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Abstract

This paper provides a unifying approach for valuing contingent claims
on a portfolio of credits, such as collateralized debt obligations (CDOs).
We introduce the defaultable (T, x)-bonds, which pay one if the aggre-
gated loss process in the underlying pool of the CDO has not exceeded
x at maturity T , and zero else. Necessary and sufficient conditions on
the stochastic term structure movements for the absence of arbitrage are
given. Background market risk as well as feedback contagion effects of
the loss process are taken into account. Moreover, we show that any ex-
ogenous specification of the volatility and contagion parameters actually
yields a unique consistent loss process and thus an arbitrage-free family
of (T, x)-bond prices. For the sake of analytical and computational effi-
ciency we then develop a tractable class of doubly stochastic affine term
structure models.

Key words: affine term structure, collateralized debt obligations, loss
process, single tranche CDO, term structure of forward spreads

1 Introduction

This paper provides a unifying approach for valuing contingent claims on a
portfolio of credits, such as collateralized debt obligations (CDOs). CDOs are
securities backed by a pool of reference entities such as bonds, loans or credit
default swaps. The reference entities form the asset side of a CDO-structure.
Traded products are notes on the CDO tranches. They have different seniorities
and build the liability side of the CDO.
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CDO markets have witnessed an extraordinary growth in the last decade.
The most liquidly traded CDOs are those based on so-called indices. In 2004
the CDX in North-America and the Itraxx in Europe have been created and
are nowadays very liquid. Both indices consist of the most liquidly traded and
quoted credit default swaps in the given market, for example the corporate
investment grade iTraxx in Europe consists of the 125 most liquid investment
grades corporate credit default swaps. In addition to contingent claims based on
the indices, there are also many options on the market spread of those indices
and single tranche CDOs (STCDOs) (a STCDO is a credit default swap on a
tranche, see Section 4 below for a definition); typically calls and puts. However,
the corresponding products are less liquid and only quoted by a few market
makers. For more background and references we refer to the respective chapters
in [21].

Concerning the valuation of the basic STCDOs, the one-factor Gaussian
copula approach [20] has emerged as the industry standard. It is basically a
static description of the default times on the asset side of the CDO. However,
it is well acknowledged that this approach has a number of deficiencies. First
of all, there are only two parameters: the average default probability and a
correlation parameter, which is a stylized version of Mertons asset correlation.
This model is not able to capture all market quotes on the liability side with
these two parameters. Therefore each tranche can only be priced with a different
correlation, the so-called implied correlation. Moreover, the latest credit crises
has illustrated that [20] appears to be insufficient to capture the dependence
structure between the single names.

Recently, there have emerged several new attempts on CDO valuation based
on the aggregate loss function (“top-down”), as opposed to the above men-
tioned (“bottom-up”) single tranche default models. Giesecke and Goldberg
[15] decompose the portfolio loss process into single name loss processes. Ben-
nani [2] models, for a fixed maturity T and loss variable LT , the T -Forward
Loss process L(t, T ) = E[LT | Ft] and the T -Forward Outstanding Notional
ON(t, T ) = 1−L(t, T ). From there the excess loss E[(L(T, T )−K)+] for strike
K and maturity T can be computed numerically by Monte Carlo methods. How-
ever, this approach focuses on one maturity date T only, and neither market
interest rate and nor spread risk is considered. Schönbucher [22] introduces the
forward loss distributions and finds a Markov chain with the same marginal
distribution as the loss process. Ehlers and Schönbucher [11] extend [22] by
considering non-constant interest rates for pricing. They introduce conditional
forward interest-rates fn(t, T ) and forward protection rates (spreads) Fn(t, T )
given the realization of the loss process L(t) = n. An HJM-type specification of
the loss-contingent forward interest and loss rates fn and Fn is then proposed
and no-arbitrage conditions are given. Ehlers and Schönbucher [12] analyze the
interplay of the background (forward interest and protection rates, say) and loss
process conditional on an increasing sequence of filtrations. However, the tech-
nical analysis in [22, 11, 12] relies on the assumption that the loss process lives
on a finite grid, and their extension to multi-step increments (loss given default
risk) becomes notationally demanding. The paper of Sidenius et al. (SPA) [24]
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is closest to our framework. However, SPA assume zero risk-free rates. More-
over, some crucial problems, e.g. regarding the construction of a consistent loss
process, have remained open in [24] and will be completed from a global point
of view in our paper. Some corresponding efficient calibration algorithms have
recently been developed in Cont et al. [7, 8]. Cont and Minca [7] consider a
finite set of maturities for traded CDO tranches which is in the spirit to the
so-called term structure market models.

