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One method to estimate the intensity of inhomogeneous Poisson processes, sug-
gested in Fryzlewicz and Nason (2004), is first to preprocess the data using the
so-called Haar-Fisz transform and then to apply wavelet methods to the outcome of
the first step. For this procedure it is necessary, that the outcomes of the preprocess-
ing step can be approximated by a normal distribution. In this paper we establish
the necessary weak convergence results for the case of inhomogeneous Poisson pro-
cesses which show that the outcome of the preprocessed data can be approximated
by Gaussian random variables and wavelet shrinkage with a global threshold may be
applied. A small simulation studies the application to shot-noise models. It suggests
that this method is able to detect small peaks while at the same time it does not
over-smooth large peaks in comparison with kernel estimators or standard wavelet
estimators.
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1 Introduction

Poisson processes have a long history in insurance and finance as risk-arrival processes and are
well analysed. The homogeneous case is obviously the most convenient one as far as estimation
is concerned. However, in practice quite often inhomogeneous processes are more suitable due to
seasonalities or changes in the considered environment and so on. In particular, this research was
inspired by the work of Dassios and Jang (2003), where the pricing of reinsurance claims which
are subject to catastrophes has been analysed. If a catastrophe occurs, the number of claims
rises sharply, but after a time this effect fades away. The aim is at estimating this intensity
from the claim data. Other applications of shot-noise processes in finance include Gaspar and
Schmidt (2005) and Schmidt and Stute (2007).

More precisely, this paper considers inhomogeneous Poisson processes and proposes to estimate
the intensity using wavelets. The approach considers a method proposed in Fryzlewicz and Nason
(2004) and gives the necessary weak convergence results for the case of inhomogeneous Poisson
processes. This generalizes the results in Fryzlewicz and Nason (2004), which obtained weak
convergence only for the homogeneous case.

The considered method follows ideas which go back to Fisz (1955). The key tool is a transfor-
mation, the so-called Haar-Fisz transform, which transforms the observations to approximately
normal distributed random variables. In his paper, Fisz used this property to test the hypothesis
that two Poisson variables have equal means, and the hypothesis that their means are both equal
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to given number. Later, Fryzlewicz and Nason proposed in Fryzlewicz and Nason (2004) the
analyzed algorithm. One first preprocesses a vector of Poisson random variables (rvs) using a
nonlinear wavelet-based transformation and then treat the preprocessed vector as if it was Gaus-
sian. In Fryzlewicz and Nason (2004) it was proved that, in the case of a homogeneous Poisson
process, the transformed vector is approximately normal and the elements are asymptotically
uncorrelated. We extend their results to the inhomogeneous case.

The estimation procedure, as considered here, consists of two steps: the preprocessing step
and the wavelet analysis of the preprocessed part. In this paper we provide theoretical consid-
erations on the first step. Fryzlewicz (2007) provides a mean-square consistency result for the
complete estimation procedure in a more general setting of the data-driven wavelet-Fisz esti-
mation. However, asymptotic normality of the preprocessed vector is not considered, which is
the topic of this work. The extension of the Haar-Fisz transform to other wavelets is considered
in Jansen (2006) which also provide some partial limit results. Fryzlewicz and Nason (2006)
apply the Haar-Fisz transform and related ideas for estimating the local variance of a locally
stationary Gaussian time series.

The paper is organized as follows. In section two we describe the estimation procedure. In
section three we establish weak convergence results for inhomogeneous Poisson processes. In
section four we give some simulation results which illustrate the applicability of the chosen
approach to intensities of the shot-noise type and compare it to kernel estimators.

2 The procedure

The main goal of this paper is a suitable transformation of the observed Poisson process which
will allow the application of well-established wavelet techniques.

Inhomogeneous Poisson processes An inhomogeneous Poisson process P is pure-jump process
with independent and Poisson distributed increments. It is determined by its intensity A : R* —
RT and we have for 0 < s <t

P(Pt—PS:k:):exp<—/t)\(s)ds)W, k=0,1,2,...

