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Abstract

This paper proposes a top-down model for pricing Collateralized Debt Obligation
(CDOs). Our proposal is both treatable and realistic, in the sense we are able
to obtain closed-form solutions to single tranche CDOs and capturing extreme
credit events. We use as key ingredients the so-called (T, x)-bonds, as proposed
in Filipović, Overbeck, and Schmidt (2008), but generalize their affine specification
by including shot-noise processes.

Our claim is that affine diffusions combined with shot-noise processes lead to an
improved modeling of CDO spreads in comparison to existing affine jump-diffusion
models. The proposed approach allows in particular for better capturing the pos-
sibility of extreme events, like the ones underlying the current crisis. We illustrate
our results with a very concrete (simple) instance of our class of models. Finally,
we identify the connections between the top-down and bottom-up approaches for
modeling credit risk, within our class of models. Concretely , we show that even
when taking a bottom-up approach the aggregate loss process would be a process
of affine shot-noise type.

1. Introduction

A collateralized debt obligation (CDO) is a security backed by a pool of reference
entities such as bonds, loans or credit default swaps (CDSs). The reference entities
form the asset side of the CDO. Issued notes on tranches of different seniority build
the liability side of the CDO. A CDO is, therefore, a derivative on a portfolio of N
credit risky instruments. CDO markets have experience great growth during the
last decade. Nowadays the most liquidly traded CDOs are based upon so-called
credit indices that were created in 2004 – the CDX for North-America and the
Itraxx for Europe. Fore more details and references on credit risk products and
markets we refer to the respective chapters in McNeil, Frey, and Embrechts (2005).

The valuation of CDOs tranches is far from trivial and relies considerably on the
default correlation between the various reference entities in the pool. Copula models
have emerged as a way to deal with such correlations. The one-factor Gaussian
copula approach is, still nowadays, the industry standard. See e.g. Laurent and
Gregory (2005). Copula models, however, have serious limitations (mainly due
to their non–dynamic nature) and have been quite heavily criticized both in the
academic world and, more recently in connection to the credit risk crisis, also in the
industry. For more details on copula models we refer to the appropriate chapter in
Schönbucher (2003).

Reduced-form models of credit risk have been popular for pricing of single-name
credit products. The question of how to extend them to the multi-name case is of
great interest. Two alternative approaches have emerged : the bottom-up approach
and the top-down approach.
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In the bottom-up approach the credit risk of each reference entity is modeled as
well as all default correlations. To arrive to the loss process associated with the
CDO we need to aggregate all this information. This approach has great flexibility,
as it allows to consider the specificities of each entity separately as well as their
connections, but lead to non parsimonious models that can be hard to calibrate
to market data. The top-down approach models the credit risk of the entire pool
at once. See Gieseke and Goldberg (2007) or Gieseke (2008). If we are interested
only in the behavior of the entire pool this is sufficient and lead to dynamic and
parsimonious models. The need of parsimonious alternatives to the copula models
and the development of credit risk markets made the top-down approach more
and more popular. Specially with the appearance of standardized credit indices
and liquidly traded derivative products written on those indices. Despite their
philosophical differences, it is quite straightforward to apply mathematical methods
used in one approach to develop a model belonging to the other approach.

Here we take a top-down approach and extend the well-known class of affine
models (see e.g.Duffie, Filipović, and Schachermayer (2003), Singleton and Umant-
sev (2002) or Filipović, Overbeck, and Schmidt (2008)) by a shot-noise process as
proposed by Gaspar and Schmidt (2007). The shot-noise effect is particularly im-
portant to guarantee extreme movements like the ones recently observed in credit
markets.

