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Abstract. The goal of this article is to study in detail the pricing and calibration in mar-

ket models for credit portfolios. Starting from the framework of market models driven by

time-inhomogeneous Lévy processes in a top-down approach proposed in Eberlein, Grbac, and

Schmidt (2012) we consider a slightly simplified setup which eases calibration. This leads to a

new class of affine models which are highly tractable. Conditions for absence of arbitrage under

various types of contagion are given and valuation formulas for single tranche CDOs and options

on CDO spreads are obtained. A simple two-factor affine diffusion model is calibrated to iTraxx

data using the EM-algorithm together with an extended Kalman filter. The model shows a very

good fit to all tranches and all maturities over the full observation period of four years.

1. Introduction

A credit portfolio consists of a number of different credit names (obligors). Modeling of credit
portfolio risk is a challenging task which relies on the adequate quantification of the two main
sources of risk. The first one is market risk, which is the risk stemming from the changes in
interest rates and changes in the credit quality of the single credit names in the portfolio. The
second one is correlation risk (also known as default correlation) among these credit names. A
good model for credit portfolio risk should incorporate both sources of risk.

The main purpose of credit portfolio risk modeling is valuation and hedging of various contin-
gent claims on a portfolio. In general, securities whose value and payments depend on a portfolio
of underlying assets are termed asset-backed securities. For an overview and detailed descrip-
tions of different types of asset-backed securities we refer to Chapter 1 and Section 5.1 of this
book. Credit portfolio risk tranching is discussed in Chapter 3.

In the literature two main approaches can be found for credit portfolio models: the bottom-up
approach, where the default intensities of each credit name in the portfolio are modeled, and
the top-down approach, where the modeling object is the aggregate loss process of the portfolio.
Both approaches have been studied in numerous recent papers; we refer to Lipton and Rennie
(2011) and Bielecki, Crépey, and Jeanblanc (2010) for a detailed overview. Since in this article
we focus on the top-down approach, we mention some of the recent papers where this approach is
studied: Schönbucher (2005), Sidenius, Piterbarg, and Andersen (2008), Ehlers and Schönbucher
(2006, 2009), Arnsdorf and Halperin (2008), Longstaff and Rajan (2008), Errais, Giesecke, and
Goldberg (2010), Filipović, Overbeck, and Schmidt (2011) and Cont and Minca (2012).

In this article we develop a dynamic market model in the top-down setting, similar in spirit
to Eberlein, Grbac, and Schmidt (2012). As discussed in that paper, the market model frame-
work has a number of advantages in comparison to the HJM approaches for credit portfolio
modeling. Similarly to Filipović, Overbeck, and Schmidt (2011) we utilize (T, x)-bonds to build
an arbitrage-free model. However, we consider only a set of finitely many maturities which are
indeed traded in the market. Considering instead a continuum of maturities as in the HJM ap-
proaches puts unnecessary restrictions to the model. In particular, this is reflected in the drift
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condition which must be satisfied for all maturities. Taking into account only the traded ma-
turities, one gains an additional degree of freedom in the specification of arbitrage-free models.
For example, this allows various additional types of contagion as shown in Eberlein, Grbac, and
Schmidt (2012). As a consequence, a tractable affine specification of our model which includes
contagion can be obtained. It is needless to say that contagion effects are of particular importance
in the current crises and a tractable model with contagion is practically highly relevant.

As driving processes for the dynamics of (Tk, x)-forward prices, a wide class of time-inhomoge-
neous Lévy processes is used. This processes allow for jumps in the forward price dynamics
which are not driven by the default dates of the credit names in the portfolio. As pointed out in
Cont and Kan (2011), jumps in credit securities can also be triggered by macroeconomic events
external to the portfolio. The general specification proposed here allows for both, internal and
external, kinds of jumps.

Finally, the practical relevance of the model is illustrated by its ability to provide a good fit
to the market data. We use the iTraxx data from August 2006 to August 2010 and calibrate
the model to the full dataset of four years. This goes beyond the usual calibration practice,
where the models are calibrated to data from one day (cf. Cont, Deguest, and Kan (2010) for
an overview and excellent empirical comparison). The calibration is done by applying an EM-
algorithm together with an extended Kalman filter to a two-factor affine diffusion specification
of our model, as proposed in Eksi and Filipović (2012). Already this simple specification provides
a very good performance across different tranches and maturities.

The paper is organized as follows. In Section 2 we introduce the basic building blocks for credit
portfolio market models. In Section 3 the model for th dynamics of the forward (Tk, x)-prices is
presented and conditions for the absence of arbitrage are derived. Section 4 is a tractable affine
specification of the model. In Section 5 we present valuation formulas for single tranche CDOs
and call options on STCDOs. Section 6 is dedicated to the calibration of a two-factor affine
diffusion market model to data from the iTraxx series.

2. Basic notions

Consider a fixed time horizon T ∗ > 0 and a complete stochastic basis (Ω,G,G,QT ∗), where
G = GT ∗ . G = (Gt)0≤t≤T ∗ satisfies the usual conditions. The filtration G represents the full
market filtration and all price and interest rate processes in the sequel are adapted to it. We set
Q∗ := QT ∗ and denote the expectation with respect to Q∗ by E∗.

Following the market model approach we consider a tenor structure containing finitely many
maturities, denoted by 0 = T0 < T1 < . . . < Tn = T ∗. Set δk := Tk+1 − Tk, for k = 0, . . . , n− 1.

The studied credit risky market consists of a pool of credit risky assets. As laid out in the
introduction, we follow the top-down approach and directly study the aggregated losses. In this
regard, denote by L = (Lt)t≥0 the non-decreasing aggregate loss process. Assume that the total
volume is normalized to 1 and denote by I := [0, 1] the set of loss fractions such that L takes
values in I. We assume

(A1) Lt =
∑

s≤t ∆Ls is an I-valued, non-decreasing marked point process, which admits an
absolutely continuous compensator

νL(dt, dy) = FLt (dy)dt.

As shown in Filipović, Overbeck, and Schmidt (2011, Lemma 3.1), under (A1), the indicator
process (1{Lt≤x})t≥0 is càdlàg with intensity process

λ(t, x) = FLt ((x− Lt, 1] ∩ I).
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In particular, this yields that the process Mx given by

Mx
t = 1{Lt≤x} +

t∫
0

1{Ls≤x}λ(s, x)ds (1)

is a martingale.

The basic instruments are the (Tk, x)-bonds introduced in Filipović, Overbeck, and Schmidt
(2011). They are simple securities and prices for more complex products such as CDOs can be
derived from them in a model-free way, see Proposition 5.1.

Definition 2.1. A security which pays 1{LTk≤x}
at maturity Tk is called (Tk, x)-bond. Its price

at time t ≤ Tk is denoted by P (t, Tk, x).

If the market is free of arbitrage, P (t, Tk, x) is nondecreasing in x and

P (t, Tk, 1) = P (t, Tk), (2)

where P (t, Tk) denotes a time-t price of a default-free zero coupon bond with maturity Tk.
Moreover, if L already crossed the level x, the (Tk, x)-bond price is zero, i.e. on the set {Lt > x}
it holds that P (t, Tk, x) = 0.

In Filipović, Overbeck, and Schmidt (2011) a forward rate model for (T, x)-bonds has been
analyzed under the assumption that (T, x)-bonds are traded for all maturities T ∈ [0, T ∗]. This
assumption imposes unnecessary restrictions to the model, since in practice the set of traded
maturities is only finite. The market model approach takes this fact into account, see Eberlein,
Grbac, and Schmidt (2012) for a detailed discussion. Here, we follow the framework introduced
in this paper with slight modifications. The main ingredients in market models are the (Tk, x)-
forward bond prices defined below.

