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In this article we propose and study a model for stock prices which allows
for shot-noise effects. This means that abrupt changes caused by jumps may
fade away as time goes by. This model is incomplete. We derive the minimal
martingale measure in discrete and continuous time and discuss the associated
hedging strategy. Finally, a simulation study is included to show that our model
is able to produce smile effects.
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1 Introduction

In financial markets information often comes as a surprise. This usually leads to abrupt
changes in stock prices, may it be upward or downward. Quite often such situations are
used by investors to adjust their portfolios. For example, an upward jump may lead to
profit-taking while a downward jump may encourage new investors to buy the asset. In each
case this results in a so-called shot-noise effect, i.e., as time passes by, the jump completely
or at least partially fades away.

A by now classical approach to incorporate jumps in a stock price model is via so-called
jump-diffusion models. See, e.g., Merton (1973). Here the price follows a diffusion process
interrupted by jumps. Since no fade-away-components are included, the effect of a jump
persists forever. As we have argued above this may be unrealistic so that shot-noise models
constitute useful extensions of jump diffusions. Viewed from another perspective, shot-noise
models build an efficient class of models to study market imperfections, such as overreaction
or irregular behaviour due to, for example, illiquidity.

As to credit-worthiness of a company shot-noise effects may arise due to incomplete in-
formation effects as pointed out by Collins-Dufresne et al. (2003). A prominent example is
Enron’s collapse followed by its bankruptcy.

Also, Klüppelberg and Kühn (2004) consider shot-noise models and show that as a limit
of shot-noise processes a fractional Brownian motion is obtained. For a short introduction
to shot-noise processes we refer to Bondesson (1988). Further applications of shot-noise
processes may be found in, for example, Dassios and Jang (2003) and Gaspar and Schmidt
(2006).

The paper is organized as follows. In section 2 we propose and discuss in detail the new
model. As we shall see the model consists of three major parts:

• a continuous diffusion
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• a marked point process

• a shot-noise component

The resulting model describes an incomplete market. For pricing of derivatives we need to
determine a martingale measure. In this paper we study the associated minimal martingale
measure. In section 3 we first compute the minimal martingale density for the case when
trading takes place in discrete time. By considering finer and finer grids we come up, in the
limit, with the density in continuous time. The minimal martingale measure in this frame-
work is generally a signed measure and we provide several conditions which guarantee that
the minimal martingale measure is indeed a probability measure. Section 4 discusses several
hedging aspects while section 5 presents some simulation results. Proofs are postponed to
section 7.

2 The Model

As outlined in the previous section our model is intended to combine three particular fea-
tures. For this, assume that the stock price at t = 0 equals S0. In the case that no jumps
occur, we have, at time t,

St = S0 exp
((

µ− σ2

2

)
t + σWt

)
,

following Black and Scholes (1973). Here µ is a drift, σ is the volatility and W is a Brownian
Motion. At time t = τ1, the first jump of an associated Poisson Process N , we have

St = S0 exp
((

µ− σ2

2

)
t + σWt

)
(1 + U1).

The “jump-size” U1 describes abrupt changes in percentages of the former price. Therefore
U1 > −1. In theory U1 may take on any positive value, but realistic values are less than
+1. Finally, to incorporate “fade-away” effects we introduce a decay function h defined on
the positive real line. For convenience, we set h(t) = 0 for t < 0. Then, if no further jumps
occur, we have

St = S0 exp
((

µ− σ2

2

)
t + σWt

)
(1 + U1h(t− τ1)).

Typically, the function h is nonnegative and nonincreasing on the positive real line. A typical
example is h(x) = exp[−cx], x ≥ 0, c ≥ 0. The choice of c = 0 leads to h ≡ 1, in which case
we have no fade-away effects, i.e., h ≡ 1 corresponds to the pure jump-diffusion case. On
the other hand, a large c leads to a fast downweighing of a jump.

Proceeding in this way, and denoting with τ1 < τ2 < . . . the successive jumps of the
Poisson Process N , our final expression for the price becomes

St = S0 exp
((

µ− σ2

2

)
t + σWt

) Nt∏

i=1

(1 + Uih(t− τi)) . (1)

Throughout this paper we shall make the following assumptions:

• W is a standard Brownian Motion

• N is a Poisson Process with constant intensity λ

• U1, U2, . . . are independent and identically distributed with finite second moment

February 1, 2008



3 The Minimal Martingale Measure 3

• The function h vanishes for t < 0 and is continuously differentiable on t ≥ 0.

• The processes W , N and the variables (Ui)i are independent of each other.

Let (Ω, (Ft)t≥0,P) be a filtered probability space carrying our random processes such that
S is adapted to (Ft)t≥0.

Remark 2.1. Though, in our model (1), the volatility of the “continuous part” is still a
constant, the overall volatility, caused by the jumps, is random. Furthermore, downweighing
may and will lead to instationarities.