The aim of our paper is to provide a unifying approach for valuing con-
tingent claims on CDOs, which encompasses the above mentioned and puts
them on a common mathematical basis. We therefore introduce the default-
able (T, x)-bonds, which pay one if the aggregated CDO loss process has not
exceeded x at maturity T , and zero else. It turns out that essentially all con-
tingent claims on the CDO-pool, such as STCDOs, can be written—and thus
hedged and priced—as linear combinations of (T, x)-bonds. We then model the
corresponding (T, x)-forward rates, which equal the sum of risk-free forward
rates plus forward spreads, as semimartingales driven by some Brownian mo-
tion, reflecting market information, and the jump measure associated to the loss
process. This setup is universal, and allows for feedback, or contagion effects,
from the loss process on the forward curve. As a first result, we provide nec-
essary and sufficient conditions for the absence of arbitrage in terms of a drift
condition and a relation between the short end of the spread curve and the pre-
vailing loss intensity. Most important from a modelling point of view, we then
provide mathematical evidence that arbitrage-free (T, x)-bond models uniquely
exist under general assumptions. This is very much in the spirit of the Heath–
Jarrow–Morton [16] approach to the modelling of the term structure of risk free
interest rates. Risk-neutral pricing has to be done numerically in general. We
will sketch a generic Monte-Carlo algorithm below. By omitting the aforemen-
tioned contagion effects we find an efficient CDO derivatives pricing formula.
This extends the doubly stochastic framework for single name models to our
multivariate setup. For the sake of analytical and computational efficiency we
then develop a tractable class of doubly stochastic affine term structure models,
which lead to closed form STCDO formulas.

The significance of our approach is its focus on the (T, x)-bonds and their
exogenous stochastic specification. Albeit (T, x)-bonds are not directly traded,
this perspective facilitates the mathematical analysis since the absence of ar-
bitrage is expressed by two simple and clear formal conditions on the drift
and short end of the spread curve. Correspondingly, on an integrated level,
(T, x)-bonds are factorized into their default and market (forward spread) risk
components. This representation corresponds to a stylized fact of financial mar-
kets: spread risk is what primarily drives CDO values; the objective default risk
is secondary. Our focus on the (T, x)-bonds should also facilitate the empiri-
cal estimation for dynamic CDO term structure modelling, as it is the case for
Heath–Jarrow–Morton [16] type forward rate models. The forward curve can be
estimated from market data using bootstrapping and interpolation techniques.
In some ongoing project, we use standardized swaps and STCDOs on standard-
ized credit indexes such as iTraxx and CDX where liquid quotes are available
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for standard maturities, like 3, 5, 7 and 10 years for iTraxx, to calibrate our
model. The next instruments one can use are call and put options on swaps and
STCDOs. Our framework can also be used for an effective CDO risk manage-
ment. Indeed, the forward spread volatilities can be exogenously specified, and
the sensitivity analysis of the CDO portfolio with respect to various maturity
and rating buckets is straightforward. Hedging via traded STCDOs is possible
in principle. The development of market models with a focus on quoted values
within this framework is ongoing research.

The structure of the paper is as follows. In Section 2, we formally introduce
the (T, x)-bonds. In Section 3, we provide necessary and sufficient conditions
for the absence of arbitrage. In Section 4, we derive STCDO and swaption
price formulas. In Section 5, we give sufficient conditions on the stochastic
basis such that arbitrage-free (T, x)-bond models uniquely exist under general
assumptions. This is then further improved in the doubly stochastic framework
in Section 6. In Section 7, we provide an affine specification for the doubly
stochastic framework. We conclude in Section 8.

2 (T, x)-Bonds

As stochastic basis, we fix a filtered probability space (Ω,F , (Ft),Q). We assume
that Q is a risk-neutral pricing measure. An equivalent measure change will be
discussed below in Remark 3.4.

Consider a pool of credits (the CDO-pool) with an overall nominal normal-
ized to 1, and let I = [0, 1] denote the set of loss fractions, i.e. x ∈ I represents
the state where 100x% of the overall nominal has defaulted.

We denote by L the I-valued increasing aggregate CDO-loss process. That
is, Lt represents the ratio of CDO-losses occurred by time t.

The basic instrument that we consider is a (T, x)-bond which pays 1{LT≤x}
at maturity T , for x ∈ I. Its price at time t ≤ T is denoted by P (t, T, x).
Obviously, P (t, T, x) is increasing in x and decreasing in T . Since Lt ≤ 1 for all
t, the risk free T -bond price P (t, T ) at time t ≤ T equals

P (t, T ) = P (t, T, 1). (1)

(T, x)-bonds are the fundamental components for the hedging and pricing
of CDO-derivatives. Indeed, any European type contingent claim on the loss
process with (regular enough) payoff function F (LT ) at maturity T can be
decomposed into a linear combination of (T, x)-bonds

F (LT ) = F (1)−
∫
I
F ′(x)1{LT≤x} dx.

Hence the static portfolio

F (1)P (t, T )−
∫
I
F ′(x)P (t, T, x) dx
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replicates, and thus prices the claim at any time t ≤ T , model independently.
For example, the basic components of the payment leg of the STCDO in Sec-
tion 4 below are put options with payoff (K − LT )+ =

∫
(0,K]

1{LT≤x} dx.

Remark 2.1. Note that this setup contains the finite case I = { in | i = 0, . . . , n}
in particular. Indeed, if L can only assume fractions i

n , i = 0, . . . , n, then
1{LT≤x} = 1{LT≤ i

n}
, and hence P (t, T, x) = P (t, T, in ), for all x ∈ [ in ,

i+1
n ).

3 Arbitrage-free Term Structure Movements

Our aim is to describe the (T, x)-bond price term structure movements explicitly
in the form

P (t, T, x) = 1{Lt≤x}e
−
∫ T
t
f(t,u,x) du (2)

where f(t, T, x) denotes the (T, x)-forward rate prevailing at date t. That is,
f(t, T, x) is the rate that one can contract for at time t, given that Lt ≤ x,
on a defaultable forward investment of one euro that begins at date T and is
returned an instant dT later conditional on LT+dT ≤ x. The following forward
rate agreement replicates the corresponding cash flows:

• at t: sell one (T, x)-bond and buy P (t,T,x)
P (t,T+dT,x) (T + dT, x)-bonds.