Definition 2.2. The (Tk, x)-forward price is given by

F (t, Tk, x) :=
P (t, Tk, x)

P (t, Tk)
(3)

for 0 ≤ t ≤ Tk.

The (Tk, x)-forward prices actually give the distribution of LTk under the QTk -forward measure
defined later in (8). More precisely, if we take P (·, Tk) as a numeraire we obtain

QTk

(
LTk ≤ x|Gt

)
=

1

P (t, Tk)
P (t, Tk)EQTk

(
1{LTk≤x}

|Gt
)

=
P (t, Tk, x)

P (t, Tk)
= F (t, Tk, x).

3. The model

3.1. Modeling assumptions. Let X be an Rd-valued Lévy process on the given stochastic
basis (Ω,G,G,QT ∗) with X0 = 0 and Lévy-Itô decomposition

Xt = Wt +

t∫
0

∫
Rd

x(µ− ν)(dx,ds), (4)

where W is a d-dimensional Wiener process with respect to Q∗, µ is the random measure of jumps
of X with its Q∗-compensator ν(dx,dt) = Ft(dx)dt. Note that the canonical representation (4)
is justified if X has a finite first moment. This is guaranteed by the following assumption which
implies the existence of exponential moments of X, compare Eberlein and Kluge (2006, Lemma
6).
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(A2) There are constants C̃, ε > 0 such that for every u ∈ [−(1 + ε)C̃, (1 + ε)C̃]d

sup
0≤t≤T ∗

( ∫
|x|>1

exp〈u, x〉Ft(dy)

)
<∞.

The main ingredient of the approach studied here is the dynamics of the (Tk, x)-forward prices.
We assume throughout that

F (t, Tk, x) = 1{Lt≤x}G(t, Tk, x), (5)

where

G(t, Tk, x) = G(0, Tk, x) exp

( t∫
0

a(s, Tk, x)ds+

t∫
0

b(s, Tk, x)dXs

+

t∫
0

∫
I

c(s, Tk, x; y)µL(ds, dy)

)
. (6)

Remark 3.1. Specifying the dynamics of G in this way, we allow for two kinds of jumps: the
jumps caused by market forces, represented by the Lévy process X, and the jumps caused by
defaults in the portfolio, represented through the aggregate loss process L. The latter allows
for direct contagion effects; when ∆Lt 6= 0, Assumption (A5) below gives that ∆G(t, Tk, x) =
c(t, Tk, x; ∆Lt).

Remark 3.2. This approach is similar in spirit to Eberlein, Grbac, and Schmidt (2012). How-
ever, note that in that paper the forward spreads are modeled, whereas here we decide to model
directly the (Tk, x)-forward prices which simplifies calibration of the model. As we shall see later
on, the market model framework allows a very general specification for the dynamics of the loss
process. We will study an affine special case which includes contagion and provides a highly
tractable framework. This is a major advantage of the market approach in contrast to the HJM
framework, where the risky short rate is directly connected to the intensity of the loss process.
For a detailed discussion of this issue we refer to Eberlein, Grbac, and Schmidt (2012, Section
1 and Remark 5.3).

Additionally, we make the following assumptions.

(A3) For all Tk there is an R-valued function c(s, Tk, x; y), which is called the contagion param-
eter and which as a function of (s, x, y) 7→ c(s, Tk, x; y) is P ⊗ B(I)⊗ B(I)-measurable.
We also assume

sup
s≤Tk,x,y∈I,ω∈Ω

|c(s, Tk, x; y)| <∞

and c(s, Tk, x; y) = 0 for s > Tk.

(A4) For all Tk there is an Rd+-valued function b(s, Tk, x), which as a function of (s, x) 7→
b(s, Tk, x) is P ⊗ B(I)-measurable. Moreover,

sup
s≤Tk,x∈I,ω∈Ω

b(s, Tk, x) ≤ C̃,

where C̃ > 0 is some constant. If s > Tk, then b(s, Tk, x) = 0.

(A5) [L,X]t = 0 for all t ≥ 0.

The drift term a(·, Tk, ·), for every Tk, is an R-valued, O ⊗ B(I)-measurable process such that
a(s, Tk, x) = 0, for s > Tk, that will be specified later.
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The technical assumptions (A3) and (A4) ensure measurability of the subsequent operations.
Assumption (A5) states that jumps in L influence F only through c and not via a direct
dependence of L and X, which is natural from a modeling point of view.

3.2. Absence of arbitrage. It is well known that the market of (Tk, x)-bonds is free of arbi-
trage, if for each k, i = 2, . . . , n the process(P (t, Tk, x)

P (t, Ti)

)
0≤t≤Ti∧Tk−1

(7)

is a QTi-local martingale. The forward measure QTk is defined on (Ω,GTk) by its Radon-Nikodym
derivative with respect to the terminal forward measure QTn = Q∗, i.e.

dQTk

dQTn

∣∣∣∣
Gt

=
P (0, Tn)

P (0, Tk)

P (t, Tk)

P (t, Tn)
. (8)

We assume that this density has the following expression as stochastic exponential

dQTk

dQTn

∣∣∣∣
Gt

= Et
( ·∫

0

α(s, Tk)dWs +

·∫
0

∫
Rd

(β(s, Tk, y)− 1)(µ− ν)(ds, dy)

)
,

where α ∈ L(W ) and β ∈ Gloc(µ). Moreover, under QTk the process

W Tk
t := Wt −

t∫
0

α(s, Tk)ds (9)

is a d-dimensional standard Brownian motion and

νTk(ds, dy) := β(s, Tk, y)ν(ds, dy) = F Tks (dy)ds, (10)

is the compensator of µ. For a proof in the setting studied here, see Theorems III.3.24,III.5.19,
III.5.35 in Jacod and Shiryaev (2003).

The compensator of the random measure µL of the jumps in the loss process under QTk is

denoted by νL,Tk(dt,dx) = FL,Tkt (dx)dt.

Set

D(t, Tk, x) := a(t, Tk, x) +
1

2
‖ b(t, Tk, x) ‖2 (11)

+
〈
b(t, Tk, x), α(t, Tk)

〉
+

∫
Rd

(
e〈b(t,Tk,x),y〉 − 1−

〈
b(t, Tk, x), y

〉
β(t, Tk, y)−1

)
F Tkt (dy).

The following result gives conditions which provide an arbitrage-free specification of the
studied model. More precisely, we obtain necessary and sufficient conditions for (7) to hold,
i.e. conditions for the (Tk, x)-forward price process F (·, Tk, x) being a local martingale under the
forward measure QTk , for k = 2, . . . , n.

Theorem 3.3. Assume that (A1)–(A5) are in force and let k ∈ {2, . . . , n}, x ∈ I. Then the
process (F (t, Tk, x))0≤t≤Tk−1

given by (5) is a QTk-local martingale if and only if

D(t, Tk, x) = λTk(t, x)−
∫
I

(
ec(t,Tk,x;y) − 1

)
1{Lt−+y≤x}F

L,Tk(t, dy) (12)

on the set {Lt ≤ x}, λ1⊗QTk-a.s. where λ1 denotes the Lebesgue measure on R and λTk(t, x) :=
FL,Tk(t, (x− Lt, 1] ∩ I).
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Proof: The proof follows the same lines as the proof of Theorem 5.2 in Eberlein, Grbac, and
Schmidt (2012). Since the specification of the dynamics of the (Tk, x)-forward prices is different
in this paper, we include a proof here for the sake of completeness.

Using integration by parts yields

dF (t, Tk, x) = G(t−, Tk, x)d1{Lt≤x} + 1{Lt−≤x}dG(t, Tk, x) + d
[
G(·, Tk, x),1{L·≤x}

]
t

=: (1′) + (2′) + (3′).