We assume that we observe P on the interval [0,7] and aim at estimating A on this interval.

Haar wavelets play a key role in the used transformation. For the reader’s convenience we
give a short introduction. For a full treatment of wavelets we refer to Mallat (1999).

Haar wavelets Consider J € N. We divide the observation interval [0, 7] in 27 =: N intervals
of equal length. The Haar wavelet filters are given by a family of vectors ' € RN with

jed{l,...,Jtand l €{1,..., 2J_j}. Here j is a scale parameter and [ is a location parameter.
It is more convenient to consider k = k(1,j) = (I — 1)27 + 1 instead of I. Throughout the paper
we simply write k instead of k(l,j). The Haar wavelet filters ¢! = (wi’l, cel ng\}l ) are defined
by

U = Lnehioi1)) — Lnelirait ko)

For a given degree of fineness IV, we also need to take care of the overall scale on the considered
intervals. In analogy to 1 we therefore introduce the Haar scaling filters ¢/ € RN defined by

OB = 1o rron)-



To have an easy access to the used indices we define for Jy € {1,...,J} the set

7 = 10G,D|([,1) € Z*and1 < j < Jp, 1 <1< 2777},
Clearly, the Haar wavelet filters and Haar scaling filter satisfy ¥?! = ¢/~ 1271 — ¢3=120 4nd
@M = ¢ HH T+ I for any (5,1) € AT\ A

Remark 2.1. Haar filters constitute an orthogonal basis of RYY. More precisely, we have that?
<¢j7l7 ¢J71> = <¢j7l7 1> =0, <¢j7l7 ¢S7t> = 2j1{(j,l):(s,t)}'

Letting %j’l = 2792 43! and g%j’l = 2772 ¢ we find that {g?)‘]’l,{bj’l s (4,0 € A:;} is an
orthonormal basis of RY.

The Haar-Fisz transformation The transformation we use was proposed by Fryzlewicz and
Nason (2004). We give a formulation which is suitable for obtaining convergence results. As the
wavelet filters constitute a basis of RY we have for v € RY the following decomposition:

v=A5(v ¢ Ly Z Dji(v

(G.heA]

with
J1

Aji(v)=(v,9"), Dj(v) = <V71~Z’j7l>-

Here, Aj1(v) gives the overall scale of the wavelet decomposition while D;;(v) refer to the fine
structure on the considered detail level.

Now we are in the position to precisely state the transform.

Definition 2.2. The Haar-Fisz transform is the function F : RN — RN defined by

FO) =An) ¢+ Y Guv) 9, (1)
(G.heA]
with < jl)
(v, ,
gj,l(v) - (V ¢j,l>% 1{<V’¢J,l>>0}-

We will often refer to components of the vector F(v) and therefore simply set F(v) =
(Fi(v), ..., Fn(v)).

The reason for using G instead of D is simply normalization. For a discretization level J
set A := T/N. Then the discretized observation &y = (Pa — Fo,..., Pna — Pn—1)a) is a
vector of independent Poisson rvs with mean Ay where A\, = f(n HA A A(s) ds. Then, under some
assumptions, G;;(§y) will converge to a normally distributed rv Wlth unit variance as we will

see later. Hence we are able to apply well-established wavelet denoising techniques with global
thresholding.

2.1 The estimation procedure

For fixed N we consider the discretized observation &, as above. The estimation procedure
consists of the following three steps proposed by Fryzlewicz and Nason (2004):

3Denote by {-,-) the inner product in RY.



1. Given the vector & of independent Poisson rvs, we first preprocess it using F(&,). As
will be shown in Theorem 3.4, F(&y) is F(An) plus approximately white noise.

2. Denoise F (£ y) with standard wavelet techniques and denote the outcome by F(£x ). These
steps are outlined detailed in Section 4.

3. The inverse Haar-Fisz transform gives the estimator: F~1(F(&y)).

Remark 2.3. The estimating procedure basically consists of two steps. The first step, is the
transformation of the data, given by the function F. The second step consists in the application
of standard wavelet techniques. Finally , the inverse Haar-Fisz transform is applied.