The remaining of the paper is organized as follows. In Section 2 we present
the mathematical formalism proposed by Filipović, Overbeck, and Schmidt (2008),
useful when dealing with CDOs. In Section 3 we present the affine shot-noise setup
and show how to obtain the distribution of the loss process, prices of (T, x)–bonds
and, thus, CDO tranche spreads in closed-form. We study the link between the
top-down and bottom-up approach in our setup and show that affine shot-noise
intensities of individual names lead to affine shot-noise loss processes. Finally we
discuss measure changes and calibration issues. In Section 4 we compare a concrete
instance of our class of models with the model proposed by Duffie and Gârleanu
(2001) and argue ours is more flexible and can capture better extreme events like
the ones recently experienced in credit risk markets.

2. Collateralized Debt Obligations

Consider a complete filtered probability space (Ω,F , (Ft)t≥0,P) satisfying the
usual conditions. We directly work under an equivalent martingale measure Q.
The measure change from the real-world measure P to Q is quite standard and we
give more details in Section 3.5.

The total nominal of the CDO is normalized to one. Let L = (Lt)t≥0 be the
process of accumulated losses over time. This is a pure-jump process which jumps
at default of entities in the pool by the size of the occurred loss. A special case,
quite often considered in practice, is where the loss on each default is a constant.
By I = [0, 1] we denote the set of attainable loss fractions3.

As in Filipović, Overbeck, and Schmidt (2008) we consider defaultable (T, x)–
bonds, which pay one if the aggregated CDO loss process has not exceeded x at
maturity T and zero else, as basic constituents. A (T, x)–bond has a payoff of
1{Lt≤x} at maturity T , for x ∈ I. We denote its price, at time t ≤ T , by p(t, T, x)
Note that p(t, T, x) is decreasing in T and increasing in x. For x = 1 we obtain
p(t, T, 1) =: p(t, T ), i.e. the price of a default-free bond.

3The case where I is finite may be considered, see Filipović, Overbeck, and Schmidt (2008).
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Knowledge of prices of all (T, x)-bonds is sufficient for pricing derivatives on the
loss process. Indeed, consider the payoff

F (LT ) = F (1)−
1∫

0

F ′(y)1{LT≤y}dy

for some bounded measurable function F ′. A Fubini argument shows that the price
of a derivative offering F (LT ) at T is given by

F (1)p(t, T )−
1∫

0

F ′(y)p(t, T, y)dy.

Investing in CDOs is done via a so-called single-tranche CDO (STCDO), sometimes
also called tranche credit default swap. A STCDO is specified by a number of future
dates T0 < T1 < · · · < Tn, its lower and upper detachment points, x1 and x2, with
0 ≤ x1 < x2 ≤ 1 and a fixed spread S. T0 ≥ t is the starting date of the swap. The
investor receives coupon payments at times T1, . . . , Tn. In exchange, the investor
covers a certain part of the occurring losses. Set

G(x) := (x2 − x)+ − (x1 − x)+ =
∫

(x1,x2]

1{x≤y}dy.

Then, investing in the STCDO with swap rate S is equivalent to the following
payment stream:

(1) Payment leg. The investor receives S G(LTi
) at Ti, i = 1, . . . , n.

(2) Default leg. The investor pays −dG(Lt) = G(Lt−)−G(Lt) at default times
(any time where ∆Lt 6= 0).

In Filipović, Overbeck, and Schmidt (2008) it is shown that the value of the STCDO
at time t ≤ T0 can be derived solely on the basis of (T, x)-bonds, and is given by

V (t, S) =
∫

(x1,x2]

1{Lt≤y}

(
S

n∑
i=1

p(t, Ti, y) + p(t, Tn, y)− p(t, T0, y) + γ(t, y)

)
dy,

where γ(t, y) =

Tn∫
T0

EQ
[
rue

−
R u

t
rsds1{Lu≤y}|Ft

]
du. (1)

In the case where default-free interest rates and the loss process are conditionally
independent, γ(t, T ) simplifies to γ(t, y) =

∫ Tn

T0
f(t, u)p(t, u, y)du where f(t, u) is

defined for t ≤ u and denotes the risk-free forward rate. Setting V = 0 and solving
for S gives the par-spread for this investment. Under this assumption we also have

p(t, T, x) = p(t, T )EQ
(
1{LT≤x}|Ft

)
. (2)

3. The Affine Shot-Noise Setting

The current crisis shows a dramatic behavior of spreads of credit indices like
iTraxx or CDX. In Figure 1 we show data from the iTraxx. The purpose of this
paper is to propose a simple model which is able to capture the dramatic increase
in spreads.