Typically, S will not be a Markov process. However, we have the following result:

Lemma 2.2. Assume h(x) = h(0) exp(−cx) and set Jt :=
∏Nt

i=1(1 + Uih(t− τi)). Then the
process (Wt, Jt)t≥0 is a Markov process. If moreover c = 0, then S itself is Markovian.

3 The Minimal Martingale Measure

In this section we determine the minimal martingale measure associated with the process
(1). This measure, say Q̂, will have a density LT w.r.t. the original measure P driving the
process S:

dQ̂ = LT dP. (2)

Here, T is a finite horizon. In applications, T will be the maturity of a contingent claim
associated with (St)0≤t≤T . If HT denotes the payoff at time T , then the present value of
HT equals

H0 := e−rT Ê(HT ),

where r is the market interest rate and Ê denotes the expectation w.r.t. Q̂.

Since our market model is incomplete, the martingale measure is not unique. The minimal
martingale measure is the equivalent martingale measure Q̂, such that any square-integrable
P -martingale, orthogonal to S under P , is also orthogonal to S under Q̂. This martingale
measure is related to a hedging strategy, which minimizes the local risk inherent in the
non-perfect hedge, the so-called locally risk-minimizing strategy. For a detailed exposition
of the concepts in discrete time we refer to Föllmer and Schied (2002); for the continuous
time case, Bingham and Kiesel (2004) give an accessible approach to pricing and hedging in
incomplete markets.

In general, computation of LT is not simple, in particular if the model for S is complicated.

Therefore we first consider S evaluated on an equidistant time grid 0 = t0 < t1 < t2 <
. . . < tq = T , where ti = iT

q , 0 ≤ i ≤ q. Put δ = T
q . Following Dothan (1990), the density

LT (in discrete time) may then be computed as follows:

Set
rj =

Stj

Stj−1

− 1, 1 ≤ j ≤ q

and let
rj = Mj −Mj−1 + µj ≡ ∆Mj + µj

with
µj = EP (rj |Fj−1)
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be the associated Doob-Meyer decomposition of r1, . . . , rq. Here, Fj is the σ-field generated
by the process up to time tj . Then we have

Sj = S0

j∏

i=1

[1 + µi + ∆Mi].

The corresponding minimal density then equals

Lq ≡ LT =
q∏

i=1

[
1− µi∆Mi

EP(∆2Mi|Fi−1)

]
. (3)

Dothan (1990) derived LT without discussing any minimality property. This was indepen-
dently done by Schachermayer (1993).

In the following remark we show how the formulas for pricing and hedging under the
minimal martingale measure can easily be derived in a one-period setting.
Remark 3.1. Consider a one-period setting, zero interest rate and write ∆S for ∆S1 =
S1−S0. In this remark, we simply write E for EP. The aim is to price and hedge a contingent
claim H which is due at time 1 where the claim can not be replicated perfectly. Therefore,
at time 1, we may face a financial loss and we aim at minimizing E[(H − c− ξ∆S)2] w.r.t.
(c, ξ). c represents the price of the claim at time 0 and ξ is the hedge ratio, i.e., the number
of shares to buy according to the chosen strategy. Note that ∆S = µ1 + ∆M . Setting the
derivatives equal to zero yields on one side that 0 = E(H− c∗− ξ∗∆S) and on the other side

0 = E((H − c∗ − ξ∗∆S)∆S) = E((H − c∗ − ξ∗∆S)∆M).

Thus we have two expressions for the optimal ξ,

ξ∗ =
E

[
(H − c)∆S

]

E((∆S)2)
=
E

[
(H − c)∆M

]

E((∆M)2)
.

Observe that the first expression corresponds to (9) in the multi-period case. For the optimal
c we have c∗ = E(H − ξ∗∆S). After inserting our second expression for ξ∗,

c∗ = E(H)− µ1
E(H∆M)
E((∆M)2)

= E
((

1− µ1∆M

E((∆M)2)

)
H

)
= Ê(H),

where Ê is the expectation under the minimal martingale measure; note that (1 − . . . ) is
equal to the density L1 given in (3). The multi-period case considered in (9) is obtained by
backward induction.

In Theorem 3.2 below we shall derive an explicit formula for Lq when S (properly dis-
counted) follows (1). In Theorem 3.3 we present the continuous time version. This will be
obtained from Theorem 3.2 as an almost sure limit upon letting q → ∞. Note, however,
that the discrete-time version is of interest in itself for Monte Carlo approximations of S
and H0.