This zero net investment at t yields the following future cash flows:

• at T : pay (“invest”) 1{LT≤x} euro.

• at T + dT : receive P (t,T,x)
P (t,T+dT,x)1{LT+dT≤x} euros.

The corresponding continuously compounded forward rate f(t, T, x) is given, in
first order in dT , by

ef(t,T,x) dT ≈ P (t, T, x)
P (t, T + dT, x)

.

In the limit dT → 0, we obtain (2).
Note that, in line with (1),

f(t, T ) = f(t, T, 1) and φ(t, T, x) = f(t, T, x)− f(t, T ) (3)

are the corresponding risk free T -forward rate and (T, x)-forward spread, respec-
tively.

The (T, x)-bond specification (2) combines default risk, 1{Lt≤x}, and market
risk, f(t, T, x), in one instrument. This is a slight, but crucial difference to the
SPA [24] framework where the market and default risks are specified by a two
layer-process. In what follows we analyze the consistency of the loss process L
and market term structure f(t, T, x) movements in order that the (T, x)-bond
market be free of arbitrage.

As for the loss process, we make the general assumption
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(A1) Lt =
∑
s≤t ∆Ls is an I-valued increasing marked point process1 which

admits an absolutely continuous compensator ν(t, dx) dt.

This setup implies totally inaccessible default times of the (T, x)-bonds and
a fundamental relation between their intensity processes and the compensator
ν(t, dx):

Lemma 3.1. Assume that (A1) holds. Then, for any x ∈ I, the indicator
process 1{Lt≤x} is càdlàg with intensity process

λ(t, x) = ν(t, (x− Lt, 1] ∩ I). (4)

That is,

Mx
t = 1{Lt≤x} +

∫ t

0

1{Ls≤x}λ(s, x) ds (5)

is a martingale. Moreover, λ(t, x) is progressive, decreasing and càdlàg in x ∈ I
with λ(t, 1) = 0.

Conversely, λ(t, x) uniquely determines ν(t, dx) via

ν(t, (0, x]) = λ(t, Lt)− λ(t, Lt + x), x ∈ I, (6)

where we denote λ(t, x) = 0 for x ≥ 1.

Note that SPA [24] postulate that λ(t, x) exist with the above properties.
With Lemma 3.1 we now put their assumption on a sound mathematical basis.

Proof. Right-continuity of 1{Lt≤x} follows from the structure (A1) of L. By
the very definition of ν(t, dx),

F (Lt)−
∫ t

0

∫
I
(F (Ls + y)− F (Ls))ν(s, dy) ds (7)

is a martingale, for any bounded measurable function F . In particular, for
F (Lt) = 1{Lt≤x} we have

F (Ls + y)− F (Ls) = −1{Ls+y>x}1{Ls≤x}. (8)

This proves (5). The other properties of λ(t, x) hold by inspection.

We next assume that any (T, x)-forward rate process follows a semimartin-
gale of the form

f(t, T, x) = f(0, T, x) +
∫ t

0

a(s, T, x)ds+
∫ t

0

b(s, T, x)> · dWs

+
∫ t

0

∫
I
c(s, T, x; y)µ(ds, dy) (9)

1Also called multivariate point process. For a definition see e.g. [17] or [3].
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where W is some d-dimensional Brownian motion (market noise) and

µ(ω; dt, dx) =
∑
s>0

1{∆Ls(ω)6=0}δ(s,∆Ls(ω))(dt, dx)

denotes the integer-valued random measure associated to the jumps of L, where
we write δa for the Dirac measure at point a.

This specification is universal2, and it allows for two kinds of feedback, or
contagion, of the loss process on the forward rates:

(C1) direct, via simultaneous jumps driven by L: ∆f(t, T, x) = c(t, T, x; ∆Lt).

(C2) indirect, via letting the model parameters a, b, and c be explicit functions
of the prevailing loss path L (“regime switching”).

Indeed, there seems to be empirical evidence for such contagion effects in U.S.
industrial firm data covering the last three decades, see [9, 1]. We will provide,
in Section 5 below, mathematical evidence that CDO term structure models (9)
with properties (C1) and (C2) exist under very general assumptions.

To assert that the subsequent analysis and formal manipulations be mean-
ingful, we make the following technical assumptions, where O and P denote the
optional and predictable σ-algebra on Ω× R+, respectively:

(A2) the initial forward curve f(0, T, x) is B(R+) ⊗ B(I)-measurable, and lo-
cally integrable: ∫ T

0

|f(0, u, x)| du <∞ for all (T, x),

(A3) the drift parameter a(t, T, x) is R-valued O⊗B(R+)⊗B(I)-measurable,
and locally integrable:∫ T

0

∫ T

0

|a(t, u, x)| dt du <∞ for all (T, x),

(A4) the volatility parameter b(t, T, x) is Rd-valuedO⊗B(R+)⊗B(I)-measurable,
and locally bounded:

sup
t≤u≤T

‖b(t, u, x)‖ <∞ for all (T, x),

(A5) the contagion parameter c(t, T, x; y) is R-valued P⊗B(R+)⊗B(I)⊗B(I)-
measurable, and locally bounded:

sup
t≤u≤T, y∈I

|c(t, u, x; y)| <∞ for all (T, x).