Typically, in credit indices like iTraxx, the underlying entities have zero recovery
for each defaultable instrument. We assume that there are N constituents of the
credit pool and so the loss process L jumps by δ = N−1 at each default. We assume
that L is a conditional Markov process that, in our framework, is nothing but δ
times a Cox process with a given intensity, say λ, under Q. As outlined above it is
sufficient to price (T, x)–bonds for pricing STCDOs. We assume the risk-free rate
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Figure 1. A graph of rolled-over iTraxx spreads. A diffusive
movement as well as high price peaks are a typical characteristics
of the spreads.

of interest is independent of λ. This is a typical assumption in credit risk4. Also
note that, since at each default time the nominal amount reduces by δ, we can
easily keep track of the numbers of defaults occurred, up to any time t as they are
given by the ratio Lt/δ and the expectation in (2), simplify to

Q
(
LT ≤ x|Ft

)
= 1{Lt≤x}

(x−Lt)/δ∑
k=0

Q(LT − Lt = kδ|Ft) (3)

where n gives us the number of jumps (defaults) in the interval (t, T ]. So, it suffices
to compute the risk-neutral probability for all possible k defaults occurring in the
interval (t, T ], i.e. k = 0, · · · , (x− Lt)/δ.

3.1. Setup. The class of models here proposed results from a combination of con-
tinuous affine processes with shot-noise processes. Concretely, we assume that the
intensity of the Cox process driving the defaults is given by

λt = ηt + Jt (4)

where η and J are some continuous and pure jump processes, respectively.
(A1): Assume J is an exponentially declining shot-noise process, i.e.

Jt =
∑
τ̃i≤t

Yih(t− τ̃i). (5)

Here Yi, i = 1, 2, . . . are i.i.d., independent of everything else and τ̃i are
the jump times of a Poisson process with intensity l and we take h(x) =
exp(−cx). Phrased in different words, J is a mean-reverting compound
Poisson process.

(A2): Assume η is a continuous affine process, i.e

ηt = g(t)>Zt + f(t) (6)

for Z ≥ 0 the m-dimensional vector of state variables that uniquely solves

dZt = α(t, Zt)dt+ σ(t, Zt)dWt. (7)

4All formulas can be derived without these assumptions, most expectations would then need to
be considered under forward measures and formulas would become more cumbersome. For details
we refer to Gaspar and Schmidt (2007).
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Here W is a n-dimensional Q–Wiener process. α : R+ × Rm 7→ Rm and
σ : R+ × Rm 7→ Rn×n are such that

α(t, z) = d(t) + E(t)z (8)

σ(t, z)σ>(t, z) = k0(t) +
m∑
i=1

ki(t)zi (9)

f , g, d and E, k0, ki (for i = 1, · · · ,m) are smooth functions mapping R+

to R, Rm and to Rm×m, respectively.

A typical example, at which we look more closely in Section 4, satisfying (A2) is
the one-factor CIR-process where η = Z and it has Q-dynamics given by

dηt = κ(b− ηt)dt+ σ
√
ηtdWt.

More general dynamics, for example to include various factors, can be easily incor-
porated in the setting given by (A2).

Comparing to Figure 1, assumptions (A1) and (A2) seem very reasonable. A
diffusive part which captures the risk of smaller movements in λ. The shot-noise
part captures the heavy reactions of the market to news like in the current crisis.
General choices of h allow to capture different modeling aspects but, for simplicity,
we concentrate on exponentially declining h.5

3.2. Loss Process distribution. The following proposition gives a closed-form
expression for the conditional (an unconditional) risk-neutral distribution function
of loss process L. The proof is provided in the appendix. From this result we
immediately obtain prices of (T, x)-bonds and hence of STCDOs (equations (2)
and (1), respectively).