To formulate our first result, recall the model components of (1). Set

Pj−1 =
Ntj−1∏

k=1

1 + Ukh(tj − τk)
1 + Ukh(tj−1 − τk)

(4)

and

H1(z) = E(U1)

z∫

0

h(x)dx H2(z) = E(U2
1 )

z∫

0

h2(x)dx.
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Theorem 3.2. For the discounted model of (1), i.e., for e−rtSt, the minimal martingale
density in discrete time equals

Lq =
q∏

j=1

(1− lj),

with

lj =
1− P−1

j−1 exp[(r − µ)δ − λH1(δ)]
1− exp[δσ2 + λH2(δ)]

×
{

1− exp
[
−σ2

2
δ + σ∆Wj − λH1(δ)

] Ntj∏

k=Ntj−1+1

[1 + Ukh(tj − τk)]
}

.

Theorem 3.3 presents the limit of Lq in continuous time.

Theorem 3.3. In continuous time 0 ≤ t ≤ T , the minimal density equals

LT =
NT∏

i=1

(1− Uih(0)I1(τi)) exp
{ T∫

0

λh(0)E(U1)I1(t)dt

}

× exp
{
−

T∫

0

σ2I2
1 (t)
2

dt−
T∫

0

σI1(t)dWt

}
,

where

I1(t) =
µ− r + λE(U1)h(0) +

∑Nt−
m=1

Umh′(t−τm)
1+Umh(t−τm)

σ2 + λE(U2
1 )h2(0)

and Nt− denotes the left-continuous version of Nt.

Remark 3.4. In a pure jump-diffusion process without shot-noise effects, the function h
equals h(0) on t ≥ 0 so that h′ ≡ 0 there. Hence in this case the function I1 simplifies a lot
and becomes

I1(t) =
µ− r + λE(U1)h(0)
σ2 + λE(U2

1 )h2(0)
– a constant. (5)

Lamberton and Lapeyre (1997) studied the jump-diffusion process under the condition

µ− r + λEU1h(0) = 0. (6)

In this case, I1(t) ≡ 0 and therefore LT = 1, i.e., e−rtSt is already a martingale under P. If
shot-noise effects are present, (6) is no longer sufficient to make e−rtSt a martingale under
P. Note also that, under h′ = 0 and with deterministic jumps, our formula for LT reduces
to the one obtained by Arai (2004) in the one-factor case. Finally, if there are no jumps at
all, our model reduces to the Black-Scholes (1973) model with

I1(t) ≡ µ− r

σ2
and λ = 0.

The density LT becomes

LT = exp
{
− (µ− r)2

2σ2
T − (µ− r)

σ
WT

}
,

a well-known fact from the Black-Scholes world.
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Since the form of LT is complicated one may wonder if LT defines a density of a proper
distribution or rather a density of a signed measure. It is well known that the minimal
martingale density may take on negative values if the underlying model admits jumps. In
the following Propositions we give conditions, which ensure that the minimal martingale
measure is necessarily a probability measure.

Proposition 3.5. Assume that h′ ≤ 0 and h ≥ 0. Then the density LT is positive with
probability 1 if either of the following conditions hold:

(i) Ui ∈ [0, b) for all i and

b ≤ σ2 + λE(U2
1 )h2(0)

h(0)[µ− r + λE(U1)h(0)]
. (7)

(ii) Ui ∈ (−h(0)−1, 0] for all i and

µ− r + λE(U1)h(0) ≥ 0 . (8)

In the case when h′ ≤ 0 and at the same time positive as well as negative jumps are
present, the density becomes negative with positive probability. It is clear, that in such a
situation prices will allow for arbitrage. For example, assume that on the set A ∈ FT the
density is negative and A has a positive probability. Thus, the derivative paying 1 at T if A
occurs has the price Ê(1A) = E(LT 1A) < 0 and therefore generates an arbitrage possibility.

The next result discusses conditions under which the pure jump-diffusion process produces
nonnegative LT ’s.

Proposition 3.6. Assume that U1 ∈ (a, b) with −1 ≤ a < 0 < b and h′ = 0. If µ − r +
λE(U1)h(0) > 0, then the density LT is positive with probability 1 iff (7) holds. On the
other side, for µ− r + λE(U1)h(0) < 0, this is the case iff

a ≥ σ2 + λE(U2
1 )h2(0)

h(0)[µ− r + λE(U1)h(0)]
.

For µ− r + λE(U1)h(0) = 0 no additional condition is needed for positivity of LT .

4 Hedging

The minimal martingale measure is the counterpart of a hedging strategy which minimizes
the local quadratic risk. A short exposition of these concepts may be found in Prigent (2003,
Chapter 2.3.3) while for a detailed analysis in discrete time we refer to Föllmer and Schied
(2002). In the following we present the details under shot noise effects, in discrete time.

A trading strategy is given by a sequence (θ0
k, θ1

k)k∈{0,...,T}. θ0
k denotes the amount of

money invested in the risk-free bank account at time k. While θ0
k is a random variable

adapted to the relevant filtration, the variable θ1
k, denoting the number of shares held in

period k, is assumed to be predictable.