For the first summand (1′) note that analogously to (1),

Mx,Tk
t := 1{Lt≤x} +

t∫
0

1{Ls≤x}λ
Tk(s, x)ds (13)

is a QTk -martingale with λTk(t, x) := FL,Tk(t, (x− Lt, 1] ∩ I). This yields

d1{Lt≤x} = dMx,Tk
t − 1{Lt≤x}λ

Tk(t, x)dt

= 1{Lt−≤x}

(
dMx,Tk

t − λTk(t, x)dt
)
,

since dMx,Tk
t = 1{Lt−≤x}dM

x,Tk
t . Hence,

(1′) = G(t−, Tk, x)1{Lt−≤x}

(
dMx,Tk

t − λTk(t, x)dt
)

= F (t−, Tk, x)
(

dMx,Tk
t − λTk(t, x)dt

)
.

Regarding (2′), we have

dG(t, Tk, x) = G(t−, Tk, x)

((
a(t, Tk, x) +

1

2
‖ b(t, Tk, x) ‖2

)
dt

+

∫
I

(
ec(t,Tk,x;y) − 1

)
µL(dt,dy)

+

∫
Rd

(
e〈b(t,Tk,x),x̃〉 − 1− 〈b(t, Tk, x), x̃〉

)
µ(dt,dx̃)

+

∫
Rd

〈b(t, Tk, x), x̃〉(µ− ν)(dt,dx̃) + b(t, Tk, x)dWt

 ,

where we have used the integration by parts formula, Assumption (A5) and Itô’s formula for
semimartingales. Now we use the representation of X under QTk given via (9) and (10) which



MARKET MODELS 7

leads to

dG(t, Tk, x) = G(t−, Tk, x)

((
a(t, Tk, x) +

1

2
‖ b(t, Tk, x) ‖2 +〈b(t, Tk, x), α(t, Tk)〉

)
dt

+ b(t, Tk, x),dW Tk
t

+

∫
I

(
ec(t,Tk,x;y) − 1

)
FL,Tkt (dy)dt

+

∫
I

(
ec(t,Tk,x;y) − 1

)
(µL − νL,Tk)(dt,dy)

+

∫
Rd

(e〈b(t,Tk,x),x̃〉 − 1)(µ− νTk)(dt,dx̃)

+

∫
Rd

(
e〈b(t,Tk,x),x̃〉 − 1− 〈b(t, Tk, x), x̃〉

)
β−1(t, Tk, x̃)F Tkt (dx̃)dt

 . (14)

Finally consider (3′). We have[
G(·, Tk, x),1{L·≤x}

]
t

=
∑
s≤t

∆1{Ls≤x}∆G(s, Tk, x).

Since 1{L·≤x} drops from 1 to 0 as L crosses the barrier x,

∆1{Ls≤x} = −1{Ls−≤x,Ls>x} = −1{Ls−≤x,Ls−+∆Ls>x}

= −
∫
I

1{Ls−≤x}1{Ls−+y>x}µ
L({s}, dy).

Using this together with (14) and Assumption (A5) leads to

d
[
G(·, Tk, x),1{L·≤x}

]
t

= −G(t−, Tk, x)

∫
I

1{Lt−≤x}1{Lt−+y>x}

(
ec(t,Tk,x;y) − 1

)
µL(dt,dy),

which concludes the proof. �

4. An affine specification

Up to now, the presented framework was very general. In this section, an affine factor model
is studied in more detail. Affine factor models present a subclass of Markovian factor models
which are used frequently in practice because of their high degree of tractability. The following
section on calibration will show that a simple two-factor affine model shows an excellent fit to
market data.

For simplicity, we study affine diffusion models only, i.e. affine models driven by a Brownian
motion. The extension to Lévy processes as drivers can be done following the path laid out here.
Consider a d-dimensional Brownian motion W and let µ and σ be the functions from Z to Rd
and Rd×d satisfying

µ(z) = µ0 +
d∑
i=1

µi zi,
1

2
σ(z)>σ(z) = ν0 +

d∑
i=1

νi zi

for some vectors µi ∈ Rd and matrices νi ∈ Rd×d, i = 0, . . . , d. Note that with σ(z)>σ(z) also νi,
i = 0, . . . , d are symmetric matrices. We assume that for all z ∈ Z, Z = Zz is the continuous,
unique strong solution of

dZt = µ(Zt)dt+ σ(Zt)
>dWt, Z0 = z ∈ Z.
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We specify G in the following variant of an affine specification. Let

G(t, Tk, x) = exp

(
A(t, Tk, x) +B(t, Tk, x)>Zt +

t∫
0

∫
I

c(s, Tk, x, Ls−; y)µL(ds, dy) (15)

+

t∫
0

d(s, Tk, x, Ls−)ds

)
,

for t ≤ Tk. Here A, B, c and d are deterministic functions which have to be specified in an
appropriate way to guarantee absence of arbitrage. Note that while G has an (exponential)-
affine dependence on Z its dependence on the loss process via the function c is much more
general. It is this extension of the affine framework which allows to introduce contagion in an
arbitrage-free model as we will show in the sequel.

Finally, we assume that the compensator of the loss process has the following affine structure:
assume that FLt (dy) = m(t, Lt−, Zt, dy) where

m(t, l, z, dy) := m0(t, l, dy) +
d∑
i=1

mi(t, l, dy)zi. (16)

We assume thatm(t, l, z, dy) is a Borel-measure, in particularm(·, A) ≥ 0. This gives a restriction
on mi depending on the state space: consider, for example, the state space Z = Rd1 × (R≥0)d2 .
This implies that m1 = · · · = md1 ≡ 0, as otherwise m would attain negative values. We assume
that mi(t, l, z, I) <∞, i = 1, . . . , d (finite activity).

All appearing functions are assumed to be càdlàg in each variable. Furthermore we assume a
flat interest rate structure, i.e. P (t, Tk) = 1 for all 0 ≤ t ≤ Tk, so that the QTk -forward measures
coincide. This can be extended in a straightforward manner to the setup where risk-free bond
prices are independent of X and L, as we only use that the semimartingale characteristics of
the driving processes coincide under all forward measures.

Proposition 4.1. Assume G is given by (15). Moreover, assume that

di(t, Tk, x, l) = mi(t, l, I)−
∫
I

ec(t,Tk,x,l;y)1{y≤x+l}mi(t, l, dy), (17)

i = 0, . . . , d. If A and B satisfy the following system of differential equations

−∂tA(t, Tk, x) = B(t, Tk, x)>µ0 +
1

2
B(t, Tk, x)>ν0B(t, Tk, x) (18)

−∂tB(t, Tk, x)j = B(t, Tk, x)>µj +
1

2
B(t, Tk, x)>νjB(t, Tk, x) (19)

then the model given by (5) is free of arbitrage.