Proposition 3.1. Consider the affine shot-noise setting. Then

Q
(
LT ≤ x|Ft

)
= 1{Lt≤x}

(x−Lt)/δ∑
k=0

1
k!
∂kS(θ, t, T )

∂θk

∣∣∣∣∣
θ=−1

(10)

where S(θ, t, T ) = exp
{
A(θ, t, T ) +B>(θ, t, T )Zt + C(θ, t, T )Jt +D(θ, t, T )

}
.

A and B on R × R+ × R+ are deterministic in R and Rm, respectively, solving
system of Riccati equations, for all θ ∈ R and t ≤ T

∂A

∂t
+ d>(t)B +

1
2
B>k0(t)B = −θf(t) (11)

∂B

∂t
+ E>(t)B +

1
2
B̃>K(t)B = −θg(t) (12)

subject to the boundary conditions A(θ, T, T ) = 0, B(θ, T, T ) = 0. A and B should
always be evaluated at (θ, t, T ). f, g are as in (6) and E, d, k0, are as in (8)-
(9),while B̃ and K(t) ∈ Rm2×m are simply

B̃ :=


B 0 · · · 0
0 B · · · 0
...

. . .
0 · · · 0 B

 , K(t) =

k1(t)
...

km(t)

 .

5It is possible to be quite general for the choice of h. However, if h is not of the exponential
form, Markovianity of J is lost and computations become more involved. See Gaspar and Schmidt
(2007) for details.
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C and D on R× R+ × R+ are also deterministic in R and given by

C(θ, t, T ) =
θ

c

(
1− e−c(T−t)

)
(13)

D(θ, t, T ) = l ·
( T∫
t

ϕ
(θ
c

(
e−cu − e−cT

))
du− (T − t)

)
(14)

with ϕ(u) := E(exp(uY1)) the Laplace transform of Y1.

3.3. Calibration issues. It is far beyond the scope of this paper to provide a
calibration of the model to observed prices of credit indices as this is indeed a
computationally difficult task. However, recently there emerged some calibration
results of top-down approaches in the literature. One of the most important contri-
butions in this direction is the work of Cont and Minca (2008). They introduce the
so-called effective intensity λeff(t, Lt) = E(λt|Lt) and calibrate it in a non paramet-
ric way to observed index prices. They show that qualitatively, the market implied
λeff is increasing for small L, stays on a plateaux for intermediate L and finally
decrease. We show how to compute λeff in our case and give an intuition how this
behavior can be replicated in our setup. In the next proposition we compute λeff

in our setting and show that this form can indeed be achieved. A proof is given in
the appendix.

Proposition 3.2. In the affine shot-noise setting

λeff(t, k) = E(λt|Lt = kδ) =

∂k

∂θk

∣∣∣
θ=−1

∂
∂t

1
θ S(θ, 0, t)

k! ∂k

∂θk

∣∣∣
θ=−1

S(θ, 0, t)

Qualitatively, it is quite intuitive, that λeff will first increase sharply and then
stay on a medium level in our setup. This is because λt is not observed and Lt
is used as a statistic to estimate it (in the conditional expectation, λeff). If Lt
increases this comes as a surprise if λt were small. The conditional distribution
therefore will be updated strongly which explains a first sharp rise. If L increases
further, this is no longer such a big surprise and this effect vanishes.

3.4. Relation to the bottom-up approach. In this section we show that a
bottom-up approach based on conditionally independent defaults with a factor
structure, where the factors consists of affine and shot-noise processes lead to a
jump intensity λ of the loss process as proposed in Assumptions (A1)-(A2).