Consider a European claim with maturity T , represented by a random variable H which is
FT -measurable. Define Vk := Ê(H|Fk), the value of the claim at time k under the minimal
martingale measure. Basically, the locally risk minimizing strategy in our setting is given
by

θ1
k =

EP
(
∆Vk ∆Sk

∣∣Fk−1

)

EP
(
∆S2

k|Fk−1

) (9)
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5 Simulation Results 7

and θ0
k = Vk−θ1

kSk, where here and in the following we put tk = k for short. For clarification
we also emphasized that the expectation is taken w.r.t. the objective measure P.

Recall Pk from (4) and let µk be again defined through

1 + µk = EP
(

Sk

Sk−1

∣∣∣∣Fk−1

)
.

See (11) below for more details about µk under shot noise. Using the structure of our model,
we obtain the following representation.

Theorem 4.1. The hedge ratio for the locally risk-minimizing strategy equals

θ1
k =

EP
[
VkBk|Fk−1

]− µkVk−1

Sk−1

[
(1 + µk)2eδσ2+λH2(δ) − 1− 2µk

] ,

with

Bk := Pk−1 exp
[
(µ− σ2

2
)δ + σ∆Wk

] Ntk∏

j=Ntk−1+1

(1 + Uj · h(tk − τj))− 1.

5 Simulation Results

This section illustrates the proposed model in terms of a small simulation study and gives a
detailed comparison of the resulting hedging strategy with the delta-hedging in the Black-
Scholes world.
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Figure 1: Two paths of the processes as defined in (1). For demonstration purposes,
the distribution of the jump size was chosen so that typically large jumps occur; in the
left plot we allow for downward jumps and in the right for upward jumps. The decay
function equals h(x) = e−4x. After the jump a strong return to the pre-jump level can
be observed.

Path properties. Following Proposition 3.5 we will consider the cases where Q̂ is a prob-
ability measure, i.e., we consider the case where jumps occur only in one direction. For
practical purposes the case where only negative jumps occur is the most important one; in
the simulations we typically concentrate on this case. To show the advantages of the min-
imal martingale hedging, we chose the jump size density so as to produce quite big jumps;
for the negative case, the density of the U ’s was

f−(u) =
1

0.3
1[−0.5,−0.2](u)
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and the reflected density for the case of only positive jumps. Further parameters are: µ =
0.8, r = 0, σ = 0.4 and the jump intensity λ = 2, i.e., we expect two jumps in a year. For the
decay function we put h(x) = e−4x. Hence the shot-noise effect fades away quite rapidly.
The hedging strategy taking this into account will clearly be able to take advantage of this.
Figure 1 shows two typical paths of a jump-diffusion with shot-noise effects, i.e., the model
as defined in (1) with parameters given as above.

Smile effects. Not surprisingly, the multiplicative shot-noise model is able to reproduce
so-called smile effects. Smile effects account for the underrepresentation of large downward
jumps in the Black-Scholes model. To study this, we compute implied volatilities from the
option prices obtained via the minimal martingale measure. Figure 2 shows the resulting
graph with implied volatilities for maturities up to half a year and for several strikes; the case
where only negative jumps occur was considered. The graph matches the typical structure
of volatility surfaces implied by real data. Compare, for example, Figure 13.8 in Cont and
Tankov (2004).
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Figure 2: The implied volatility surface obtained from option prices under the minimal
martingale measure.

Influence of the shot-noise effect. To study the impact of the shot-noise effect we consider
the case where, as before, we have only downward jumps, h(x) = e−cx with varying c. First,
the impact on the distribution of the stock price under the objective measure is the following:
if c = 0 an occuring jump persists, while if c is large, the effect of the downward jump will
fade away rapidly and the stock price fastly reverts to the pre-jump level. Second, we study
the effect of c on the distribution of S under the minimal martingale measure, which is
used for pricing. As prices are martingales under Q̂, the above discussed effect under the
objective measure will be compensated in a certain way. More precisely, consider t = 0 and
a time horizon of T =1 month and the following two scenarios:

S1 There was no jump at t = 0

S2 There was a downward jump at t = 0

Figure 4 shows the density of ST under Q̂ in both cases. The hump on the left is due to
the jumps. Consider S1, i.e., the left plot in Figure 4. With increasing c, the hump gets
smoothed away, as under P. On the other side, a second (smaller) hump appears on the very
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Figure 3: Call price with strike K = 100 and Maturity T = 0.5 computed according to
the MM (solid line), Black-Scholes (dash-dotted line) and Black-Scholes with estimated
σ (dotted line).
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Figure 4: Distribution of ST under the MMM Q̂ for different choices of c (0, 0.2 and 0.4).
Left: scenario S1. Right: scenario S2 (See text for details).

left, which shows that the distribution is shifted to the left. The option prices in Figure 5
perfectly reflect this, as call prices decline with increasing c.