The second step requires that the transformation F has an outcome which can be approxi-
mated by normally distributed random variables. This paper mainly concentrates on this and
gives the necessary weak convergence results in our main result, Theorem 3.4.

3 Convergence results for the Haar-Fisz transform

This section gives precise results for convergence of the preprocessing step. By Z we denote
convergence in distribution. Central to the following argumentation will be the following result
provided in Fisz (1955).

Theorem 3.1. Let &1 and & be independent and Poisson distributed with intensity A1 and g,
respectively. If Ay — 00, Ay — 00 and :\\—; — 1, then we have that

_ S -& R
VE TG BT T AT

N(0,1).

Furthermore, from the proof of this result we learn that

& —& RS Ut ST @)
Gt & {&1+&2>0} M+ o ’

where 5 denotes convergence in probability. In Lemma 6.2 we proof uniform Ls-boundedness
of {n: A1, A2 > 1} and so from convergence to N(0, 1) it follows that

E(n) — 0, E(n*) — 1, and Var(n) — 1. (3)

It will prove useful to have a convenient representation of vectors like ¥, ¢, G and oth-
ers. In the following we therefore write simply (Gi1,...,Gn-1) for (G11,G12, -.-,G12/-1,G21,
oy Gg91-2,...,Gy1) and similar for 1) and ¢. The different indexation should suffice to avoid

confusion. Set G := (Gi,...,Gn_1) and let ¢ := ¢} and ¢* = (¢},...,c% ), n=1,...,N.

Note that then
ct cN -1 ~N—1 ~J1. T
((2_g>17<2_g>>_(¢ 7"'7¢ ,(b ) . (4)

First, we derive a useful representation of F(v). In this simpler notation, (1) reads

Fulv) =27 A51(v) + (" G(v)). ()

A first step is the following generalization of Theorem 3.1. By Iy we denote the identity
matrix.



Theorem 3.2. Consider a vector €& of independent Poisson random variables with mean XA =
(A, oy AN). If A; — 00 and |% — 1| = 0 for all i and j, then
J

G(&) -G\ - N(0,Iy).

Proof. The proof mainly relies on (2). To apply this result, we denote by Gi(&) = (&, v -
(X,0")~"? and set G = (G1,...,Gn_1). Note that

s €A E-A VA
Gi(§) — Gi(A) <)\7¢i>1/2 VAL <)"¢1>%

hence G(€)—G(A) is of the form (5\;;\7)T ¥ with appropriate ¥ € RV*Y . Furthermore, ‘/Hlﬁ T —
A@H?

,"bl_ T = 1,~bl hence ¥ T¥ — Iy.
(1Lg"H?

On the other hand, using that the components of £ are independent, we obtain by Lemma 6.1
7%\ AN N(0,In) and we therefore have shown that G(£) — G(A) Z, N(0,1dy). Using (2),

we have G;(€) — G;(€) £, 0, and so we get G(&) —G(€) =, 0 and the desired result follows. W

Up to now, N was always fixed. Our main result, Theorem 3.4 considers the case where N goes
to infinity and the \; relate appropriately. Recall that we want to approximate a rescaled Poisson
random variable by a Gaussian distribution and it is therefore necessary that the intensity is
sufficiently high. In the inhomogeneous case, additionally the intensities must scale properly
which leads to the following Assumption 3.3. We therefore introduce p and let A\; be increasing
with p. Besides letting the grid getting finer and finer by increasing N we also increase the
intensity of the Poisson signals by increasing p.

The precise assumptions are as follows. Recall that the observation & ;y was Poisson distributed
with mean Ay. We need some uniform convergence of the components of Ay and to be able to
state this conveniently we assume that Ay = An(p) = (A1(p), ..., An(p)) with p > 0. Then we
examine convergence for N and p going to infinity.

Assumption 3.3. Assume that for any N and €,0 > 0 there exits a pg, s.t. for p > pg

_ Ai(p)
inf A (p) > 6, su
1<i<N () 1gi,j2N | Aj (P)

-1 <e (6)
where €,9, pg do not depend on N.