2This framework can obviously be further generalized by adding Lévy and/or Poisson
random measure driven market noise to W .
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Conditions (A2)–(A5) assert that the risk free short rate rt = f(t, t) has a
progressive version and satisfies

∫ T
0
|rt| dt <∞ for all T , see e.g. [14]. Hence the

savings account e
∫ t
0 rsds is well defined.

It is well known that there exists no admissible3 arbitrage strategy in the
(T, x)-bond market if the discounted price processes

e−
∫ t
0 rsdsP (t, T, x) are local martingales for all (T, x). (10)

We now give necessary and sufficient conditions for (10) to hold.

Theorem 3.2. Assume (A1)–(A5) hold. Then the no-arbitrage condition (10)
is equivalent to∫ T

t

a(t, u, x) du =
1
2

∥∥∥∥∥
∫ T

t

b(t, u, x) du

∥∥∥∥∥
2

+
∫
I

(
e−

∫ T
t
c(t,u,x;y) du − 1

)
1{Lt+y≤x} ν(t, dy), (11)

rt + λ(t, x) = f(t, t, x) (12)

on {Lt ≤ x}, dt⊗ dQ-a.s. for all (T, x).

Note that (12) is part of the assumptions in the SPA [24] framework, while
here we demonstrate that this is in fact a necessary consequence of the no-
arbitrage condition (10).

Proof. We denote
p(t, T, x) = e−

∫ T
t
f(t,u,x) du (13)

so that P (t, T, x) = 1{Lt≤x}p(t, T, x). Using a stochastic Fubini argument pro-
posed by Heath et al. [16], see also [14], we transform∫ T

t

∫ t

0

· · · ds du =
∫ t

0

∫ T

t

· · · du ds =
∫ t

0

∫ T

s

· · · du ds−
∫ t

0

∫ u

0

· · · ds du,

and similarly for dWs du and µ(ds, dy) du. We thus derive by Itô’s formula

dp(t, T, x)
p(t−, T, x)

=
{
f(t, t, x)−

∫ T

t

a(t, u, x) du+
1
2

∥∥∥∥∥
∫ T

t

b(t, u, x) du

∥∥∥∥∥
2

+
∫
I

(
e−

∫ T
t
c(t,u,x;y) du − 1

)
ν(t, dy)

}
dt

−
∫ T

t

b(t, u, x)> du · dWt

+
∫
I

(
e−

∫ T
t
c(t,u,x;y) du − 1

)
(µ(dt, dy)− ν(t, dy) dt) . (14)

3A self-financing trading strategy is admissible if its discounted value process is a super-
martingale, e.g. bounded from below or a martingale.
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Denote Z(t, T, x) = e−
∫ t
0 rsdsP (t, T, x). Integrating by parts and using (5) yields

dZ(t, T, x)
Z(t−, T, x)

= −rtdt+ dMx
t − λ(t, x)dt+

dp(t, T, x)
p(t−, T, x)

+
d [Mx

t , p(t, T, x)]
p(t−, T, x)

. (15)

Combining (14) and (15) shows that (10) holds if and only if

− rt − λ(t, x) + f(t, t, x)−
∫ T

t

a(t, u, x) du+
1
2

∥∥∥∥∥
∫ T

t

b(t, u, x) du

∥∥∥∥∥
2

+
∫
I

(
e−

∫ T
t
c(t,u,x;y) du − 1

)
1{Lt+y≤x} ν(t, dy) = 0 (16)

on {Lt ≤ x}, dt⊗ dQ-a.s. for all (T, x).
Setting T = t, we obtain that (16) is equivalent to (11)–(12).

Static arbitrage strategies, such as holding long a (T, x)-bond and short a
(T, y)-bond if P (0, T, x) > P (0, T, y) for some x < y, may not be admissible
and hence not excluded by condition (10). Hence (10) does not necessarily
assert monotonicity of P (t, T, x) in T and x. Note, however, that (12) implies
monotonicity of f(t, t, x) in x in any case. The following corollary is obvious:

Corollary 3.3. If the discounted prices processes in (10) are true martingales
then P (t, T, x) is decreasing in T and increasing in x. This holds in particular
if (11)–(12) are satisfied and forward rates are positive: f(t, T, x) ≥ 0.

Remark 3.4. We present our approach under the assumption that Q is a risk-
neutral measure, i.e. the no-arbitrage condition (10) is supposed to hold under
Q. It is of course possible to consider the above dynamic equations with respect
to some objective probability measure P ∼ Q. The measure change from P to Q
will have the following impact:

a(t, T, x) a(t, T, x) + b(t, T, x)> · Φ(t)
ν(t, dx) Ψ(t, x)ν(t, dx)

for some appropriate stochastic processes Φ(t) and Ψ(t, x) with values in Rd and
(0,∞), respectively. We do not intend to provide further general results on this,
as it is rather standard and regularity conditions have to be checked from case
to case. For a general reference see Theorem III.3.24 in [19], for Markovian
models see also [6].

4 Single Tranche CDOs (STCDOs)

The standard instrument for investing in a CDO-pool is a single tranche CDO
(STCDO), also called tranche credit default swap. In this intermediary section,
we formally define and value this key instrument.