Next, consider S2, i.e., the right plot in Figure 4. This time, the distribution is strongly
shifted to the right, especially the center of the large peak moves strongly. Simultaneously,
the hump caused by jumps becomes clearer. Recall, that in this scenario at t = 0 a downward
jump occurred and the shot-noise part leads to a faster reversion to the pre-jump level the
higher c is. Note also, that as in S1, a small hump on the left occurs. However, the shift in
the mean is dominating this scenario, which explains the increasing call prices in Figure 5.

One further aspect of the impact of c is studied at the end of the next paragraph, where
the quality of the hedging strategy for different levels of c is examined.

Hedging. This paragraph analyses the hedging strategy according to Theorem 4.1 through
simulations. For this, we compare four hedging strategies:

BS The delta-hedging strategy of Black Scholes, simply neglecting the possibility of jumps

BSi The delta-hedging strategy of Black Scholes, this time using the volatility implied in
option prices. The option prices are computed under the minimal martingale measure
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Figure 5: Dependence of option prices on c. We show Call prices in scenarios S1 and S2
for different c. Parameters in S1: K = 100, S0 = 100, T = 1/12, in S2: K = 80, S0− =
125.9, S0 = 83.9, T = 1/12.

BSe The delta-hedging strategy of Black Scholes when the volatility is estimated from the
data using the sample variance

MM The locally risk-minimizing hedging strategy given by Theorem 4.1

We implemented the above hedging strategies and applied them to the left path shown in
Figure 1. The results of the simulation are plotted in Figure 6. On the l.h.s. we show weekly
hedging over a period of half a year while the r.h.s. shows daily hedging for the last 27 days.

Comparing the paths reveals the following: first, the strategies BS and BSe most heavily
react on the jump. Before the occurrence of the jump the strategies are quite close, because
the volatility estimate is close to the underlying volatility. After the jump, however, the
estimated volatility increases and the effect of the downward jump remains present in BSe

until maturity. Second, the strategy MM is the most stable one. Moreover, because only
this strategy incorporates the noise effect correctly, it is able to adjust for this and shows the
smallest reaction on the downward jump. As we consider only down-jumps, the call prices
under this strategy are also cheaper then in the no-jump case. Finally, it seems remarkable
that the strategy using implied volatility is closest to the strategy MM.
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Figure 6: The hedging strategies BS and MM, according to the l.h.s. path in Figure 3.
We plot the following hedging strategies (refer to text for details): BS (dotted), BSe

(dash-dotted), BSi (dashed) and MM (solid). Left: weekly hedging. Right: daily hedging
for the last twenty time points.
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As the considered market is incomplete, the hedging strategies have a remaining risk. It is
therefore interesting to analyse the variance of the suggested hedging strategies. Moreover,
we want to analyse more quantitatively how incorporating the shot-noise effect can improve
the hedging performance. For this, we simulated the profit and loss (P&L) of the above
hedging strategies and computed the resulting variances. The results of 106 simulations are
shown in Figure 7. On the l.h.s. we show the direct P&L of a static hedge over the period
of a month. For the r.h.s. we fixed a 1-month history with a downward jump in the middle.
The resulting variances are given in Table 1.

The results show the following: First, the strategy MM has the lowest variance in all
cases - as expected. This should hold true by definition. In the plot on the l.h.s. BS and
BSe almost coincide. Note that besides the differences in variances they also differ in mean.
This is true, because the first two methods neglect the possibility of future jumps. Second,
examining the plot on the r.h.s. as well as the results given in Table 1 clearly shows that
incorporating the noise effect is advantageous in terms of the variance of the P&L. However,
the means of the strategy BSe are positive, which is a desirable property. This is due to the
particular example chosen. Recall that a Call is considered and a downward jump occurred
in the past and, by the noise effect, is expected to be annihilated in the near future. This
can of course not be extended to other scenarios.
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Figure 7: The profit and loss distribution of a static one-month hedge according to BS
(dotted), BSe (dash-dotted), BSi (dashed) and MM (solid). Left: directly starting from
time 0. Right: using a path history of 1 month, including a jump.

Table 1 also allows to compare the pure jump-diffusion case (c = 0) with the shot-noise
case (c = 4). We basically concentrate on the comparison with the strategy BS. The table
gives means and variances of the P&L of the implemented strategies under the scenarios S1
(no jump in the past) and S2 (jump at t = 0) introduced on page 8. In scenario S1, observe
that the difference in means is less clear when c = 4. This is because the shot-noise effect
compensates the downward jumps to a certain extent, from which the strategy BS takes
advantage of. In the case where a jump occurred just before (scenario S2), the situation
changes. Here, not incorporating the strong upward trend is fatal and BS shows a large
negative mean of about −6 if c = 4. In all cases, the strategy MM has of course mean zero.
For the variances, we give the ratios of the variances of BS over MM: Clearly, the P&L
of strategy MM always has a lower variance. However, it can in particular take advantage
of the special features of the path behavior in the case where c is large and just before a
jump occurred. This is because this strategy anticipates the shot-noise effect correctly and
therefore a much smaller variance in the P&L can be obtained.