We say a process µ = (η, J) satisfying (A1) and (A2) is shot-noise linear with
parameters (g, f, c, l, F ) where F denotes the distribution of Y1. A special case of
Proposition 4.3 in Gaspar and Schmidt (2007) tells that the sum of two shot-noise
linear processes is itself shot-noise linear. Thus, by induction, the sum of a finite
number of such processes will also be shot-noise linear.

Proposition 3.3. Consider two independent processes µ1 and µ2, both shot-noise
linear with parameters (g1, f1, c, l1, F 1) and (g2, f2, c, l2, F 2), respectively. Set q :=
l1(l1+l2)−1. Then µ1+µ2 is shot-noise linear with parameters (g1+g2, f1+f2, l1+
l2, c, qF 1 + (1− q)F 2).

For bottom-up modeling with the affine shot-noise setting, we propose the fol-
lowing approach. Consider m companies. Assume that their default times are
conditionally independent with default intensities λ1, . . . , λm.

For each company i take

λit =
[
gi(t) + εi1g(t)

]>
Zt + f i(t) + εi2J(t) . (15)

Note that in the above expression we suppose the specific default risk of each firm
is only affected by the affine diffusion processes Z (through the functions gi and f i)
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while the common (systematic) risk is affected by both affine processes and a shot-
noise processes (through f , g and J). The parameters εi1, ε

i
2 allow us to control for

different sensitivities of the companies to the common factors. Clearly this setting
can be generalized to include shot-noise processes also in the specific part of credit
risk, however, we believe the shot-noise component is really what explain default
correlation, and therefore is mostly important in the common part.

By setting εj :=
∑m
i=1 ε

i
j , it is easy to show that in this case the jump in-

tensity of the loss process is λt =
∑m
i=1 λ

i
t. Due to Proposition 3.3 λ is the

shot-noise linear and given the specification in (15) its parameters are (
∑m
i=1 g

i +
ε1g,

∑m
i=1 f

i, c, l, F ∗) where F ∗ is the distribution of ε2Y .6

3.5. Measure Changes. Up to now we always assumed that Q was a risk-neutral
measure. It is of course possible to consider the proposed model with respective to
some objective probability measure P ∼ Q. In particular this is necessary for the
computation of risk measures and statistical analysis of the model. In the considered
framework it is reasonable to assume that the model is also shot-noise linear under
P, which restricts the class of equivalent probability measures. A measure change
from Q to P will then have the following impact:

d(·), E(·) ; d̃(·), Ẽ(·)

l, FY ; l̃, F̃Y

for some appropriate deterministic functions d̃, Ẽ, constant l̃ > 0 and distribution
function of Y under P, F̃Y . Note that this kind of measure change leaves Y1, Y2, . . .
i.i.d. under P. For a general reference see Theorem III.3.24 in Jacod and Shiryaev
(1987).

4. A Concrete (simple) Example

In this section we use a concrete instance of our class of models to illustrate the
results previously derived. We present only the main results but more details about
the computations can be found in the appendix. We then compare our concrete
instance with a model proposed by Duffie and Gârleanu (2001).

Recall that λt = ηt + Jt. Consider the following instance of our class of models:
(1) Z = η with the following dynamics

dηt = κ(b− ηt)dt+ σ
√
ηtdWt

(2) Jt =
∑
τ̃i≤t

Yi exp(−c(t− τ̃i)) where Y1, Y2, . . . are i.i.d. χ2(2)-distributed.

Under (i)-(ii), A(θ, t, T ), B(θ, t, T ) and D(θ, t, T ) with θ < κ2

2σ2 are given by7

A(θ, t, T ) =
2κb
σ2

ln

(
(ψ − κ)

[
eψ(T−t) − 1

]
+ 2ψ

2ψe(ψ−κ)
(T−t)

2

)

B(θ, t, T ) =
2θ
[
eψ(T−t) − 1

]
(ψ − κ)

[
eψ(T−t) − 1

]
+ 2ψ

D(θ, t, T ) = l

(c(T − t)− ln
(
1 + 2 θc

(
e−c(T−t) − 1

))
c− 2θ

− (T − t)
)

where ψ =
√
κ2 − 2σ2θ.

