈[0,t]

(Vs − σDBs − g(s)) > 0
∣∣ FV,n

t

)
= E1(∞,

V0

σ
, g) =: Nn(g). (8)

Following the methodology outlined above we directly obtain (recall that g was piecewise linear)

P
(

inf
s∈[0,t]

(Vs − σDBs − g(s)−M) ≥ x
)

=
∞∑

k=0

e−lt (lt)
k

k!

∫

[0,1]k×Rk

Nn

(
g + Mk(·,mk)

)
dµk

J,u(mk).

5See Rolski, Schmidli, Schmidt, and Teugels (1999), p.502. The ηi:k denote the order statistics of ηi, that is the ηi

are ordered, such that η1:k ≤ η2:k ≤ · · · ≤ ηk:k. L denotes the law of a random variable.
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4.2 The conditional distribution

In this section we turn to the question of the conditional distribution of D, when Dt = σDBt +
g(t) + Mt where g(t) is piecewise linear and M is as in (6). The main task is to compute

P
(
σDBt + g(t) + Mt ≤ x, inf

s∈[0,t]
(Vs − σDBs − g(s)−Ms) > 0

∣∣ FV,n
t

)
. (9)

Define the conditional probability of not hitting the default boundary in the interval [t, T ] by

N t,T (g) := P
(

inf
s∈[t,T ]

(σ(Bs −Bt)− (Ms −Mt)− g(s)) > 0
)
.

From previous reasoning it is straightforward that

N t,T (g) =
∞∑

k=0

e−l(T−t) (l(T − t))k

k!

∫

[0,1]k×Rk

N

(
Mk(·,mk) + g

σ

)
dµk

J,u(mk).

Theorem 4.3. Under Assumption 4.1 the probability of default is

P
(
τ > T

∣∣ Gn
t

)
=
1{τ>t}
Nn(g)

Vt∫

−∞
N t,T

(
g(·) + x− Vt − g(t)

))
fDt|Gn

t
(x) dx,

where the density fDt|Gn
t
(x) is given in (11).

Proof. First we derive the conditional density f
Dt|FV,n

t
(x). Consider a realization of (Ms)0≤s≤t with

k jumps, denoted by Mk or
(∑k

i=1 jih(· − tui)
)
, respectively. Then g + Mk is a piecewise linear

function and thus the previously obtained results can be applied. Hence, conditional on k jumps
we need to consider

P
(
σDBt + Mk(t) + g(t) ≤ x, inf

s∈[0,t]
(Vs − σDDs −Mk

s − g(s)) > 0
∣∣ FV,n

t ,M = Mk
)

= E1(x,
D0

σD
,Mk + g),

where E1 was introduced in Proposition 3.4. Recall, that Nn(g) = E1(∞, V0/σ, g) as introduced in
(8). Therefore, we obtain by Bayes’ rule

P
(
σDBt + g(t) + M(t) ≤ x

∣∣ FV,n
t , At

)
=

∞∑

k=0

e−lt (lt)
k

k!

∫

[0,1]k×Rk

E1(x, V0
σ , g + Mk)

Nn(g + Mk)
dµk

J,u(mk). (10)

Again from Bayes’ rule we obtain that

fσDBt+ĝ(t)+Mt|Gn
t
(x) = Nn(g)−1f

σDBt+ĝ(t)+Mt|FV,n
t

(x).

Coming to the conditional density we have to derive (10) w.r.t. x. By dominated convergence we
obtain that the density equals

fσDBt+ĝ(t)+Mt|Gn
t
(x) = Nn(g)−1

∞∑

k=0

e−lt (lt)
k

k!

∫

[0,1]k×Rk

e1(x, V0
σ , g + Mk)

Nn(g + Mk)
dµk

J,u(mk), (11)
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where e1(x, y, g) is defined through the same iterative procedure as E1 except that

eN (x, y, ĝ) :=
1

σD
√

∆N

(
φ
(x− g(t)− σDy

σD
√

∆N

)

− e−an
vi+1−σDy−g(t)

σ
+

a2
n(σD)2∆N

2σ2 φ
(x− σDy − g(t)

σD
√

∆N
− anσD

√
∆N

σ

))
.