Summarizing, the above findings show that pricing according to the minimal martingale
measure gives reasonable prices for European Calls. Moreover, the hedging strategy sug-
gested in Theorem 4.1 is superior to other hedging strategies in terms of more stable hedges
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Table 1: Estimated mean and variance of the tracking error resulting from the hedging
strategies according to the simulations in Figure 7.

S1 S2
Strategy mean variance mean variance

c=0

BS -3.18 67.24 -1.58 15.30
BSi 0.13 49.27 0.07 15.53
BSe -2.92 63.81 7.50 17.90
MM 0 40.34 0 12.93

c=4

BS -2.44 44.61 -6.26 21.11
BSi 0.17 35.20 -4.56 20.52
BSe -2.18 42.51 3.82 15.95
MM 0 32.35 0 8.03

Table 2: The scenarios introduced on page 8 were used (S1 – directly starting at t = 0;
S2 – a jump occurred at t = 0). The shot-noise effect was h(x) = exp(−cx) and
parameter c was varied.

S1 S2

c=0 1.67 1.18

c=4 1.38 2.62

and lower variance. Especially, if a jump occurred and an investor expects a shot-noise
effect, this hedging strategy shows excellent performance.

6 Conclusions

This paper proposes a new model for asset prices which incorporates shot-noise effects. The
minimal martingale measure is derived in discrete and continuous time and the corresponding
hedging strategies are given. In this model the minimal martingale measure is typically
a signed measure, and we provide conditions which are sufficient to guarantee that the
minimal martingale measure is a probability measure. Furthermore, the obtained option
prices feature smile effects. We also analyse the consequences for pricing and hedging in a
simulation study and find out that its hedging performance is superior to other models.

7 Appendix

First, we prove Lemma 2.2 on Markovianity of S.

Proof of Lemma 2.2. We will make use of the general results on Markovianity of solutions
of stochastic differential equations, as provided in Protter (2004), Section V.6. Set J̃t =∑Nt

i=1 Ui. First, observe that J̃ has stationary and independent increments, hence is a Lévy
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process. Second, as h(x) = h(0) exp(−cx), J is the solution of

dJt = −cJt− dt + Jt− dJ̃t.

Then, Theorem V.34 in Protter (2004) yields that J is a Markov process. As W is itself a
Markov process and is independent of J we obtain that (W,J) is a Markov process. In the
case where c = 0 we have that S is the solution of the following SDE:

dSt = St− (µdt + σdWt + dJt) .

As σW + J is a Lévy process, S itself is a Markov process in this case. ¤

We continue with a small lemma and a corollary which are necessary for the proofs fol-
lowing thereafter.

Lemma 7.1. For n ∈ N we have

E




Ntj
−Ntj−1∏

k=1

(
1 + UNtj−1+k

· h(tj − τNtj−1+k
)
)n

∣∣∣∣Ftj−1




= exp
{

λ
T

q
[E ((1 + U1 · h(η))n)− 1]

}
, (10)

where η is independent of U1 and uniformly distributed over [0, δ].

Proof. The left-hand side of (10) equals

∑

l,m≥0

1{Ntj−1=l}E
[
1{Ntj

−Ntj−1=m}
m∏

k=1

(1 + Ul+k · h(tj − τl+k))n
∣∣∣Ftj−1

]
.

For given l and m, the variables τl+1 ≤ . . . ≤ τl+m are distributed like m order statistics
from a sample of independent variables with uniform distribution on [tj−1, tj ]. Since the
U ’s are independent of the underlying Poisson Process it follows that the last expectation
equals

e−λ T
q

(
λT

q

)m

m!
Em [(1 + U1h(η))n] .

Summation over all l and m yields the result.

Lemma 7.2. With n, η as above and σ > 0 we have

E
[
eσ(Wtj

−Wtj−1 )

Ntj
−Ntj−1∏

k=1

(
1 + UNtj−1+k

· h(tj − τNtj−1+k
)
)n

∣∣∣∣Ftj−1

]

= exp
{

T

q

(
σ2

2
+ λ [E(1 + U1 · h(η))n − 1]

)}
.

Proof. Applying Lemma 7.1 and using the independence of W and N , U1, U2, . . ., we get
the desired result.
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Proof of Theorem 3.2. We may assume w.l.o.g. that r = 0. Otherwise, replace µ with
µ− r. We first compute

µtj
= E

(
Stj

Stj−1

∣∣∣Ftj−1

)
− 1.

The conditional expectation equals

E
(

Stj

Stj−1

∣∣∣Ftj−1

)

= E
[
e

(
µ−σ2

2

)
δ+σ∆Wj · Pj−1 ·

Ntj∏

k=Ntj−1+1

(1 + Uk · h(tj − τk))
∣∣∣∣Ftj−1

]
.