Proof: In order to verify absence of arbitrage we analyze the drift condition (12). As in the proof
of Theorem 3.3 we obtain the dynamics of the forward rates

dF (t, Tk, x)

F (t−, Tk, x)
=

(
− λ(t, x) +D(t, Tk, x) +

∫
I

(
ec(t,Tk,x,Lt−;y) − 1

)
FLt (dy)

)
dt

−
∫
I

(
ec(t,Tk,x,Lt−;y) − 1

)
1{Lt+y>x}F

L
t (dy)dt+ dM̃t
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where D(t, Tk, x) is given by

D(t, Tk, x) = ∂tA(t, Tk, x) + ∂tB(t, Tk, x)Zt

+ 〈B(t, Tk, x), µ(Zt)〉+
1

2
‖ B(t, Tk, x)σ(Zt) ‖2 +d(t, Tk, x, Lt−)

and M̃ is a local martingale. In order to obtain absence of arbitrage, forward price processes
need to be local martingales and hence the drift term needs to vanish. Note that

λ(t, x)−
∫
I

(
ec(t,Tk,x,Lt−;y) − 1

)
1{y≤x+Lt−}F

L
t (dy)

= λ(t, 0)−
d∑
i=0

(Zt)i

∫
I

ec(t,Tk,x,Lt−;y)1{y≤x+Lt−}mi(t, Lt−, dy)

= −
d∑
i=0

(Zt)i

∫
I

ec(t,Tk,x,Lt−;y)1{y≤x+Lt−} − 1

mi(t, Lt−, dy) (20)

where we used (Zt)0 = 1 to simplify the notation. In the following we consider the drift for all
possible values Lt− = l ∈ I and Zt = z ∈ Z. Observe that (20) at values Lt− = l and Zt = z
reads

−
d∑
i=0

zi

∫
I

ec(t,Tk,x,l;y)1{y≤x+l}mi(t, l, dy)−mi(t, l, I)

 =
d∑
i=0

zidi(t, Tk, x, l)

and the equality is implied by the assumption (17). On the other hand, the remaining terms of
D(t, Tk, x), considered at values Lt− = l and Zt = z are given by

∂tA(t, Tk, x) + ∂tB(t, Tk, x)>z +

d∑
i=0

B(t, Tk, x)>µizi

+
1

2

d∑
i=0

ziB(t, Tk, x)>νiB(t, Tk, x).

Observe that this term is zero if the following two equations are satisfied:

−∂tA(t, Tk, x) = B(t, Tk, x)>µ0 +
1

2
B(t, Tk, x)>ν0B(t, Tk, x)

−∂tB(t, Tk, x)i = B(t, Tk, x)>µi +
1

2
B(t, Tk, x)>νiB(t, Tk, x),

and hence, the drift term in the dynamics of the forward price vanishes. �

It is important to note that, in spirit of the market model approach, we do not have to satisfy
boundary conditions for the Riccati equations. Of course one typically would nevertheless choose
B(Tk, Tk, x)i = A(Tk, Tk, x) = 0.

If the dependence on the loss process is such that di does no longer depend on l, then we
may study the following, simpler model. This is in particular suitable for the calibration exercise
where no default appears in the data. With no observed default it would be unreasonable to
extrapolate a specific functional dependence on the losses, such that it seems reasonable to work
in this simplified setup.

Corollary 4.2. Assume G is given by (15). Moreover, assume that

di(t, Tk, x) =

∫
I

ec(t,Tk,x;y)1{y≤x+l}mi(t, l, dy)−mi(t, l, I),



10 FRANK GEHMLICH, ZORANA GRBAC, AND THORSTEN SCHMIDT

i = 0, . . . , d. If A and B satisfy the following system of differential equations

−∂tA(t, Tk, x) = B(t, Tk, x)>µ0 +
1

2
B(t, Tk, x)>ν0B(t, Tk, x)

+ d0(t, Tk, x),

−∂tB(t, Tk, x)j = B(t, Tk, x)>µj +
1

2
B(t, Tk, x)>νjB(t, Tk, x)

+ di(t, Tk, x),

then the model given by (5) is free of arbitrage.

5. Pricing

The aim of this section is to discuss the pricing of credit portfolio derivatives in the market
model framework. A single tranche CDO (STCDO) is a typical example of such a derivative and
it is a standard market instrument for investment in a pool of credits. For a detailed overview
on credit portfolio risk tranching we refer to Chapter 3 of this book.

We consider here a STCDO which is specified as follows: 0 < T1 < · · · < · · ·Tm denotes
a collection of future payment dates and x1 < x2 in [0, 1] are a so-called lower and upper
detachment points. The fixed spread is denoted by S. An investor in the STCDO receives
premium payments in exchange for payments at defaults: the premium leg consists of a series of
payments equal to

S[(x2 − LTk)+ − (x1 − LTk)+] =: Sf(LTk), (21)

received at Tk, k = 1, . . . ,m− 1. The function f is defined by

f(x) := (x2 − x)+ − (x1 − x)+ =

x2∫
x1

1{x≤y}dy. (22)

The default leg consists of a series of payments at tenor dates Tk+1, k = 1, . . . ,m− 1, given by

f(LTk)− f(LTk+1
). (23)

This payment is non-zero only if ∆Lt 6= 0 for some t ∈ (Tk, Tk+1]. In the literature alterna-
tive payment schemes can be found as well (see Filipović, Overbeck, and Schmidt (2011), for
example). Note that

(23) =

x2∫
x1

[
1{LTk≤y}

− 1{LTk+1
≤y}

]
dy =

x2∫
x1

1{LTk≤y,LTk+1
>y}dy.

Similarly to Eberlein, Grbac, and Schmidt (2012, Section 8.1), it is convenient to replace the
forward measures QTk by so-called (Tk, x)-forward measures. In order to do so, we assume
henceforth that the processes (F (t, Tk, x))0≤t≤Tk−1

, are true QTk -martingales for every k =
2, . . . , n and x ∈ I. Moreover, (F (t, T1, x))0≤t≤T1 is a true QT1-martingale. For x ∈ [0, 1] and
k ∈ {1, . . . ,m− 1}, the (Tk, x)-forward measure QTk,x on (Ω,GTk) is defined by its Radon-
Nikodym derivative

dQTk,x

dQTk

:=
F (Tk−1, Tk, x)

EQTk [F (Tk−1, Tk, x)]
=
F (Tk−1, Tk, x)

F (0, Tk, x)

and the corresponding density process is given by

dQTk,x

dQTk

∣∣∣∣∣
Gt

=
F (t, Tk, x)

F (0, Tk, x)
.

Note that QTk,x is not equivalent to QTk if QTk(LTk−1
> x) > 0, but it is absolutely continuous

with respect to QTk . Similar measure changes – yielding so-called defaultable forward measures
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– have been introduced and applied in the pricing of credit derivatives in Schönbucher (2000)
and Eberlein, Kluge, and Schönbucher (2006).

Proposition 5.1. The value of the STCDO at time t ≤ T1 is

πSTCDO(t, S) =

x2∫
x1

( m∑
k=1

ckP (t, Tk, y)−
m−1∑
k=1

P (t, Tk+1, y)v(t, Tk+1, y)
)

dy, (24)

where c1 = S, ck = 1 + S, for 2 ≤ k ≤ m− 1, cm = 1 and

v(t, Tk+1, y) := EQTk+1,x

(
G(Tk, Tk+1, x)−1|Gt

)
(25)

with G(·, Tk+1, x) specified in (6). The STCDO spread S∗t at time t, i. e. the spread which makes
the value of the STCDO at time t equal to zero, is given by

S∗t =

∑m−1
k=1

∫ x2
x1
P (t, Tk+1, y) (v(t, Tk+1, y)− 1) dy∑m−1
k=1

∫ x2
x1
P (t, Tk, y)dy

. (26)

Proof: The premium Sf(LTk) is paid at times T1, . . . , Tm−1 and thus, the value of the premium
leg at time t equals

m−1∑
k=1

P (t, Tk)EQTk (Sf(LTk)|Gt) =

m−1∑
k=1

SP (t, Tk)

x2∫
x1

EQTk (1{LTk≤y}
|Gt)dy

= S
m−1∑
k=1

x2∫
x1

P (t, Tk, y)dy,

where we have used

P (t, Tk+1, x) = P (t, Tk+1)EQTk+1

(
1{LTk+1

≤x}|Gt
)

(27)

for the last equality.

On the other side, the default payments are given by f(LTk)−f(LTk+1
) at tenor dates Tk+1, k =

1, . . . ,m− 1. For each k the value at time t of this payment is

P (t, Tk+1)EQTk+1
(f(LTk)− f(LTk+1

) | Gt) (28)

= P (t, Tk+1)EQTk+1

( x2∫
x1

(
1{LTk≤y}

− 1{LTk+1
≤y}

)
dy
∣∣Gt)

=

x2∫
x1

P (t, Tk+1)EQTk+1

(
1{LTk≤y}

− 1{LTk+1
≤y}

∣∣Gt)dy

=

x2∫
x1

(
P (t, Tk+1)EQTk+1

(
1{LTk≤y}

∣∣Gt)− P (t, Tk+1, y)
)

dy.