Second, we consider the conditional default probability. We have that

P(τ > T |Gn
t ) = 1{τ>t}E

(
P(τ > T |Gn

t , Dt)|Gn
t

)

and need to compute the inner probability. As a Brownian motion has independent increments,

P(τ > T |Gn
t , Dt) = P

(
inf

s∈(t,T ]
(Vs −Ds −Mk

s − g(s)) > 0
∣∣ FV,n

t , Dt

)

= P
(

inf
s∈(t,T ]

(Vs − Vt − σD(Bs −Bt)− (Ms −Mt)− g(s) + Vt − σDBt −Mt) > 0
∣∣ FV,n

t , Dt

)

= P
(

inf
s∈(t,T ]

(σ(Bs −Bt)− (Ms −Mt)− g(s) + Vt −Dt + g(t)) > 0
∣∣ FV,n

t , Dt

)

= N t,T
(
g(·) + Dt − Vt − g(t)

))

and we conclude. ¥

5 Simulations

In this section we will use some simulations to illustrate the obtained results and to examine typical
credit spread curves which are produced by the model. First, we consider the convergence of the
boundary crossing probabilities when a continuous boundary is approximated by a piecewise linear
one. Second, we analyze the conditional distribution of the default boundary in the setting with
observations of the firm’s asset value at discrete time points. Finally, we compute credit spreads
implied by the proposed model under a number of different specifications.

The boundary crossing probability Hn. As a first step we study the probability that a Brownian
motion with volatility σ stays above a given, piecewise linear boundary in the whole interval [0, 1],
Hn(ĝ), and its convergence to H(g) := P(infs∈[0,1](σBs − g(s)) > 0). The formula used is given
in Equation (3). We chose g(x) = (x − 0.5)2 − 0.75 and for n ∈ {0, 1, 2, 3, 4, 5, 10} we consider
ti = i2−n, i = 0, . . . , 2n; ĝ being the piecewise linear function which coincides with g on t0, . . . , tn.
Figure 1 illustrates the setting and the computed values of Hn are:

n σ 0 1 2 3 4 5 10

Hn(ĝ) 0.3 0.8668 0.6769 0.6307 0.6137 0.6101 0.6116 0.6099
Hn(ĝ) 0.5 0.6332 0.4693 0.4287 0.4177 0.4137 0.4157 0.4162

It is natural that increasing σ decreases the probability to stay above the barrier. Also lifting the
barrier would decrease this probability. Note that for n = 0, Hn(ĝ) = 1 − 2Φ(g(0)/σ) which is
0.8664 for σ = 0.3 and 0.6319 for σ = 0.5 such that we have a good match.

The results also show an increasing variance with increasing n. For example, with σ = 0.3
and 105 simulations we have the variances 0.0767, 0.1695, 0.1913, 0.2067, 0.2166, 0.2230, 0.6099 (n =
0, 1, . . . , 5, 10).
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Figure 1: Brownian motion B with volatility σ = 0.5 staying above the barrier g(x) = −(x−0.5)2−
0.2. The graph also shows ĝ0 and ĝ1.
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Figure 2: Two Brownian motions, both with volatility σD = σV = 0.3. The upper Brownian motion,
V is conditioned on V (ti) = g(ti), in the picture ti = i/2, i = 0, 1, 2 and g(x) = (x− 0.5)2 + 0.2.

The conditional distribution. In this paragraph we discuss the conditional distribution of D
given Fn

t , compare Equation (5). We consider the case where g = 0 and Vti = f(ti) with f(x) =
(x − 0.5)2 + 0.2. To retain comparability to the results from the previous paragraph, we chose
f = −g with g as above. Also, as previously, ti = i2−n, i = 0, . . . , 2n. An illustration of the setting
is given in Figure 2. First we consider P(infs∈[0,1](Vs −Ds) > 0|Vti = f(ti), i = 0, . . . , 2n), i.e. the
case where x = ∞ in (5). Note that this case corresponds exactly to the setting in the previous
paragraph. The results of the simulation are

n σ 0 1 2 3 4 5

P(infs∈[0,1](Vs −Ds) > 0|Fn
t ) 0.3 0.7714 0.5627 0.5376 0.5454 0.5615 0.5734

When we compare the boundary crossing probability Hn(ĝ) computed in the previous paragraph
with this results (giving the probability that D stayed below V , conditioned on Vti = f(ti)), we
observe that the boundary crossing probability Hn(ĝ) is always larger. This stems from the fact
that the Brownian motion V can depart from f(ti) at points excluding {ti : i = 0, . . . , 2n} (in
comparison to the fixed function g in Hn(ĝ)) and therefore the likelihood for V and D to meet
increases.