A STCDO is specified by
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• a number of future dates T0 < T1 < · · · < Tn,

• a tranche with lower and upper detachment points x1 < x2 in I,

• a fixed swap rate κ.

We write
H(x) := (x2 − x)+ − (x1 − x)+ =

∫
(x1,x2]

1{x≤y}dy.

An investor in this STCDO

• receives κH(LTi) at Ti, i = 1, . . . , n (payment leg),

• pays −dH(Lt) = H(Lt−)−H(Lt) at any time t ∈ (T0, Tn] where ∆Lt 6= 0
(default leg).

As in (13), we denote the (Gt)-adapted part of the (T, x)-bond price by
p(t, T, x), so that P (t, T, x) = 1{Lt≤x}p(t, T, x).

Lemma 4.1. The value of the STCDO at time t ≤ T0 is

Γ(t, κ)

=
∫

(x1,x2]

1{Lt≤y}

(
κ

n∑
i=1

p(t, Ti, y)− p(t, T0, y) + p(t, Tn, y) + γ(t, y)

)
dy

(17)

where γ(t, y) =
∫ Tn
T0

E
[
rue
−
∫ u
t
rs ds1{Lu≤y} | Ft

]
du.

Moreover, if the risk free rates f(s, u) and the loss process Ls, for t ≤ s ≤ u,
are Ft-conditionally independent then γ(t, y) in (17) can be replaced by

γ(t, y) =
∫ Tn

T0

f(t, u)p(t, u, y) du.

Proof. The value of the payment leg at time t ≤ T0 is

E

[
n∑
i=1

e−
∫ Ti
t rsdsκH(LTi) | Ft

]
= κ

n∑
i=1

∫
(x1,x2]

P (t, Ti, y)dy.

Next we use integration by parts to calculate∫ Tn

T0

e−
∫ u
t
rsdsdH(Lu)

= e−
∫ Tn
t

rsdsH(LTn)− e−
∫ T0
t rsdsH(LT0) +

∫ Tn

T0

rue
−
∫ u
t
rsdsH(Lu)du.

The (negative) value of the default leg at time t ≤ T0 for the investor is then
given as Ft-conditional expectation. Summing up the two legs, we obtain (17).

10



The second part of the lemma follows since

E
[
rue
−
∫ u
t
rs ds | Ft

]
= f(t, u)P (t, u).

The forward STCDO swap rate κ∗t prevailing at t ≤ T0 is the rate which
gives Γ(t, κ∗t ) = 0. In view of (17) hence

κ∗t =

∫
(x1,x2]

1{Lt≤y} (p(t, T0, y)− p(t, Tn, y)− γ(t, y)) dy∑n
i=1

∫
(x1,x2]

1{Lt≤y}p(t, Ti, y) dy
.

A STCDO swaption with strike rate K gives the holder the right to enter
the above STCDO with swap rate K at swaption maturity T0. Its value at T0 is
thus Γ(T0,K)+. Note that, since Γ(T0, κ

∗
T0

) = 0, this swaption payoff can also
be written as (

n∑
i=1

∫
(x1,x2]

1{Lt≤y}p(T0, Ti, y) dy

)(
K − κ∗T0

)+
. (18)

As it is the case for single name models, e.g. [10, 23, 5], there is no closed form
solution for swaption prices available in general. See however Remark 7.3 below.

5 A Martingale Problem

Theorem 3.2 states that, under the no-arbitrage condition (10), the drift param-
eter a(t, T, x) is determined by the volatility and contagion parameters b(t, T, x)
and c(t, T, x), respectively. However, there is still an implicit relation between
the loss process L and the short end of the forward curve f(t, t, x) in (12) which
cannot be expressed directly in terms of the volatility and contagion parameters.

This circumstance has been addressed in the previous works [2, 22, 11, 12, 24]
by ad-hoc methods, such as the construction of conditional Markov loss pro-
cesses given the market information. This special case will be further discussed
in Section 6 below.

In this section, we provide mathematical evidence that arbitrage-free CDO
term structure models (9) with properties (C1) and (C2), in fact, uniquely exist
under general assumptions. Our framework contains and unifies the approaches
in [2, 22, 11, 12, 24] as particular cases.

Without loss of generality we henceforth assume that the stochastic basis
satisfies:

(A6) Ω = Ω1 × Ω2, F = G ⊗ H, Q(dω) = Q1(dω1)Q2(ω1, dω2), where ω =
(ω1, ω2) ∈ Ω, and Ft = Gt ⊗Ht, where

(i) (Ω1,G, (Gt),Q1) is some filtered probability space carrying the market
information, in particular the Brownian motion W (ω) = W (ω1),
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(ii) (Ω2,H) is the canonical space of paths for I-valued increasing marked
point processes endowed with the minimal filtration (Ht): the generic
ω2 ∈ Ω2 is a càdlàg, increasing, piecewise constant function from R+

to I. Henceforth, we let the loss process

Lt(ω) = ω2(t)

be the coordinate process. The filtration (Ht) is thus Ht = σ(Ls |
s ≤ t), and H = H∞,

(iii) Q2 is a probability kernel from (Ω1,G) to H to be determined below.