It remains to calculate the conditional expectation EQTk+1

(
1{LTk≤y}

∣∣Gt). We have

EQTk+1

(
1{LTk≤y}

|Gt
)

= EQTk+1

(
1{LTk≤y}

G(Tk, Tk+1, y)G(Tk, Tk+1, y)−1
∣∣∣Gt)

= EQTk+1

(
F (Tk, Tk+1, y)G(Tk, Tk+1, y)−1

∣∣∣Gt)
= F (t, Tk+1, y)EQTk+1,y

(
G(Tk, Tk+1, y)−1

∣∣∣Gt),
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where the last equality follows by changing the measure to QTk+1,x. Denoting

v(t, Tk+1, y) := EQTk+1,x

(
G(Tk, Tk+1, y)−1

∣∣∣Gt), (29)

the value of the default leg at time t is given by

m−1∑
k=1

x2∫
x1

(P (t, Tk+1, y)v(t, Tk+1, y)− P (t, Tk+1, y)) dy. (30)

Finally, the value of the STCDO is the difference of the time-t values of the payment leg and of
the default leg. Thus, we obtain (24). Solving πSTCDO(t, S) = 0 in S yields the spread S∗t . �

In Section 4 the constant risk-free term structure assumption is imposed, i.e. it is assumed
P (t, Tk) = 1, for every Tk and t ≤ Tk. In this case the previous result takes the following form.

Corollary 5.2. Under the constant risk-free term structure assumption, the value at time t ≤ T1

of the STCDO is given by

πSTCDO(t, S) =

x2∫
x1

(
m−1∑
k=1

SF (t, Tk, y) + F (t, Tm, y)− F (t, T1, y)

)
dy. (31)

The STCDO spread S∗t at time t is equal to

S∗t =

∫ x2
x1

(F (t, T1, y)− F (t, Tm, y))dy∑m−1
k=1

∫ x2
x1
F (t, Tk, y)dy

.

Proof: The result follows by inspection of the previous proof whilst noting that

EQTk+1

(
1{LTk≤y}

|Gt
)

= EQ∗
(
1{LTk≤y}

|Gt
)

= P (t, Tk, y) = F (t, Tk, y),

since P (t, Tk) = 1 and all forward measures coincide. Hence,

v(t, Tk+1, y) =
F (t, Tk, y)

F (t, Tk+1, y)

and the corollary is proved. �

We conclude this section by studying an option on the STCDO defined above. This option
gives the right to enter into such a contract at time T1 at a pre-specified spread S. This is
equivalent to an European call on the STCDO with payoff(

πSTCDO(T1, S)
)+

at T1.

The assumption of the constant risk-free term structure is still in force. We further assume
G(0, Tk, y), a(t, Tk, y), b(t, Tk, y) and c(t, Tk, y; z) are constant in y between x1 and x2. For
simplicity we denote a(t, Tk, y) = a(t, Tk, x1) by a(t, Tk) and similarly for the other quantities.

Proposition 5.3. The value of the option πcall(t, S) at time t ≤ T1 is

πcall(t, S) = EQ∗

f(LT1)

(
d̃1 +

m∑
k=2

d̃k exp

( T1∫
0

a(t, Tk)dt

+

T1∫
0

b(t, Tk)dXt +

T1∫
0

∫
I

c(t, Tk; z)µ
L(dt, dz)

))+ ∣∣∣Gt
 ,
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where d̃1 = (S − 1)G(0, T1), d̃k = SG(0, Tk), for 2 ≤ k ≤ m − 1, and d̃m = G(0, Tm). If in
addition X, a(t, Tk) and b(t, Tk) are conditionally independent of L given Gt, then

πcall(t, S) = EQ∗ (f(LT1))EQ∗

(d̃1 +

m∑
k=2

d̃k exp

( T1∫
0

a(t, Tk)dt

+

T1∫
0

b(t, Tk)dXt +

T1∫
0

∫
I

c(t, Tk; z)µ
L(dt, dz)

))+ ∣∣∣Gt
 ,

where

EQ∗ (f(LT1)|Gt) = x2Q∗ (LT1 ≤ x2|Gt)− x1Q∗ (LT1 ≤ x1|Gt)

− EQ∗

(
LT11{x1<LT1≤x2}|Gt

)
.

Proof: The value of the option at time t ≤ T1 is given by the conditional expectation

πcall(t, S) = EQ∗
((
πSTCDO(T1, S)

)+ | Gt)
= EQ∗

( x2∫
x1

(
m−1∑
k=1

SF (T1, Tk, y) + F (T1, Tm, y)− F (T1, T1, y)

)
dy

)+ ∣∣∣Gt
 ,

where we have used Corollary 5.2. Now the result follows by inserting (5) and (6).

The second result is obvious by conditional independence and definition of f . �

6. Calibration

This section is devoted to the detailed description of the calibration of a two-factor affine diffu-
sion model. The method which turned out to provide the best results utilizes the EM-algorithm
together with an unscented Kalman filter. In contrast to typical calibration approaches, see
Cont, Deguest, and Kan (2010) where the models are fit to one or two single days, we calibrate
the model to the full observation period which encompasses four years of observed data from
the iTraxx Europe. The model is able to provide a very good fit throughout all tranches and
maturities. In the calibration methodology we follow the scheme suggested in Eksi and Filipović
(2012). As discussed previously, the considered affine market model entails a direct contagion
effects which improves the calibration results.

The data consists of implied zero-coupon spreads of the iTraxx Europe from 30 August 2006
to 3 August 2010. In contrast to Eberlein, Grbac, and Schmidt (2012) we incorporate also data
from 2006 and 2007, which is characterized by steady spread movements at an extremely low
level. It will turn out, that the fit to this time period is not as good as the fit to the more volatile
period starting in the year 2008. This suggests a structural break starting from the credit crisis,
which is very reasonable.

The implied zero-coupon spreads are observed at detachment points {x1, . . . , xJ} which equal
{0, 0.03, 0.06, 0.09, 0.12, 0.22, 1}. They are obtained by computing the spread of quoted STCDO
premiums over the risk-free interest yield over the same period, in our notation given by

R(t, τ, j) := −1

τ
log

(
1

xj+1 − xj

xj+1∫
xj

F (t, t+ τ, x)dx

)
. (32)

Here τ := T−t denotes time to maturity and the observed values are {3, 5, 7, 10}. It is important
to remark that there was no default in the underlying pool in the observation period. The realized
index spreads are shown in Figure 1. With the beginning of the credit crisis volatility as well as
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Figure 1. The iTraxx Europe zero-coupon index spread for the period August
2006 to August 2010. The different graphs refer to the time to maturity of 3,5,7
and 10 years.

levels of credit spreads raised to levels never seen before. After a period of stabilization, from
early 2010 on the spread levels started again to rise to higher levels when the European debt
crises evolved. This heterogeneous dataset makes the calibration very difficult.

Figure 2 shows STCDOs spread premiums over different maturities and tranches. It is re-
markable that curves for different maturities look quite similar, which makes it plausible to
capture the observed dynamics with a low number of factors. The principal component analysis
performed in Eksi and Filipović (2012) reveals that two factors already explain 88.30% of the
realized variance and we therefore consider a two-factor affine model.