From Lemma 7.2 it follows with n = 1 there, that

µj = E
(

Stj

Stj−1

∣∣∣Ftj−1

)
− 1 = e

(
µ−σ2

2

)
δ
Pj−1 · eδ

(
σ2
2 +λE(U1·h(η))

)
− 1

= Pj−1 exp
[
µδ + λE(U1)

δ∫

0

h(x)dx

]
− 1, (11)

where η is independent of U1 and uniformly distributed over [0, δ]. The next step will be to
compute ∆Mj . Now,

∆Mj =
Stj

Stj−1

− E
(

Stj

Stj−1

∣∣∣Ftj−1

)

= eµδPj−1

[
e−δ σ2

2 +σ∆Wj

Ntj∏

k=Ntj−1+1

(1 + Uk · h(tj − τk))− eλH1(δ)

]

=: eµδPj−1 [Aj −B] . (12)

Since B = E(Aj |Ftj−1), the predictable quadratic variation takes on the form

E
(
∆2Mj |Ftj−1

)
= e2µδP 2

j−1

[
E(A2

j |Ftj−1)−B2
]
.

Equation (10) with n = 2 yields

E(A2
j |Ftj−1) = e−δσ2

E
[
e2σ∆Wj

Ntj∏

k=Ntj−1+1

(1 + Uk · h(tj − τk))2
∣∣∣Ftj−1

]

= exp
{
δ
(
σ2 + λ

[
E

(
(1 + U1 · h(η))2

)− 1
])}

= exp
{

δσ2 + 2λH1(δ) + λE(U2
1 )

δ∫

0

h2(x)dx

}
.

We may therefore conclude

E
(
∆2Mj |Ftj−1

)
= exp [2(µδ + λH1(δ))]

· P 2
j−1 ·

[
exp

(
δσ2 + λH2(δ)

)− 1
]
. (13)

Plugging (11) – (13) into (3) yields the assertion of Theorem 3.2. ¤
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Proof of Theorem 3.3. Assume that q has been chosen so large that for each j there is,
if any, at most one jump in (tj−1, tj ]. Note that q depends on the sample path of N and is
therefore random. We may rewrite Lq from (3) as

Lq = exp
[ q∑

j=1

ln(1− lj)1{τNtj−1+1≤tj}

]
exp

[ q∑

j=1

ln(1− lj)1{τNtj−1+1>tj}

]
.

Note that τNtj−1+1 ≤ tj if and only if (tj−1, tj ] contains exactly one jump. Hence the first
factor in Lq takes into account all intervals which contain jumps while the second factor
covers the empty intervals. If an interval is nonempty,

Ntj∏

k=Ntj−1+1

(1 + Ukh(tj − τk)) = 1 + UNtj
h(tj − τNtj

).

Conclude that
q∑

j=1

ln(1− lj)1{τNtj−1+1≤tj}

=
NT∑

i=1

ln

{
1−

1−∏i−1
m=1

1+UmH(t̃i−δ−τm)

1+UmH(t̃i−τm)
exp((r − µ)δ − λH1(δ))

1− exp(δσ2 + λH2(δ))

·
[
1− (

1 + Uih(t̃i − τi)
)
exp

(
− σ2

2
δ + σ(Wt̃i

−Wt̃i−δ)− λH1(δ)
)] }

.

Here t̃i is the right neighbor of τi on the grid. Now, letting q tend to infinity, we obviously
have δ → 0 so that for 1 ≤ i ≤ NT < ∞:

(
1 + Uih(t̃i − τi)

)
exp

[
−σ2

2
δ + σ

(
Wt̃i

−Wt̃i−δ

)− λH1(δ)
]

−→ 1 + Uih(0) with probability one.

Finally, we apply l’Hospital’s rule to get, as δ → 0:

1−∏i−1
m=1

1+Umh(t̃i−δ−τm)

1+Umh(t̃i−τm)
exp((r − µ)δ − λH1(δ))

1− exp(δσ2 + λH2(δ))

→
−

∑i−1
j=1

∏i−1
m=1,m 6=j(1+Umh(τi−τm))Ujh′(τi−τj)(−1)∏i−1

m=1(1+Umh(τi−τm))
− [(r − µ)− λEU1h(0)]

−(σ2 + λEU2
1 h2(0))

=
r − µ− λEU1h(0)−∑i−1

j=1
Ujh′(τi−τj)

1+Ujh(τi−τj)

σ2 + λEU2
1 h2(0)

.