This setup implies that the volatility and contagion parameters

b(ω; t, T, x) = b(ω1, ω2; t, T, x), c(ω; t, T, x) = c(ω1, ω2; t, T, x)

in (A4)–(A5) actually are functions of the loss path ω2. Hence the indirect
contagion property (C2) is satisfied. The evolution equation (9) can thus be
solved on the stochastic basis (Ω1,G, (Gt),Q1) along any genuine loss path ω2 ∈
Ω2. Indeed, the integral with respect to µ in (9) is path-wise in ω2. However,
in view of (6), condition (12) is equivalent to

ν(ω; t, dx) = −f(ω; t, t, ω2(t) + dx), (set f(t, t, x) ≡ rt for x ≥ 1). (19)

Hence, unless the contagion parameter c is zero,

a(t, T, x) = a(t, T, x, f(t, ·))

in (11) becomes via (19) an explicit linear functional of the (short end of the)
prevailing spread curve. In fact, there may result an implicit non-linear smooth
dependence on the entire prevailing spread curve f(t, ·) via b and c in (11),
respectively. But since this dependence on f(t, ·) is smooth, for any given loss
path ω2 ∈ Ω2, equation (9) will generically be uniquely solvable.

It thus remains to find a probability kernel Q2 such that ν in (19) becomes
the compensator of L. This is a martingale problem for marked point processes,
which has completely been solved by Jacod [17]. It turns out that Q2 exists and
is unique.

Theorem 5.1. Assume (A6) holds. Let f(0, T, x), b(t, T, x) and c(t, T, x) sat-
isfy (A2), (A4) and (A5), respectively. Define ν(t, dx) by (19) and a(t, T, x)
by (11) for all (t, T, x).

Suppose, for any loss path ω2 ∈ Ω2, there exists a solution f(t, T, x) of (9)
such that f(t, t, x) is progressive, decreasing and càdlàg in x ∈ I. Then

(i) (A3) is satisfied.

(ii) there exists a unique probability kernel Q2 from (Ω1,G) to H, such that the
loss process Lt(ω) = ω2(t) satisfies (A1) and the no-arbitrage condition
(10) holds.
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(iii) ν(t, dx) dt is the compensator of L with respect to (G ⊗Ht). Moreover,

Q [τn+1 − τn > t | G ⊗ Hτn ]

= Q2 [τn+1 − τn > t | Hτn ] = e−
∫ τn+t
τn

ν(ω1,ω2(τn);s,I) ds, t ≥ 0 (20)

and

Q [∆Lτn ∈ A | G ⊗ Hτn−] = Q2 [∆Lτn ∈ A | Hτn−] =
ν(τn, A)
ν(τn, I)

(21)

for all A ∈ B(I) on {τn < ∞}, where 0 < τ1 < τ2 < · · · denote the
successive jump times of L.

(iv) Q2(·, A) is Gt-measurable for all A ∈ Ht and t. Consequently, every (Gt)-
martingale is a (Ft)-martingale.

Remark 5.2. Property (iv) is known as “(H)-hypothesis”, see [4, 12]. Property
(iii) has been explored in [12] as “successive (H)-property” for finite I. The
formulas (20)–(21) will be most useful for numerical implementations as sketched
in Section 5.1 below.

Proof. That (A3) holds follows from the local boundedness assumptions (A4)–
(A5), which in particular imply that

∫ T
0
|f(t, t, 0)| dt < ∞ for all T , see [14].

Whence (i).
By Lemma 3.1 and (12), if the loss process L satisfies (A1) and the no-

arbitrage condition (10) holds, its compensator is necessarily of the form (19).
Theorem 3.6 in [17] now implies that there exists a unique probability kernel
Q2 from Ω1 to H, such that ν is the compensator of L. Indeed, Jacod’s [17]
notation (in quotation marks) corresponds to ours as follows: “Ω = Ω′×Ω′′”↔
Ω = Ω1×Ω2, “F0”↔ G⊗{∅,Ω2}, “Ft”↔ G⊗Ht, “P0”↔ Q1 (its trivial extension
to G ⊗ {∅,Ω2}, respectively). In particular, what Jacod [17] refers to as “past”
(“F0”) corresponds to our market information G. In [17, eqn (10)], Jacod then
recursively defines a unique probability measure “P” on “(Ω,F∞)”, starting
with a transition probability from “(F0, P0)”. This yields our probability kernel
Q2. By construction, in [17], ν becomes the predictable projection of µ on
“(Ω,F , (Ft), P )”, which is (G ⊗ Ht). This proves (ii) and the first part of (iii).
In view of [3, Section VIII.1], ν(t, I) is the (G⊗Ht)-intensity of the point process
{τn}. Hence, on {τn <∞},

Φ(t) = Q[τn+1 − τn > t | G ⊗ Hτn ]

= 1 + E
[∫ τn+t

τn

ν(s, I)1{τn+1−τn>s} ds | G ⊗ Hτn
]

= 1 +
∫ τn+t

τn

ν(ω1, ω2(τn); s, I)Φ(s) ds,

which implies (20). Formula (21) follows from [3, Theorem 6, Chapter VIII].
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Now fix T and replace “F0” above by GT ⊗ {∅,Ω2} and “Ft” by GT ⊗ Ht.
Then ν(t, dx) dt, t ≤ T , is “(Ft)”-predictable and Jacod’s [17] argument above
yields a unique probability kernel Q(T )

2 from (Ω1,GT ) toHT such that ν becomes
the predictable projection of µ, restricted on the time interval [0, T ]. But then,
by uniqueness again, we conclude that Q2(·, A) = Q(T )

2 (·, A) is GT -measurable
for all A ∈ HT . From this, (iv) follows.