More precisely, we consider the following two-dimensional affine diffusion Z with values in the
state space Z := R+ × R+. We assume that Z solves the SDEs

dZ1
t = κ1(Z2

t − Z1
t )dt+ σ1

√
Z1
t dW

1
t (33)

dZ2
t = κ2(θ2 − Z2

t )dt+ σ2

√
Z2
t dW

2
t , (34)

with Z0 = (z1, z2)> ∈ Z. Here κ1, κ2, θ2, σ1, σ2 are positive constants and W 1 and W 2 are
two independent standard Brownian motions under the objective probability measure P. In this
formulation, Z2 is a Feller square-root process and Z1 is a non-negative process with stochastic
mean reversion level Z2.

Pricing is done under a risk-neutral measure Q∗ and we chose a class of equivalent measure
which keep the affine structure of Z. This is done by considering the market prices of risk λ1

and λ2, given by

λit =
λi
√
Zit

σi
,

with some constants λ1, λ2 ∈ R. Applying Girsanov’s theorem, we change to the equivalent

probability measure Q∗ where W̃ i
t = W i

t +
∫ t

0 λ
i
sds, i = 1, 2 are independent standard Q∗-

Brownian motions. Then, under Q∗, Z is again affine and satisfies the following SDEs; see
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Figure 2. The upper graph shows the iTraxx Europe 9%-12% tranche spread
from August 2006 to August 2010 for different maturities. The lower graph illus-
trates the iTraxx Europe tranche spreads from August 2006 to August 2010 for
a fixed maturity of five years.

Cheridito, Filipović, and Kimmel (2010):

dZ1
t = (κ1 + λ1)

(
κ1

κ1 + λ1
Z2
t − Z1

t

)
dt+ σ1

√
Z1
t dW̃

1
t , (35)

dZ2
t = (κ2 + λ2)

(
κ2

κ2 + λ2
θ2 − Z2

t

)
dt+ σ2

√
Z2
t dW̃

2
t . (36)

This is the starting point to apply the results from Section 4. Additionally to the factor process,
we need to specify the compensator of the loss process. We chose the following affine specification

m(t, l, z, dy) = m0(t, l, dy) +m1(t, l, dy)z1,

where the jump distributions mi(t, l, ·) are chosen from the Beta family. This in turn gives

m(t, l, z, dy) =
1

B(a1, b1)
ya1−1(1− y)b1−1dy +

z1

B(a2, b2)
ya2−1(1− y)b2−1dy,

where all coefficients are positive. Finally, the contagion term is assumed to be linear in the loss
level, i.e.

c(t, Tk, x, Lt−; y) = cy(Tk − t). (37)



16 FRANK GEHMLICH, ZORANA GRBAC, AND THORSTEN SCHMIDT

One reason for this choice is that due to a lack of defaults in the observation period, a precise
estimation of a nonlinear relation does not seem reasonable. Finally, we consider F as in (5).
Together with (18) and (19) this yields an arbitrage-free model.

6.1. Calibration procedure. For the calibration of the model we follow the ideas in Eksi and
Filipović (2012) and utilize the EM-algorithm together with Kalman filter techniques for the
estimation of the (unobserved) factor process Z from the observed STCDO prices.

For the calibration procedure itself we make the following two assumptions: first, we assume
that tranche spreads are piecewise constant in between the detachment points, i.e.

G(t, Tk, x) = G(t, Tk, xi+1), for x ∈ [xi, xi+1). (38)

As previously, F (t, Tk, x) = 1{Lt≤x}G(t, Tk, x). Second, we assume that observed prices are
model prices plus an additive measurement error. More precisely, we consider observation times
0 = t0, t1, t2, . . . and assume that

R(tk, τ, j) = −1

τ
log

(
1

xj+1 − xj

xj+1∫
xj

G(tk, tk + τ, x) dx

)
+ ε(k, τ, j + 1)

The error terms ε(k, τ, j) are assumed to be independent and normally distributed random
variables with zero mean and tranche dependent variance σ2

j . Moreover, they are independent
of Z and L.

Considering equation (18), our two-factor affine specification (35) and (36) yields that ν0 = 0
as well as µ0 = (0, κ2θ2)>. Letting τ = Tk − t we obtain that

A(τ, x) = κ2θ2

τ∫
0

B(s, x)1ds+

τ∫
0

C0(s, x; l)ds− τ.

Integrating this terms w.r.t. x gives, using (38), that
xj+1∫
xj

eA(τ,x)dx = eκ2θ2
∫ τ
0 B(s,xj+1)1ds−τ ·

xj+1∫
xj

e
∫ τ
0 C0(s,x;l)dsdx.

We obtain the following representation for the observed spreads:

R(tk, τ, j) =
1

τ
log(xj+1 − xj)−

1

τ
κ2θ2

τ∫
0

B(s, xj+1)1ds+ 1− 1

τ
B(τ, xj+1)>Zt

− 1

τ
log

 xj+1∫
xj

e
∫ τ
0 C0(s,x;l)dsdx

+ ε(tk, τ, j)

=: K(τ, xj+1)− 1

τ
B(τ, xj+1)>Zt + ε(tk, τ, j) (39)

for all tranches j ∈ {1, . . . , J − 1} and maturities τ ∈ {3, 5, 7, 10}. As R is a linear function of
Z, it may be represented by

Rtk := (R(tk, τ1, 1), . . . , R(tk, τ4, J − 1))> = f(Ztk) + εk

with error vector εk := (ε(tk, τ1, 1), . . . , ε(tk, τ4, J − 1))>.

Following the quasi-maximum likelihood procedure, we approximate the transition density
of this equation by a normal density where we match first and second conditional moments.
Taking into account the dependence structure of the process, we approximate the conditional
distribution of Ztk given Ztk−1

by a normal distribution with mean g(Ztk−1
) and covariance

matrix Qk−1. The computations of g and Q are relegated to the appendix, see Proposition A.1.
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Essentially, the affine structure allows to derive the conditional Fourier transform in tractable
form which gives the conditional moments.

The EM-algorithm basically requires two iterative steps, namely filtering (expectation step)
and the maximization of the likelihood (maximization step). The most difficult step in our setup
is the expectation step which we approach with an extended Kalman filter.

The linearity of the functions f(z) =: f0+f>1 z and g(z) = g0+g>1 z makes it straightforward to
compute the moments required for the Kalman filter as we show now. Let FRt := σ(Rs : s ≤ t)
Denote mk := E(Ztk |FRtk) and m−k := E(Ztk |FRtk−1

). Analogously, denote by Pk and P−k the

conditional variance of Ztk given FRtk and FRtk−1
, respectively.

In the prediction step, we compute m−k and P−k which gives

m−k = E(Ztk |F
R
tk−1

) = f0 + f>1 mk−1

P−k = f1Pk−1f
>
1 +Qk−1.

The updating step incorporates the new information given by Rtk . By Cov(X,Y ) for two
random vectors X and Y we denote the variance-covariance matrix and Var (X) := Cov(X,X).
We obtain

r−k = E(Rk|FRtk−1
) = g(m−k ) = g0 + g>1 m−k

Fk = Var (Rk|FRtk−1
) = g1P

−
k g
>
1 + Σ

Sk = Cov(Ztk , Rk|F
R
tk−1

) = P−k g1;

here Σ denotes the diagonal matrix with entries σ2
1, . . . , σ

2
J−1. Furthermore, we set

Kk := SkF
−1
k

mk := m−k + Kk (Rk − r−k )

Pk := P−k −KkFkK
>
k .

Here, Kk is the so-called Kalman gain and Rk−r−k the innovation. For further details on Kalman
filtering we refer to the book of Grewal and Andrews (1993).

To initialize the filter we use the unconditional moment and the unconditional covariance
matrix given in Corollary A.2. Starting from ξ = (κ1, κ2, θ2, σ1, σ2, λ1, λ2, c, a1, b1, a2, b2), an
initial parameter vector, the Kalman filter computes recursively an estimation of the unobserved
factor process with approximate likelihood function given by

L(R1, . . . , Rn; ξ) = −n
2

log 2π − 1

2

n∑
k=1

log |Fk| −
1

2

n∑
k=1

(r−k −Rk)
>F−1

k (r−k −Rk).