We take this simple example to illustrate the applicability of our approach. The
full implementation and comparison to data is far beyond the scope of this paper.

6Note that we did not needed to use the result of Proposition 3.3 for the sum of the shot-noise
parts as we considered only one shot-noise process in the common part.

7For the detailed computations we refer to the appendix.
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Figure 2. The plot shows SD(θ, t, T ) = exp(D(θ, t, T )) which is,
for θ = −1, the probability of no loss in (t, T ]. l has the value 0.4.
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Figure 3. The plot shows the first and second derivative of SD(θ, t, T )

However, the expressions obtained up to now relate on sums of certain derivatives
and the question may be raised, how to compute these in practise. As our main
goal is to emphasize the importance of shot-noise processes, we concentrate on the
terms regarding the shot-noise part. Without loss of generality we assume that
Jt = 0, i.e. there were no past jumps. Then to obtain the shot-noise impact on the
loss distribution given in (10), we have to compute

(x−Lt)/δ∑
k=0

1
k!
∂k exp(D(θ, t, T ))

∂θk

∣∣∣∣∣
θ=−1

where SD(θ, t, T ) := exp(D(θ, t, T )). For θ = −1, SD denotes the probability that
in (t, T ] no jump happens. In the single-name case this would be the survival
probability. As by intuition, SD has the following properties: first, it is increasing
in c: if c = 0, jumps persist forever and J is strictly increasing. If c is large, the
effect of a jump vanishes very fast and J is pulled back to zero, so for large c we
will see less defaults and so the probability of having no default in (t, T ] clearly
increases. Second, it is decreasing in l: if the intensity of jumps in J increases,
this immediately decreases the probability of no default in (t, T ]. For l = 0.4 we
plot the function and its first two derivatives in Figure 2 and Figure 3, respectively.
Note that the derivatives are quite small, in particular at θ = −1. This together
with the factor (k!)−1 implies that the crucial impact is reasonably measured by
considering a few terms of the above sum.

4.1. Relation to the Duffie-Garleanu model. The frequently used Duffie and
Gârleanu (2001) (DG) model is a bottom-up model which uses affine technology
to obtain pricing formulas for CDOs. Our approach shows qualitatively a similar
behavior when, as in our concrete example, we take α(t, z) = κ(b − z),h(t) =
exp(−ct) and we impose the additional restriction κ = c. Note, however, that
the freedom, that exist only in shot-noise models, to choose κ different from c is
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essential: this allows to have reasonable parameters for the diffusive part of the
dynamics (κ not to big) and on the other side a high default correlation (large
jumps in the shot-noise part with a high c).

Of course, the DG model considered from a bottom-up approach leads to a
model for λ which has an inherent factor structure. This approach has in principle
the same tractability as the approach outlined here, but formulas get much more
involved. How to achieve this is described in full detail in Gaspar and Schmidt
(2007).

Appendix A. proofs

Proof of Proposition 3.1. The proof heavily relies on the independence of η and J
and uses the techniques set out in Gaspar and Schmidt (2007). Given (3) it suffices
to show that

Q(LT − Lt = kδ|Ft) =
1
k!
∂kS(θ, t, T )

∂θk

∣∣∣∣∣
θ=−1

(16)

Let
∫ T
t
λsds =: Λ(t, T ). Note Q(LT − Lt = kδ|Ft) = Q

(
LT

δ − Lt

δ = k|Ft
)

and
(LT−Lt)/δ is simply the number of defaults in the time interval (t, T ]. From the Cox
process properties, namely that under the conditionally independence assumption,
(LT − Lt)/δ is Poisson (Λ(t, T )), we get

Q
(
LT
δ
− Lt

δ
= k

∣∣∣Ft) = EQ
[
EQ (1{(LT−Lt)/δ=k}

∣∣Ft,Λ(t, T )
) ∣∣∣Ft]

= EQ
[
exp(−Λ(t, T ))

(Λ(t, T ))k

k!