Remark 5.3. The SPA [24] paper leaves open the question whether a “condi-
tional Markov” loss process consistent with the loss distributions for all x ∈ I
can be constructed in their way. Theorem 5.1 now resolves and clarifies this
in full generality, as it implies that the law of the loss process L is uniquely
determined by f(0, T, x), b(t, T, x) and c(t, T, x).

Remark 5.4. Equation (9) falls essentially into the class of “non-classical”
stochastic differential equations of Jacod and Protter [18] where the characteris-
tics of certain driving semimartingales depend on the solution-process. However,
their framework is univariate and does not explicitly address marked point pro-
cess drivers and nor (C2).

5.1 A Monte-Carlo Algorithm

The pricing of loss path-dependent CDO derivatives, such as the default leg of
a STCDO or swaptions in Section 4 above, becomes a computational issue. In
general, one has to resolve to Monte-Carlo methods such as the following. Fix
a finite time horizon τ , and denote by f(0, T, x) a given initial forward curve,
for T ≤ τ and x ∈ I. We now sketch an algorithm to simulate N trajectories
for the joint process (f(t, T, x), Lt), t ≤ T ≤ τ .

(i) Simulate N independent samples of ω1, i.e. standard Brownian paths
ω

(1)
1 (t), . . . , ω(N)

1 (t), t ∈ [0, τ ].

(ii) Initialize: set T (i,0) := 0, f (i,0)(0, T, x) := f(0, T, x), j := 1, and the initial
placeholder loss process ω(i,j)

2 (t) := 0, t ∈ [0, τ ], for i = 1, . . . , N .

(iii) Solve (9) along (ω(i)
1 , ω

(i,j)
2 ), e.g. via Euler scheme. This gives f (i,j)(t, T, x)

for all t ≤ T ≤ τ and x ∈ I. In fact, you can set f (i,j)(t, T, x) :=
f (i,j−1)(t, T, x) for t < T (i,j−1).

(iv) Simulate an independent standard exponential random variable ε(j), set
λ(i,j)(t, x) := f (i,j)(t, t, x) − f (i,j)(t, t, 1) (:= 0 for x ≥ 1), and determine
the jth jump time via

T (i,j) = inf
{
t ≥ T (i,j−1) |

∫ t

T (i,j−1)
λ(i,j)(s, ω(i,j)

2 (T (i,j−1))) ds ≥ ε(j)
}
.

This is justified by (20).
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(v) If T (i,j) > τ , set ω(i)
2 (t) := ω

(i,j)
2 (t) for all t ∈ [0, τ ]. The ith path ω(i) =

(ω(i)
1 , ω

(i)
2 ) is thus fully simulated and can be omitted in the following.

Continue with those i where T (i,j) ≤ τ . The algorithm terminates if no
such i is left.

(vi) Simulate the jth loss jump size ∆LT (i,j) as independent I-valued random
variable with distribution function

λ(i,j)(T (i,j), ω
(i,j)
2 (T (i,j)))− λ(i,j)(T (i,j), ω

(i,j)
2 (T (i,j)) + x)

λ(i,j)(T (i,j), ω
(i,j)
2 (T (i,j)))

, x ∈ I.

This is justified by (21). Update the loss path

ω
(i,j+1)
2 (t) =

{
ω

(i,j)
2 (t), t < T (i,j),

ω
(i,j)
2 (t) + ∆LT (i,j) , t ≥ T (i,j).

(vii) Set j := j + 1 and repeat from (iii).

Note that, in every iteration, we have to assume that f (i,j)(t, t, x) is decreas-
ing and càdlàg in x ∈ I.

6 Doubly Stochastic Framework

As a special case of the above general framework we now omit both contagion
effects (C1) and (C2) and assume that

(A7) the volatility parameter b(ω; t, T, x) = b(ω1; t, T, x) is (Gt)-adapted, and
c(t, T, x; y) ≡ 0.

Note that a(t, T, x) in (11) simplifies considerably. In particular, there is no
explicit dependence on f(t, t, ·) via (19) anymore. Moreover, the forward curve
f(ω; t, T, x) = f(ω1; t, T, x) becomes a function of ω1 only.

Theorem 5.1 can now be improved and extended by a very useful formula
for CDO derivatives pricing.

Theorem 6.1. Suppose (A7) and the assumptions in Theorem 5.1 hold.
Then the loss process L becomes G-conditional Markov under Q2. Moreover,

for any positive G-measurable random variable X and all x ∈ I,

E[X1{LT≤x} | Ft] = 1{Lt≤x}E
[
Xe−

∫ T
t
λ(s,x)ds | Gt

]
. (22)

Proof. The G-conditional Markov property of L follows since, for given ω1, the
compensator ν(ω; t, dx) = −f(ω1; t, t, ω2(t) + dx) in (19) is now a function of
the current loss level ω2(t) only.
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Now let X ≥ 0 be G-measurable. Since λ(t, x) is G-measurable, we obtain

Φ(T ) := E
[
X1{LT≤x} | G ⊗ Ht

]
= E

[
XMx

T −
∫ T

0

X1{Ls≤x}λ(s, x)ds | G ⊗ Ht

]

= XMx
t −

∫ T

0

λ(s, x)E
[
X1{Ls≤x} | G ⊗ Ht

]
ds

= X1{Lt≤x} −
∫ T

t

λ(s, x)Φ(s)ds.