The EM-algorithm proceeds iteratively between filtering and maximization until a prescribed
precision is obtained.

6.2. Calibration results. Using the calibration methodology described above we fit the model
to the full dataset from August 2006 to August 2010. Table 1 gives the parameter values obtained
by the calibration.

θ2 κ1 κ2 λ1 λ2 σ2
1 σ2

2 c a1 b1 a2 b2

1.8178 2.0639 6.6046 -0.6444 -6.7376 0.7734 0.2685 -0.0690 0.7318 6.1632 0.2938 23.1966

Table 1. Estimated parameter values.

The contagion parameter c is negative, implying that (upward) jumps in the loss process
lead to downward jumps in the forward price, i.e. a loss in (T, x)-bond prices, which is very
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intuitive. Note that in Eksi and Filipović (2012) a two-factor affine model together with a
catastrophic component was used to obtain a good fit even to super-senior spreads. The tow-
factor affine market model considered here, however, is able to obtain a fairly good fit without
this catastrophic component. Figures 3 and 3 illustrate the results of our calibration example.
As can be seen, the proposed model is able to capture the market dynamics across all tranches
and maturities even though there is a structural break in the observed spread data.

Finally, it needs to be remarked, that a good fit of the calibration per se is not yet implying
a good hedging performance. Therefore a detailed analysis of the model for further applications
is required. Hedging in an affine models can be studied along the lines of Filipović and Schmidt
(2010). This, however, is beyond the scope of this article. Nevertheless, the hedging analysis in
Eksi and Filipović (2012) suggests that affine factor models which show a good fit over a long
observation period perform very well for hedging purposes.

Appendix A. Computations

As shown in Keller-Ressel, Schachermayer, and Teichmann (2011) stochastically continuous,
time-homogeneous affine processes on the canonical state space are always regular. Thus the
process Z given by (33) and (34) possesses an exponentially-affine characteristic function

E(e〈u,ZT 〉|Gt) = exp(φ(T − t, u) + ψ(T − t, u)Zt) ∀t ≤ T,

where φ(t, u), ψ(t, u) are sufficiently differentiable, C respectively Cd valued functions. The
moments, as derivatives of the characteristic function evaluated at zero, are of polynomial order.
We write

mk(T − t, z1, z2) := E
(

(Z1
T )k1(Z2

T )k2 |Z1
t = z1, Z

2
t = z2

)
, k1, k2 ∈ N, k1 + k2 = k,

for the k-th conditional moment. Observe that mk(τ, z1, z2) has to be a local martingale thus
an application of Itô’s formula yields

∂

∂τ
mk(τ, z1, z2) = κ1(z2 − z1)

∂mk

∂z1
+ κ2(θ2 − z2)

∂mk

∂z2
+

1

2
σ2

1z1
∂2mk

∂z2
1

+
1

2
σ2

2z2
∂2mk

∂z2
2

mk(0, z1, z2) = zk11 zk22 .

Proposition A.1. Assume Z is given by (33) and (34). Then the P-conditional first moments
of Z are given by

E(Z1
t |Z1

0 = z1, Z
2
0 = z2) = −

(
−κ1 + κ1e−κ2t − e−κ1tκ2 + κ2

)
θ2

κ1 − κ2
+ e−κ1tz1

−
κ1

(
e−t(κ1−κ2) − 1

)
e−κ2t

κ1 − κ2
z2. (40)

E(Z2
t |Z1

0 = z1, Z
2
0 = z2) = −

(
e−κ2t − 1

)
θ2 + e−κ2tz2. (41)
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Figure 3. Estimated and observed spreads - part 1
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Figure 4. Estimated and observed spreads - part 2

Furthermore,

Var (Z1
t |Z1

0 = z1, Z
2
0 = z2) =

1

2

1

(κ1 − κ2)2 κ2κ1 (2κ1 − κ2) (κ1 + κ2)(
4κ2

1κ2σ
2
2 (2κ1 − κ2) (κ1z − θ2κ2 + κ2z) e−(κ1+κ2)t

− κ2 (κ1 + κ2)
(
4κ3

1yσ
2
1 + 2κ3

1zσ
2
2 − 2κ3

1zσ
2
1 + κ2

1κ2σ
2
1θ2

+ 4κ2
1zκ2σ

2
1 − κ2

1κ2σ
2
2θ2 − 10κ2

1κ2yσ
2
1 − 2κ1zκ

2
2σ

2
1

− 2κ1κ
2
2σ

2
1θ2 + 8κ1κ

2
2yσ

2
1 + κ2

3σ2
1θ2 − 2κ2

3yσ2
1

)
e−2κ1t

+ 2κ2
1 (κ1 − κ2) (κ1 + κ2)

(
2κ2κ1 + 2σ2

2κ1 − 2σ2
2κ2

− κ2
2 + κ2σ

2
1

)
(z − θ2) e−κ2t + 2κ2

(
κ1 + σ2

1

)
(κ1 − κ2) (2κ1 − κ2) (κ1 + κ2) (−zκ1 + yκ1 + θ2κ2 − κ2y) e−κ1t

+ θ2 (2κ1 − κ2) (κ1 − κ2)2(
2κ2κ

2
1 + κ2

1σ
2
2 + 2κ2

2κ1 + κ1κ2σ
2
1 + κ2

2σ
2
1

))
(42)

Var (Z2
t |Z1

0 = z1, Z
2
0 = z2) =

1

2

1

(κ1 − κ2)κ2

(
2κ2 (−zκ1 + yκ1 + θ2κ2 − κ2y) e−κ1t

− σ2
2 (2 z − θ2) (κ1 − κ2) e−2κ2t

+ 2 (−θ2 + z)
(
σ2

2κ1 − σ2
2κ2 + κ2κ1

)
e−κ2t

+ θ2

(
σ2

2 + 2κ2

)
(κ1 − κ2)

)
(43)
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Cov(Z1
t Z

2
t |Z1

0 = z1, Z
2
0 = z2) =

1

2κ2

(
κ2

1 − κ2
2

) (2κ2σ
2
2 (κ2z − θ2κ2 + zκ1) e−(κ1+κ2)t

− κ1σ
2
2 (2 z − θ2) (κ1 + κ2) e−2κ2t

+ 2 (κ1 + κ2)
(
σ2

2κ1 + κ2κ1 − σ2
2κ2

)
(z − θ2) e−κ2t

+ 2κ2 (κ1 + κ2) (−zκ1 + yκ1 + θ2κ2 − κ2y) e−κ1t

+ θ2 (κ1 − κ2)
(
2κ2κ1 + σ2

2κ1 + 2κ2
2

))
(44)

such that the conditional covariance is given by

Qtk =

(
Var (Z1

tk
|Z1
tk−1

, Z2
tk−1

) Cov(Z1
tk
Z2
tk
|Z1
tk−1

, Z2
tk−1

)

Cov(Z1
tk
Z2
tk
|Z1
tk−1

, Z2
tk−1

) Var (Z2
tk
|Z1
tk−1

, Z2
tk−1

)

)
.