We are ready to state the main result.

Theorem 3.4. Assume Assumption 6 holds and Ay, p1)">/N — 0 for p, N — co. Then

Ful€n) = Fu(Ay) —Z— N(0,1) (7)

p,N—o0

as well as Cov(Fp(En), Fn(€n)) — O for any m # n.

Ezample 3.5. Consider the case where \;(p) = p for all i. Then, Assumption 3.3 is trivially
satisfied. Next,

N N N’

v, ™) VNp _ [

If we choose, for example, p = v/ N the assumptions in Theorem 3.4 are satisfied.



The proof extends the ideas in Fryzlewicz and Nason (2001) to the inhomogeneous setting.

Proof. Let z := G(&5) — G(An). By (5), we obtain
Fulén) = Fa(An) = 2777 (As1(€n) — Ara(AN)) + (¢, 2) := M + X,,. (8)

First, we show that M converges to zero. To this, note that (€, @”!) is Poisson with mean
(AN, ®"1)). Hence, by Lemma 6.1 in the appendix, Y := ((€5, 0”71 — (An, ¢71) Ay, p71) /2
converges in distribution to V°(0,1). Set ¥ = (N, Ay) := (An, ¢”1)/>/N. Then we obtain that

M=Y9 -0
Furthermore, as Var(Y') = 1, we have that

Var(M) = Var(Y) 9% — 0. 9)

Second, we consider the convergence of X,,. For this part, the condition that ¥} converges to
zero is not necessary and we directly show that X,, converges to N'(0,1) as both p and J go to
infinity. The main idea is to split X,, up in a part which converges to a r.v. which is arbitrary
close to standard normal and a part which is arbitrary close to zero. Fix a Jy and consider
J > Jp. Recall the definition of ¢” prior to (4) and set ¢} = (cf,... ,0’21L2‘,,J0)T as well as
.. ,c}(,_l)—r. We similarly divide z in z; and z5. Then

n __ n
C2 - (62J72J—J0+17 .

where X" = (c, z;). Note that X7 does not depend on J. Denote by b(n) = (b1(n),b2(n),...)
the binary representation of the integer n. Then?

Jo
X{ =D (=1 277G 21 (€8) = G g (AN))
j=1
Jo i
2 M0, 3 [(—D)%™27]%) = N(0,1 —27%)
7j=1

follows.

On the other hand, we have that by the definition of ¢ that ||c}||? < (V2 + 1)27//2. A
consequence of (18) provided in the appendix is that there exists a pg, such that for all p > pg

sup  E[(%)%] < 2.
J,(Gioki) €AY

Hence for p > po,
E[(X3)%] < 2 [le3||? < @277

with é = 2(v/2 + 1). By the Markov-inequality we get for any ¢ > 0 and p > pg that

P(IX3| > ¢) < ele[(XS)Q] <e?ean (11)

“Denote by [2] the smallest integer 4 > x. Note that by the definition of Haar wavelets we have ¢ = ¥ and
for some j,1

- i
U= (12T 1001



These two results suffice for the claim, as we will show now. For any x we have that for p > pg
P(X, <z)=P(X, <z,|X7| <€)+ P(|XZT| > ¢).
For the first term we use that {X7 + X§ < 2,|X7| < e} C {X] < 2 + €} and obtain

lim P(X, <z)< lim P(X} <z+4¢)+e a2

Jip—oo p—00

T+ € B, DU
=P ——= ) +e “c2 0/2,
==

As Jy was arbitrary, we obtain limj, ... P(X, < 2) < ®(x). For the other inclusion, observe
that for p > pg

P(X, < ) 2 P(XP + X} <, |X3| < o
> P(XP +e <o) +B(XE| < ) — 1
>0z —e)+ (1 —e227) — 1 =d(x —¢) — 2627,

Again, as Jy and € are arbitrary, we obtain limj, .. P(X, < ) > ®(x) and therefore the limit
equals ®(z).