A second observation is that for n = 3 to n = 5 the conditional probability increases stronger
than Hn. This is because, for increasing n, V is tightened to more points an therefore has less
possibilities to hit D. For large n the conditional probability will become closer and closer to Hn.
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Figure 3: Left: Chosen upper barriers for D: fj(x) = cj(x − 0.5)2 + dj , where cj ∈ {1, 1.8, 3, 5}
and dj are s.t. fj(0) = 0.45. The straight line refers to n = 0 and the dots mark the information
for n = 1. Center/right: The conditional density according to (5); the density is zero above 0.45.
The observation Fn

t is Vti = fj(ti), ti = 0, . . . , 2n with j = 1 (center) and j = 2 (right).

As a second illustration we compute the conditional density implied by (4) (using, of course,
(5)) in the same setting as above. The result is given in Figure 3. To illustrate the effect of
different historical information, we condition on Vti = fj(ti) with fj(x) = cj(x− 0.5)2 + dj , where
c = (1, 1.8, 2.5, 3, 4) and d = (0.2, 0,−0.175,−0.3,−0.55). We show the resulting densities for cj = 1
and cj = 2 and different n. The most dramatic effect is when changing n from 0 to 1, because
this yields a strong restriction on possible paths of D. In particular in the middle graph, it can
be spotted that there is a positive probability being close to the right boundary (V1 = f(1)). This
corresponds with the existence of a default intensity. The right graph illustrates the strong impact
of a past observation of the firm value which was extremely low and thereafter rises substantially.

Credit spreads. Finally, we show possible credit spread curves implied by the model in the case
without jumps. First we consider the case where g = 0 and later g(x) = mx. Of course, a large
variety of different curves can be generated using more general g. Additionally, we assume r = 0
and consider zero recovery only.

For a defaultable bond B̄(t, T ) the credit spread over the default-free bond B(t, T ) is given by

Y (t, T ) :=
1

T − t
ln

B(t, T )
B̄(t, T )

.

Under zero recovery and zero interest rates B̄(t, T ) = Q(τ > T |Gt), where Q is a pricing measure.
From Equation (1) we easily obtain that

B̄(t, T ) = 1{τ>t}

Vt∫

−∞
H(Vt − x, t, T ) µD

t (dx).

As we consider the case where D and V are continuous and g = 0, we have 1 − H(x, t, T ) =
2Φ

(
x/
√

σ(T−t)
)
. For g(x) = mx, 1−H(x, t, T ) = Φ

(
x−m(T−t)/σ

√
(T−t)

)
+ e2xmΦ

(
x+m(T−t)/σ

√
(T−t)

)
.

The conditional distribution was already computed in the previous paragraph.

For the simulations we assume that current time is t = 1 and the past observation is of the
form Vti = fj(ti), ti = 0, . . . , 2n with fj(x) = cj(x − 0.5)2 + dj , where c = (1, 1.8, 2.5, 3, 4) and
d = (0.2, 0,−0.175,−0.3,−0.55). The functions fj are shown in the left of Figure 3. For n = 0
the information is the same for all j. Increasing j pulls the observation on V around 0.5 down.
In contrast to this, at 1 we always observe V1 = 0.45, such that the observation of V incorporates
a steep rise in the firm value. This in turn leaves an increasing freedom for the debt level, such
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that with higher j the company is less likely to default. This also implies that the company is
less likely to default in the near future, which corresponds with the observation that the density is
nearly zero around 0.45 in Figure 3 for n > 1. In Figure 4 the resulting credit spreads are shown
(left: j = 1, right: j = 2). With increasing j the spreads decrease, which reflects the smaller
probability of default. The credit spreads also decrease with n, which stems from the convexity of
fj , compare the left of Figure 3: a higher n leads to observations which restrict the possible paths
of D more heavily. The fact that the credit spreads at the short end are closer to zero for higher n
is a consequence of the specific choice of fj . The increasingly pronounced U -shape implies that the
default boundary D has typically more distance to V with increasing n. A hat-shaped boundary
would of course lead to more and more default risk in the short end.
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Figure 4: Credit spreads for a zero-recovery bonds (under r = 0) according to the information
scenarios Vti = fj(ti), ti = 0, . . . , 2n with j = 1 (left) and j = 2 (right).