∣∣∣Ft] .
In the following we use E(AkeθA) =

∂k

∂θk
E(eθA), for θ ∈ R, such that the expectation

and their derivatives exist. Thus,

EQ
(

exp(−Λ(t, T ))(Λ(t, T ))k
∣∣∣Ft) =

∂k

∂θk

∣∣∣
θ=−1

EQ
(

exp(θΛ(t, T )
∣∣∣Ft) (17)

Moreover, Λ(t, T ) =
∫ T
t

(ηs + Js)ds, with η and J being independent. Hence,

(17) =
∂k

∂θk

∣∣∣
θ=−1

(
Sη(θ, t, T )SJ(θ, t, T )

)
with Sη(θ, t, T ) := EQ

(
e−θ

R T
t
ηsds

∣∣∣Ft) and SJ(θ, t, T ) := EQ
(
e−θ

R T
t
Jsds

∣∣∣Ft).
First, using standard results from affine term structures (see, e.g. Bingham and

Kiesel (1998)) and the fact that η is of the form (4) with a state variable Z with
dynamics (7)-(9), we get

Sη(θ, t, T ) = exp
{
A(θ, t, T ) +B>(θ, t, T )Zt

}
where A,B solve (11)-(12).

Second,
T∫
t

Ju du =
∑
τi≤t

Yi

T∫
t

e−c(u−τi)du+
∑

τi ∈(t,T ]

Yi

T∫
τi

e−c(u−τi)du

=
∑
τi≤t

Yie
cτi
e−ct − e−cT

c
+

∑
τi∈(t,T ]

Yi
1− e−c(T−τi)

c
.

Note that the first term is measurable w.r.t. Ft and equals C(1, t, T )Jt with C as in
(13). To compute the expectation containing the second part, we condition on the
number of jumps in the interval (t, T ] and use the well-known fact that then jump
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times have the same distribution as order statistics from i.i.d. uniform (t, T ]-random
variables. Hence, π1, π2, . . . being uniform (t, T ],

E
(

exp
( ∑
τi∈(t,T )

θYi
c

(
1− e−c(T−τi)

)))

= e−l(T−t)
∑
k≥0

(l(T − t))k

k!
E
(

exp
( k∑
i=1

θYi
c

(
1− e−c(T−πi)

)))
.

Observe that with π1 uniform on (t, T ],

EQ
[
exp

(
θY1

c

(
1− e−c(T−π1)

))]
=

1
T − t

T∫
t

ϕ
(θ
c

(
1− e−c(T−u)

))
du

and we find

SJ(θ, t, T ) = EQ
(
e

R T
t
θJsds|FJt

)
= exp

(
C(θ, t, T )Jt + l(T − t)

[
− 1 +

1
T − t

T∫
t

ϕ
(θ
c

(
1− e−c(T−u)

))])
= exp

(
C(θ, t, T )Jt +D(θ, t, T )

)
. �

Proof of Proposition 3.2. We have to compute the conditional distribution of λt
given only the number of jumps. Using Bayes’ rule we have that

E(λt|Lt = kδ) =
E(λt1{Lt=kδ})
Q(Lt = kδ)

.

Recall that under the conditional independence assumption Lt is Poisson (Λ(0, t)).
Then, using (16),

Q(Lt = kδ) =
∂k

∂θk

∣∣∣
θ=−1

S(θ, 0, t).

Let us denote Λ(0, t) =
∫ t
0
λsds = Λ(t). To compute E(λt1{Lt=kδ}) note that

E(λt1{Lt=kδ}) = E
(
E
[
λt1{Lt/δ=k}|Λ(t)

])
= E

(
λt exp(−Λ(t))

Λ(t)k

k!