Proof: Denote E(Z1
t |Z1

0 = z1, Z
2
0 = z2) =: h(t, z1, z2). The Kolmogorov backward equation

implies that

∂th = κ1(z2 − z1)∂z1h+ κ2(θ2 − z2)∂z2h+
1

2
σ2

1z1∂z1z1h+
1

2
σ2

2z2∂z2z2h

Thus inserting the polynomial property of moments yields

d

dt
h0 +

d

dt
hz1z1 +

d

dt
hz2z2 = κ1(z2 − z1)hz1 + κ2(θ2 − z2)hz2 , (45)

for some function h0, hz1 and hz2 which fulfill the following system of ordinary differential equa-
tions

d

dt
h0 = κ2θ2hz2

d

dt
hz1 = −κ1hz1

d

dt
hz2 = κ1hz1 − κ2hz2

with respect to the boundary conditions h0(0) = hz2(0) = 0, hz1(0) = 1. The solution to this
system is given by

h0(t) = −
(
−κ1 + κ1e−κ2t − e−κ1tκ2 + κ2

)
θ2

κ1 − κ2

hz1(t) = e−κ1t

hz2(t) = −
κ1

(
e−t(κ1−κ2) − 1

)
e−κ2t

κ1 − κ2

which yields the first assertion (40). Regarding E(Z2
t |Z1

0 = z1, Z
2
0 = z2) =: h(t, z1, z1), we get a

system of ordinary differential equations with the modified boundary condition h0(0) = hz1(0) =
0, hz2(0) = 1 in an analogous way. Its solution is given by

h0(t) = −
(
e−κ2t − 1

)
θ2

hz1(t) = 0

hz2(t) = e−κ2t

which yields (41).
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Consider E(Z1
t Z

2
t |Z1

0 = z1, Z
2
0 = z2) =: h(t, z1, z2) we consider terms of second order, i.e.

d

dt
h0 +

d

dt
hz1z1 +

d

dt
hz2z2 +

d

dt
hz1z2z1z2 +

d

dt
hz21z

2
1 +

d

dt
hz22z

2
2 =

κ1(z2 − z1)(hz1 + 2hz21z1 + hz1z2z2) + κ2(θ2 − z2)(hz2 + hz1z2z1 + 2hz22z2) + σ2
1z1hz21 + σ2

2z2hz22

for some functions h0 . . . , hz22 which solves following system of ordinary differential equations

d

dt
h0 = κ2θ2hz2

d

dt
hz1 = −κ1hz1 + κ2θ2hz1z2 + σ2

1hz21

d

dt
hz2 = κ1hz1 − κ2hz2 + (2κ2θ2 + σ2

2)hz22

d

dt
hz1z2 = 2κ1hz21 − (κ1 + κ2)hz1z2

d

dt
hz21 = −2κ1hz21

d

dt
hz22 = κ1hz1z2 − 2κ2hz22

with respect to the boundary condition h0(0) = hz1(0) = hz2(0) = hz21 (0) = hz22 (0) = 0, hz1z2(0) =

1. The solution to this system is given by

h0(t) =
1

2

θ2e−t(2κ2+κ1)(
κ2

1 − κ2
2

)
κ2

(
eκ1tκ1

(
2 θ2κ2 + σ2

2

)
(κ1 + κ2)

− 2 eκ1tκ2
2

(
θ2κ1 + σ2

2 + θ2κ2

)
+ 2 e2κ2tκ2

2 (θ2 + 1) (κ1 + κ2)

−
(

2 (κ1 + κ2)
(
2 θ2κ2κ1 + κ2κ1 + σ2

2κ1 − σ2
2κ2 − θ2κ

2
2

)
e(κ1+κ2)t

+ (κ1 − κ2)
(
σ2

2κ1 + 2κ2κ1 + 2 θ2κ2κ1 + 2κ2
2 + 2 θ2κ

2
2

)
et(2κ2+κ1)

)
hz1(t) = −e−κ1t

(
θ2e−κ2t − θ2 − 1

)
hz2(t) = −

(
2 θ2κ2κ1 + σ2

2κ1

)
e−2κ2t

(κ1 − κ2)κ2
− e−κ2t

(κ1 − κ2)κ2

(
κ2

(
θ2κ1 + σ2

2 + θ2κ2

)
e−κ1t

− κ1κ2 (θ2 + 1) e−t(κ1−κ2) + 2 θ2κ2κ1 − κ2κ1 − σ2
2κ1 + σ2

2κ2 + θ2κ
2
2

)
hz1z2(t) = e−(κ1+κ2)t

hz21 (t) = 0

hz22 (t) =

(
e−2κ2t − e−(κ1+κ2)t

)
κ1

κ1 − κ2

which yields

E(Z1
t Z

2
t |Z1

0 = z1, Z
2
0 = z2) = h0(t) + hz1(t)z1 + hz2(t)z2 + hz1z2(t)z1z2 + hz21 (t)z2

1 + hz22 (t)z2
2 .

Analogously we compute E
(
(Z1

t )2|Z1
0 = z1, Z

2
0 = z2

)
=: h(t, z1, z2) with boundary condition

h0(0) = hz1(0) = hz2(0) = hz1z2(0) = hz12 (0) = 0, hz21 (0) = 1.
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The solution is given by

h0(t) =
1

2

e−2 (κ1+κ2)tθ2
2

(κ1 + κ2)

(
2 e2κ2tκ1κ2

3 (κ1 + κ2) (2κ1 − κ2) + 2κ3
1κ2 (κ1 + κ2) (2κ1 − κ2) e2κ1t

− 4κ2
1κ

2
2 (κ1 + κ2) (2κ1 − κ2) e(κ1+κ2)t − 4κ2κ

2
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)
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+ κ3
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1κ
2
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1σ

2
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2
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2
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2σ

2
1

)
e2 (κ1+κ2)t
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hz1(t) =

(
−κ1σ

2
1 + 2 θ2κ2κ1 + κ2σ

2
1

) (
e−κ1t

)2
(κ1 − κ2)κ1

+

(
κ2

1 + 2κ2
1θ2 − 2κ2

1θ2e−κ2t − 2 θ2κ2κ1 − κ2κ1 + κ1σ
2
1 − κ2σ

2
1

)
e−κ1t

(κ1 − κ2)κ1

hz2(t) =
e−κ2t

κ2 (κ1 − κ2)2 (2κ1 − κ2)

(
2κ2κ1 (2κ1 − κ2)

(
κ1θ2 + σ2

2 + θ2κ2

)
e−κ1t
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(
4κ2κ

2
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1σ
2
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1σ2
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κ1

(
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hz22 (t) =

(
e−2κ1t − 2 e−(κ1+κ2)t + e−2κ2t
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κ2

1

(κ1 − κ2)2

Finally, observe that for E
(
(Z2

t )2|Z1
0 = z1, Z

2
0 = z2

)
=: h(t, z1, z2) with boundary condition

h0(0) = hz1(0) = hz2(0) = hz1z2(0) = hz11 (0) = 0, hz22 (0) = 1. We obtain the solution

h0(t) =
1

2

θ2e−t(2κ2+κ1)

(κ1 − κ2)κ2

((
2 θ2κ2 + σ2

2
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hz1z2(t) = 0

hz21 (t) = 0

hz22 (t) = e−2κ2t

�

It is an easy exercise to derive the unconditional moments from the above result by taking
the limit t→∞, and we give the result in the next corollary.

Corollary A.2. Assume Z is given by (33) and (34). The unconditional moments of Z up to
order two are given by

E(Z1
t ) = θ2

E(Z2
t ) = θ2

Var (Z1
t ) =

1

2

θ2

(
2κ2κ

2
1 + κ2

1σ
2
2 + 2κ2

2κ1 + κ1κ2σ
2
1 + κ2

2σ
2
1

)
κ2κ1 (κ1 + κ2)

Var (Z2
t ) =

1

2

θ2

(
σ2

2 + 2κ2

)
κ2

Cov(Z1
t Z

2
t ) =

1

2

(
2κ2κ1 + σ2

2κ1 + 2κ2
2

)
θ2

(κ1 + κ2)κ2
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Ehlers, P. and P. Schönbucher (2006). Pricing interest rate-sensitive credit portfolio deriva-
tives. Working Paper, ETH Zurich.
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