In terms of calibration it is important to know which kind of spread curves can be produced by
the proposed model. A typical credit spread curve generated by our model is a concave function
with a hump in the middle. This leads to three types of spread curves which are also the standard
ones observed in the markets: flat (by generating a curve with a very small hump), increasing (by
shifting the hump very much to the right) and inverse, i.e. decreasing (by shifting the hump very
close to zero, such that the observed maturities just show the decreasing part). This is illustrated
in Figure 5. The impact of the volatility of V and D is illustrated in the right of Figure 5, smaller
volatility leads to decreasing default risk, i.e. to flattening of the credit spreads.
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Figure 5: Left: credit spreads for a zero-recovery bonds (under r = 0) according to the information
scenarios as above, with n = 2 and j = 1, 2, 3, 4. Right: credit spreads for different levels of
volatility. Here n = 2 and cj = 3.
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In the left of Figure 6 we consider the case where the observation is V0 = V1 = v with different
levels of v. A lower level of v increases the credit risk, which is clearly reflected in the curves: they
flatten with increasing v. Finally, in the right of Figure 6 we consider the case where g is not zero,
but linear: g(x) = mx. This introduces an additional degree of freedom in the modelling of credit
yield curves. Recall that g is the drift of the default boundary D. Increasing m therefore increases
credit risk, as reflected in the curves.
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Figure 6: Credit spreads for zero-recovery bonds under σD = 0.1, σV = 0.06, the observation
V0 = V1 = v and with g(x) = mx. Left: credit spreads for different levels of v, 0.3, 0.35, 0.4, 0.45
and m = 0.03. Right: credit spreads where v = 0.35 and g(x) = mx with m ∈ {0, 0.03, 0.05}.

Summarizing, the credit spread curves implied by the proposed model (under continuity of D and
V ) show the classical hump-structure characteristic for first-passage time models. However, through
the incomplete information approach additional degrees of freedom are achieved, for example the
left endpoint need not necessarily be zero. The model is able to produce increasing, almost flat
and decreasing credit spread curves.

6 Conclusion

This article proposes a generalization of several structural models with incomplete information.
Default is triggered by the firm value crossing a random barrier, which itself is allowed to be a
stochastic process. The default boundary incorporates a jump-like behavior. While the firm value
is observed, the default boundary is not. It is shown that under this assumption, generally a
default intensity exists and it is discussed how to compute it. This makes use of boundary crossing
probabilities for jump-diffusions. A main criticism of incomplete information models with time-
independent default boundary is remedied, namely that if the firm’s asset value is far above its
running minimum credit spreads are to small.

A Proofs

Proof of Proposition 3.4. We start by considering E2n , i.e. i = 2n−1. We write Ei(y) for Ei(x, y, g).
Assume first that D0 = 0. Our intention is to use iterated conditional expectations, such that for
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E2n we need to consider

E
(
1{Bt−Bti≤

x−g(t)

σD −Bti}
p
(
g(ti), g(t);

vi − σDBti

σ
,
vi+1 − σDBti − σD(Bt −Bti)

σ

) ∣∣ Bti = y

)
(12)

= Φ
(x− g(t)− σDy

σD
√

∆

)

− E
(
1{ξ≤x−g(t)−σDy

σD
√

∆
} exp

(
− 2

σ∆
(
vi − σDy − g(ti)

)+(
vi+1 − σDy − σDξ

√
∆− g(t)

)+
))

,

where ξ is standard normal and we conditioned on Vti = vi, i = 0, . . . , 2n. Observe that

1
σD
√

∆
min

(
x− g(t)− σDy; vi+1 − σDy − g(t)

)
=

x− σDy − g(t)
σD
√

∆
=: b.