The second part of theorem is a statement about covariances. The essential ingredient is again
Lemma 6.3. First, observe that

| Cov(fim, fn)| = | Var(M) + Cov(M, X,,) + Cov(M, X,,) + Cov (X, X5)|
< Var(M) + Varz (M)[Varz (X,,) + Varz (X,,)] + | Cov(Xom, Xn)|
Recall that Var(M) — 0. In the following we show that Cov(X,,, X,,) — 0, as p, J — oo and

that Var(X,,) is bounded. As in (7), we choose a Jy and use the decomposition X,, = X7+ X7.
With

2
| Cov(Xpm, Xn)| < > | Cov(X]", X7")| (12)
i,j=1

we consider, letting Ng = 27 — 27/,
| Cov(X{", XT)| = |ef"" Cov(z1,21)c]|
< |ef'T (Cov(z1,21) — Ing)et| + [(c], f).

Recalling that c}' = @Efl, we have that

J 27 J
- . r B
lesli=" > W= D> DW= ) 2 < (V2en2hs

and similarly, ||c}[j1 < V2 +1 and ||c§\|§ = 2% _9-J With |{c5t, c)| < Hc’2”||;2||c721H;/2 we
obtain

(et el)l = (™, e") — (e, e3) < 270

On the other hand, from Lemma 6.3 we obtain that for given e there exists pg, such that for

P > po
sup | Cov(zi, 2k) — Lyi—py| <€
J>Jo,1<i,k<27 (1-270)



and hence
| Cov(XT", XT)| < ellef[l1llef |l + 277 = e(1 + v2)* + 277
For the remaining terms, observe that Lemma 6.3 also gives

sup | Var(z;) — 1] <e
J>Jo,1<i<27

and so

Var(X3) = ¢5 " Cov(zz,z2)c < (L+¢)lles||f < (1+¢)(27" —277),
Var(X7) < (L+€)llef|f < (V2+1)°(L +e).

This directly implies

| Cov(X{", X3)| < Varz (XJ") Var (X§) < (V2+1)(1 +€)V/2=h — 277,
| Cov(X5", X3)| < (1+¢) (275 —27)

and as Jy and e were arbitrary, we obtain that all terms in (12) converge to zero as J, p — oo.
Furthermore, as Var(X7{") is bounded, we also have that Var(M) Var(X7") — 0 and so we
conclude | Cov(fp, fm)| — 0. O [ |

4 Simulation results

In this section, we compare the performance of the estimation procedure to kernel-based estima-
tors in the case where the intensity is of the shot-noise type. Further, comprehensive simulation
results may be found in Fryzlewicz and Nason (2004).

The analysed scenario is inspired by Dassios and Jang (2003). The authors discuss an insur-
ance problem where the insurance claims arrive through a Cox process with shot noise intensity.
Here, we concentrate on a somewhat simpler case, namely the case of inhomogeneous Poisson
processes where the intensity has a shot noise form. The shot noise form is motivated by an
occurring catastrophe which induces thereafter a high number of claims, but as time passes by
this effect fades away. The question analysed is: if we observe the number of claims, how can
we estimate the claim intensity. Our method is nonparametric. If, as analysed in Dassios and
Jang (2005), one would like to specify a stochastic model for the intensity, one typically would
use filtering methods to estimate the unknown intensity.

The denoising procedure. We shortly illustrate the denoising procedure. In principle, an
arbitrary wavelet basis can be used. For convenience, we illustrate the denoising procedure using
Haar wavelets. Recall the definitions of the normalized Haar wavelets 9 and ¢ in Section 2.
From Remark 2.1 we obtain the the set of normalized Haar wavelets constitutes an orthonormal
basis of RY.

Then for a threshold § > 0, the estimator of v € R using a so-called hard thresholding takes
the following form:

v= Y e Y UM (13)

0
(Ji,DEAT\AT (GheAT (v I>0)

Including the denoising steps in the whole procedure we estimate as follows:



1. Apply transform. First, we preprocess the data using the transform F and obtain v :=
F (&) which is approximately Gaussian.