)
=

1
k!

∂k

∂θk

∣∣∣
θ=−1

(
1
θ

∂

∂t
E
(
eθΛ(t)

))
=

1
k!

∂k

∂θk

∣∣∣
θ=−1

∂

∂t

1
θ
S(θ, 0, t).�

Appendix B. Example - some computations

In our concrete illustration, the system of ODEs in (11)-(12) reduces to

∂A

∂t
(θ, t, T ) + κbB(θ, t, T ) = 0

∂B

∂t
(θ, t, T ) + κB +

1
2
σ2B2(θ, t, T ) = −θ

with the boundary conditions A(θ, T, T ) = 0, A(θ, T, T ) = 0 for all θ. The second
ODE is a scalar Ricatti equation with well-known solution.

B(θ, t, T ) =
2θ
[
eψ(T−t) − 1

]
(ψ − κ)

[
eψ(T−t) − 1

]
+ 2ψ
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with ψ =
√
κ2 − 2σ2θ. Given B, A can then be obtained by simple integration.8

A(θ, t, T ) = κb

T∫
t

B(θ, u, T )du =
2κb
σ2

ln

(
(ψ − κ)

[
eψ(T−t) − 1

]
+ 2ψ

2ψe(ψ−κ)
(T−t)

2

)

To compute D we make use of the Laplace transform of the χ2(2) distribution 9.
For u < 0.5 this is ϕ(u) = E(euχ

2
ν ) = (1− 2u)−1. Then we need to compute

D(θ, t, T ) = l

 T∫
t

ϕ

(
θ

c

(
1− e−c(T−u)

))
du− (T − t)

 .
The integral equals

T∫
t

1
1− 2 θc (1− e−c(T−u))

du =

T∫
t

1
K1 +K2 exp(cu)

du, (18)

where K1 = 1− 2 θc and K2 = 2 θc exp(−cT ). Thus,

(18) =
ln
(
K2 +K1e

−ct − ln
(
K2 +K1e

−cT )
K1c

=
c(T − t)− ln

(
1 + 2 θc

(
e−c(T−t) − 1

))
c− 2θ

and we obtain that

D(θ, t, T ) = l

(c(T − t)− ln
(
1 + 2 θc

(
e−c(T−t) − 1

))
c− 2θ

− (T − t)
)
.
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Filipović, D., L. Overbeck, and T. Schmidt (2008). The term structure of cdo
losses. Working paper.

Gaspar, R. M. (2006). Credit Risk and Forward Price Models. EFI - The Eco-
nomic Research Institute, Stockholm.

Gaspar, R. M. and T. Schmidt (2007). Term structure models with shot-noise
effects. Advance Working Paper Series, n.3/2007, ISEG Technical University
of Lisbon. Also available at SSRN.

Gieseke, K. (2008). Portfolio credit: Top down vs. bottom up approaches. In
R. Cont (Ed.), Frontiers in Quantitative Finance: Credit Risk and Volatility
Modeling. Wiley.

Gieseke, K. and L. Goldberg (2007). A top down approach to multi-name credit.
Working Paper available at SSRN.

Jacod, J. and A. N. Shiryaev (1987). Limit Theorems for Stochastic Processes.
Springer-Verlag.

8A detailed treatment of solutions for scalar Riccati equations and how to compute some
operators on those solutions (including the integral operator) can be found in Gaspar (2006).

9Recall that for u ≥ 0 the Laplace transform of random variable which has χ2 distribution

with ν degrees of freedom, equals E(e−uχ2
ν ) = (1 + 2u)−ν/2.



References 12

Laurent, J. and J. Gregory (2005). Basket default swpas, CDOs and factor cop-
ulas. Journal of Risk 7, 103–122.

McNeil, A., R. Frey, and P. Embrechts (2005). Quantitative Risk Management:
Concepts, Techniques and Tools. Princeton University Press.
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