With E(exp(αξ)1{ξ≤b}) = exp(α2/2)Φ(b− α) we obtain

(12) = Φ
(x− g(t)− σDy

σD
√

∆

)
− exp

(
−a(vi+1 − σDy − g(t)) +

a2(σD)2∆
2

)
Φ

(
b− aσD

√
∆

)
,

which is exactly E2n(x, y, g). The next step is to consider Ei+1, i < 2n− 1, i.e. we need to compute

E


1{Bt≤x−g(t)

σD }

2n−1∏

j=0

p
(
g(tj), g(tj+1);

vj − σDBtj

σ
,
vj+1 − σDBtj+1

σ

) ∣∣ Btj : 0 ≤ j ≤ i


 . (13)

Neglecting the measurable terms we obtain

(13) ∝ E


E2n(Bt2n−1

)
2n−2∏

j=i

pn

(
g(tj), g(tj+1);

vj − σDBtj

σ
,
vj+1 − σDBtj+1

σ

) ∣∣ Bti




= E

(
Ei+2(Bti+1) pn

(
g(ti), g(ti+1);

vj − σDBti

σ
,
vj+1 − σDBti+1

σ

) ∣∣ Bti

)
= Ei+1(Bti).

This gives the recursion and as B0 = 0 we arrive at

P
(
σDBt + g(t) ≤ x, inf

s∈[0,t]
(σDBs + g(s)− Vs) > 0|FV,n

t

)
= E1(x, 0, g).

If g is piecewise linear, so D0 + g is. Replacing g by D0 + g then gives the desired result. ¥

References

Aven, T. (1985). A theorem for determining the compensator of a counting process. 12 (1),
69–72.

Black, F. and J. C. Cox (1976). Valuing corporate securities: Some effects of bond indenture
provisions. Journal of Finance 31, 351–367.

Black, F. and M. Scholes (1973). The pricing of options and corporate liabilities. Journal of
Political Economy 81, 637–654.

Borovkov, K. and A. Novikov (2005). Explicit bounds for approximation rates for boundary
crossing probabilities for the Wiener process. Journal of Applied Probability 42, 82–92.

Coculescu, D., H. Geman, and M. Jeanblanc (2006). Valuation of default sensitive claims under
imperfect information. Working paper .

Duffie, D. and D. Lando (2001). Term structures of credit spreads with incomplete accounting
information. Econometrica 69, 633–664.



REFERENCES 17

Fouque, J.-P., R. Sircar, and K. Sølna (2006). Stochastic volatility effects on defaultable bonds.
Forthcoming in Applied Mathematical Finance.

Frey, R. and T. Schmidt (2006). Pricing corporate securities under noisy asset information.
Working paper .

Giesecke, K. (2004). Credit risk modeling and valuation: an introduction. In D. Shimko. Credit
Risk: Models and Management, Vol. 2 .

Giesecke, K. (2006). Default and information. Journal of Economic Dynamics and Con-
trol 30 (11), 2281–2303.

Giesecke, K. and L. Goldberg (2004). Forecasting default in the face of uncertainty. Journal of
Derivatives 12 (1), 14–25.

Lando, D. (2004). Credit Risk Modeling: Theory and Applications. Princeton University Press.
Princeton, New Jersey.

Leland, H. E. and K. Toft (1996). Optimal capital structure, endogenous bankruptcy, and the
term structure of credit spreads. Journal of Finance 51, 987–1019.

McNeil, A., R. Frey, and P. Embrechts (2005). Quantitative Risk Management: Concepts, Tech-
niques and Tools. Princeton University Press.

Merton, R. (1974). On the pricing of corporate debt: the risk structure of interest rates. Journal
of Finance 29, 449–470.

Novikov, A., V. Frishling, and N. Kordzakhia (1999). Approximations of boundary crossing
probabilities for a brownian motion. Journal of Applied Probability 36 (4), 1019 – 1030.

Rolski, T., H. Schmidli, V. Schmidt, and J. Teugels (1999). Stochastic Processes for Insurance
and Finance. John Wiley & Sons. New York.

Schmidt, T. and W. Stute (2004). Credit risk – a survey. Contemporary Mathematics 336, 75 –
115.

Schmidt, T. and W. Stute (2007). General shot-noise processes and the minimal martingale
measure. Statistics & Probability Letters 77, 1332–1338.
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