2. Discrete wavelet transform. Choose a wavelet basis and a level J;. We select threshold
as follows: using the approximate standard normality of v we set the threshold to 6 =
v2log N and therewith compute denoised v as in (13).

3. Inverse transform. Finally, the transformation is inverted and the estimator of the Poisson
intensity is F~1(¥).

One of the most important things is the choice of the proper wavelet scaling function®. Generally
speaking, for appropriate denoising the wavelet scaling function should have properties which
are similar to the original signal. Therefore, in our estimation we choose to denoise F (&) with
Daubechies-3 wavelets. The illustration above just uses Haar wavelets as we already introduced
them. However, if we used Haar wavelets for the estimation, the result would be very poor.

The chosen estimation method is very well suited to estimate intensities which have extremely
sharp spikes. However, when the procedure is used for the estimation of smoother intensities,
its performance is as good as that of kernel methods. We illustrate this with some simulations.

Simulation results. In Figure 1 we compare the estimation method based on the Haar-Fisz
transform with a kernel estimator of the intensity and a standard wavelet estimator. We rely on
a standard, i.e. symmetric and smooth kernel (Gaussian) as well as we use standard, symmetric
and smooth wavelets (Daubechies-3). The intensity is, as already mentioned, assumed to be
subject to certain shocks and therefore has a peaky, shot-noise like shape. The number of jumps
in the considered intervals clearly reflects this. Figure 1 gives four plots. The first and the second
pair of plots differ in the true intensity. On the left side, we compare the estimation method
based on the Haar-Fisz transform (H-F estimator) with the outcomes from a kernel estimator.
On the right side we compare the H-F estimator with a standard wavelet approach not using
the Haar-Fisz transform. All plots suggests the advantage of the H-F estimator over the other
methods. In particular, this estimator is able to capture the large peaks without over-smoothing
it. It is notably, that the standard wavelet approach is quite close to the H-F estimator. As
was to be expected, the kernel estimator shows an over-smoothing of these peaks. Furthermore,
in the left plot, the kernel estimator is not able to detect the two smaller peaks following each
other.

5 Conclusion

This paper considers a wavelet based method for the estimation of the intensity of an inhomo-
geneous Poisson process. The procedure first transforms the observation to a vector which is
approximately Gaussian and then applies well established wavelets methods. In this paper we
establish the necessary weak convergence results which provide asymptotic normality of the pre-
processed data. A small simulation study considers the application to inhomogeneous Poisson
processes with intensities of the shot-noise type.

6 Appendix

First, we recall the following well-known result:

Lemma 6.1. Let & ~ Poiss()\), then % Z, N(0,1), as X — co.

SWe refer to Nason (2002) for more information on the choice of the wavelet scaling function in practice.
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Figure 1: Simulation and estimation of inhomogeneous Poisson processes for two different, given
intensities. The solid line gives the true intensity and the bars show the number of jumps in
the considered intervals. The plots give the different estimators: a kernel estimator, a standard
wavelet estimator and the estimator based on the Haar-Fisz transform (H-F estimator) as given
in Section 2.1.

Next, we give a result on boundedness of certain transforms of Poisson r.v.

Lemma 6.2. Consider, as in Theorem 3.1, independent &; ~ Poisson();), i = 1,2 and set

&1 — & 1 AN
Vé +& {6460} VAL A
Then {n(A1, A2) : A1, A2 > 1} is uniformly bounded in Ls.

n=n(A1,\2) :=

Proof. Set Y(\1) := (&1 — A1) -)\IW. Then E(Y®) = 15—1—25%1 + % and hence {Y (A1) : A\ > 1}
1
is uniformly bounded in Lg. Denote by || - ||, the norm in Ly, for any p > 0. Observe that

-8 Vit M
VAt Va+& {6+6:>0} VAL + A2

The second term is smaller than

I lls < H

3

§1— A1
Vg

§o2 — Ao
Vg

3 3

10



and hence it is uniformly Ls bounded by the remark above. To the first term, we have that