Summarizing, we get with probability one

exp
[ q∑

j=1

ln(1− lj)1{τNtj−1+1≤tj}

]
→

NT∏

i=1

[1− Uih(0)I1(τi)] . (14)
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Next we study the contribution of the empty intervals. For each 1 ≤ j ≤ q, define l̃j as lj ,
with UNtj−1+1 replaced by ŨNtj−1+1 ≡ 0. Then lj and l̃j coincide on empty intervals. Hence

q∑

j=1

ln(1− lj)1{τNtj−1+1>tj} =
q∑

j=1

ln(1− l̃j)1{τNtj−1+1>tj}

=
q∑

j=1

ln(1− l̃j)−
q∑

j=1

ln(1− l̃j)1{τNtj−1+1≤tj}.

Applying (14) to the last sum with Ũi = 0 in place of Ui, we obtain

q∑

j=1

ln(1− l̃j)1{Ntj−1+1≤tj} → 0 with probability one. (15)

To study
∑q

j=1 ln(1− l̃j), we use the expansions

ln(1− l̃j) = −
[
l̃j +

l̃2j
2

+
l̃3j
3

+ . . .
]
. (16)

Recall

l̃j =
1−∏Ntj−1

k=1
1+Ukh(tj−1−τk)
1+Ukh(tj−τk) exp((r − µ)δ − λH1(δ))

1− exp(δσ2 + λH2(δ))

·
[
1− exp

(
− σ2

2
δ + σ(Wtj −Wtj−δ)− λH1(δ)

)]
.

As in the first part of this proof, the first ratio equals

r − µ− λEU1h(0)−∑Ntj−1
k=1

Ukh′(tj−τk)
1+Ukh(tj−τk)

σ2 + λEU2
1 h2(0)

+ oP(1) = −I1(tj) + oP(1).

The factor in brackets may be approximated by

σ2

2
δ − σ(Wtj −Wtj−δ

) + λH1(δ)− σ2

2
(Wtj −Wtj−δ)2 + O

(
(δ ln δ−1)3/2

)

uniformly in 1 ≤ j ≤ q, where higher powers of ∆Wj are bounded by the Lévy modulus of
continuity. From this it follows like in the derivation of Îto’s formula, that

lim
q→∞

q∑

j=1

l̃j = σ

T∫

0

I1(t)dWt − λEU1h(0)

T∫

0

I1(t)dt. (17)

Similarly,

lim
q→∞

q∑

j=1

l̃2j = σ2

T∫

0

I2
1 (t)dt. (18)

Higher order powers of l̃j are negligible. The assertion of the Theorem now follows from
(14) – (18). ¤
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Proof of Proposition 3.5. From the representation of LT in Theorem 3.3 we find that LT

is nonnegative if and only if

1 ≥ Uih(0)I1(τi) for all i ∈ N (19)

and all possible values of Ui and τi.

We first proof (i). Note that under Ui ≥ 0 and h′ ≤ 0 the function I1 is less than or equal
to the I1 corresponding to h′ ≡ 0. Consequently, Ui < b implies Uih(0)I1(τi) < 1 and the
assertion follows.

Second, for (ii), observe that Umh′(t−τm) ≥ 0. Then, as h(·) ∈ [0, 1], we obtain 1+Umh(t−
τm) > 0 and consequently Umh′(t−τm)

1+Umh(t−τm) ≥ 0. Together with µ−r+λE(U1)h(0) ≥ 0 we obtain
I1(t) ≥ 0. Note that with Ui ≤ 0, I1(t) ≥ 0 and h(0) ≥ 0 imply Uih(0)I1(τi) ≤ 0 < 1 and so
we conclude that the density is positive. ¤

Proof of Proposition 3.6. As in the previous proof we use condition (19). When h′ = 0
on the positive real line,

I1(τi) =
µ− r + λE(U1)h(0)
σ2 + λE(U2

1 )h2(0)
,

a constant. The assertion now follows from a < Ui < b. ¤

Proof of Theorem 4.1. Recall the decomposition Sk = Sk−1

(
1 + µk + ∆Mk

)
, where µk

was Fk−1-measurable and ∆Mk had conditional expectation zero. We find that ∆Sk =
Sk−1(µk + ∆Mk). Therefore E(∆S2

k|Fk−1) = S2
k−1[µ

2
k + E((∆Mk)2|Fk−1)]. The last expec-

tation was calculated in (13).

As to the numerator, we consider ∆Vk∆Sk more closely. First,

E
(
∆Vk∆Sk|Fk−1

)
= E

(
Vk∆Sk|Fk−1

)− Vk−1E
(
∆Sk|Fk−1

)

= Sk−1

[
µkE(Vk|Fk−1) + E(Vk∆Mk|Fk−1)− Vk−1µk

]

From Equation (12) we know that µk + ∆Mk = AkeµδPk−1 − 1 so that altogether we get
the following form for the hedging strategy:

θ1
k =

E
[
Vk

(
AkeµδPk−1 − 1

)|Fk−1

]
− µkVk−1

Sk−1

[
(µk + 1)2 exp(δσ2 + λH2(δ))− 2µk − 1

] ,

which coincides with the one given in the Theorem. ¤
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