H & —& &
/51 T& & {&1+&2>0} ,7)\1 TN ,
Ve +& — VA + X
< |61 —&2) -
( ) V& &)+ X) (o620} 3
14+ & — (A1 + A2)
< |6 = &2) 1 0
VE L) T h) (VEF &+ VAT hg) O

< 51—521 2 ‘§1+€2—()\1+)\2) 2

TR Atz s
The first term is smaller than 1 and the second term is uniformly bounded as noted above. Thus
we have shown the result. Il |

The following lemma is used in the proof of Theorem 3.4.

Lemma 6.3. Assume that Assumption 3.3 holds. Then ¥ e > 0, 4 pg, such that ¥ p > po,

sup | Var(Gi(&yr)) — 1] <e. (14)

27 1<i<27

Furthermore, for any Jy € N, Ve > 0, dpg, such that ¥V p > pg,

sup | Cov(Gi(&27), Gr(€27))] <e. (15)

J>Jo, 1<i#k<27 (1-270)
Proof. Consider some J and set N = 27. Recall the notational convention (Gi,...,Gn_1) =
(G11,912, ---,G127-1,G21, ---,G297-2,...,Gy1). So the supremum is over suitable i’s, and

hence this is equivalent to consider all suitable (j,1)’s which are precisely all (j,1) € Al Tt is
essential to observe that for increasing N but fixed (j,1) the vectors P! get filled up with zeros,
so the value of (1&”, v), for any v does not change if N is increased.

With k = (I — 1)27 + 1 set
m = L pr2i-1),En)s M2 = (Lppgai-1 kr29), €N

and v; = E(n;). Observe that 7; ~ Poiss(v;), and n; and 7y are independent. Then

('l/’i’ﬁjv) W’i, >\N> m—mn2 vy — 13
= Y5 Il A - 1 T — - .
n=Giley) = GiAn) <¢i’£N>§ <¢i’>\N>§ vVmt+n Vit

By (3) we have that Var(n) — 1 if 14,15 both converge to infinity and v /vy converges to 1.
Hence, Ve > 0, J ¢, dg, such that V v1,v0 > g and ”—; — 1] < € it holds that | Var(n) — 1] < e.

1%

By Assumption 6 for this ¢y and Jp there exits a pg, such that for all p > po,

: Ai(p)
inf \i(p) > dp, su
ieN (e) ’ z‘,jGFI)\I | Ai(p)

— 1‘ < €. (16)

Hence for all p > py we have that | Var(n) — 1| < € and so (14) is proved.

For the second result, we start with a simple observation on the considered covariances. Using
Theorem 3.2 together with (3) we have that for i # k, Cov(G;(&x),Gk(&x)) — O.

Next, the observation & is split up into parts of fixed length 270, which we denote by u,,

s.t. we have €4 = (u,..., u}) with J = 27/2%0. Of course, all u,, are independent as are the
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components of & . For fixed 1 < i # k < (270 —1) it follows from the remark above that Ve > 0,
there exists p; i, such that Vp > p; 1,

sup Cov(G;(uy), Gk (uy,)) < e. (17)

n

Set py = max; <; 4y o7 pik- Clearly, for any p > po, (17) holds. Now consider arbitrary J > Jo.
As is clear from the definition, G;;(£y) is equal to gﬁ(uﬁ) with appropriate 7,1, 7. Combining
Cov(Gi(uy), Gr(u,,)) = 0 for n # m because of independence with (17) we obtain

sup | Cov(Gi(&27), Gk (€27))| <e.

J>Jo, 1<i#k<27 (1-270)
and therefore the proof is finished. O |

Remark 6.4. Tt will also be useful to have a result on the second moments instead of the variances.
Note that with Var(n) — 1 we have also E(n?) — 1, compare (3). A analogous argument to the
one used in Theorem 6.3 then yields that for any € > 0 there exists pg, such that thereafter

sup  [E((Gi(&90)?) — 1] <e. (18)
27 1<i<27
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