We infer that
Φ(T ) = X1{Lt≤x}e

−
∫ T
t
λ(s,x)ds.

Conditioning on Ft yields (22).

Formula (22) states that the market information G is enough to price any,
possibly loss path-dependent, CDO derivative. Indeed, a simple iteration of
(22) yields

Q

[
n⋂
i=1

{Lti ≤ xi} ∩A | Ft0

]
= 1{Lt0≤mini xi}E

[
n∏
i=1

e−
∫ ti
ti−1

λ(s,xi) ds1A | Gt0

]

for all t0 < · · · < tn and A ∈ G. Hence the Ft0-conditional law of the loss pro-
cess is given by a Gt0-conditional expectation of a functional of the G-measurable
compensator λ(t, x). This property generalizes the concept of a doubly stochas-
tic Poisson process to marked point processessee e.g. [3, Section II.1] or [21,
Chapter 9].

Applying (22) and (12) to the STCDO formula (17), we obtain the following
corollary.

Corollary 6.2. If the doubly stochastic assumptions of Theorem 6.1 are in force
then γ(t, y) in (17) can be replaced by

γ(t, y) =
∫ Tn

T0

E
[
rue
−
∫ u
t
f(s,s,y)ds | Gt

]
du.

7 Doubly Stochastic Affine Term Structure

In this section we consider an analytically tractable class of Markov factor mod-
els for the term structure movements (9) in the doubly stochastic framework.
We assume that (A6) holds. Let Z ⊂ Rd be some closed state space with
non-empty interior and Z some Z-valued diffusion process satisfying

dZt = µ(Zt)dt+ σ(Zt) · dWt,

Z0 = z
(23)
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where µ and σ are continuous functions from R+×Z into Rd and Rd×d, respec-
tively.

In what follows we consider affine term structure models of the form

f(t, T, x) = A′(t, T, x) +B′(t, T, x)> · Zt

that is, in terms of (9),

a(t, T, x) = ∂tA
′(t, T, x) + ∂tB

′(t, T, x)> · Zt +B′(t, T, x)> · µ(Zt)

b(t, T, x) = B′(t, T, x)> · σ(Zt)
(24)

for some functions A′(t, T, x) and B′(t, T, x) with values in R and Rd, respec-
tively. We denote

A(t, T, x) =
∫ T

t

A′(t, u, x)du, B(t, T, x) =
∫ T

t

B′(t, u, x)du.

The following theorem gives a characterization of those affine term structure
models which satisfy the no-arbitrage condition (10).

Theorem 7.1. Assume that, for all z ∈ Z, there exists a Z-valued continuous
solution Z = Zz of (23) such that the coefficients given in (24) satisfy (11) for
all t ≤ T and x a.s. If the d+ d(d+1)

2 functions in (T, x),

Bi(0, T, x), Bk(0, T, x)Bl(0, T, x), k ≤ l, (25)

are linearly independent, then Z is necessarily affine. That is, drift and diffusion
matrix are affine functions of z = (z1, . . . , zd) ∈ Z:

µ(z) = µ0 +
d∑
i=1

ziµi,
1
2
σ · σ>(z) = ν0 +

d∑
i=1

ziνi (26)

for some vectors µi ∈ Rd and matrices νi ∈ Rd×d. Moreover, A and B solve the
following system of Riccati equations, for t ≤ T ,

−∂tA(t, T, x) = A′(t, t, x) + µ>0 ·B(t, T, x)−B(t, T, x)> · ν0 ·B(t, T, x)
A(T, T, x) = 0

−∂tBi(t, T, x) = B′i(t, t, x) + µ>i ·B(t, T, x)−B(t, T, x)> · νi ·B(t, T, x)
B(T, T, x) = 0

(27)

for all (T, x).

Proof. Note that∫ T

t

∂tA
′(t, u, x)du = ∂tA(t, T, x) +A′(t, t, x),
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and analogously for B′. Hence (11) yields

∂tA(t, T, x) +A′(t, t, x) + (∂tB(t, T, x) +B′(t, t, x))> ·Zt +B(t, T, x)> · µ(Zt)

=
1
2
B(t, T, x)> · σ · σ>(Zt) ·B(t, T, x). (28)

Letting t ↓ 0, by continuity, we obtain the respective equality for Zt replaced
by z, for all T , x and z. We infer that

B(0, T, x)> · µ(z) +B(0, T, x)> · σ · σ
>(z)
2

·B(0, T, x)

is an affine function in z, for all T and x. By assumption (25), we conclude that
µ and σ · σ>/2 must be affine functions of the form (26).

Plugging (26) back in (28) and separating first order terms in zi, we obtain
(27).

The next theorem is the converse to Theorem 7.1 and gives sufficient condi-
tions for the existence of an arbitrage-free affine term structure model.

Theorem 7.2. Assume µ and σσ> are affine of the form (26). Let A′(t, t, x)
and B′(t, t, x) be some bounded B(R+)⊗B(I)-measurable functions with values
in R and Rd, respectively, such that A′(t, t, x) +B′(t, t, x)> · z is decreasing and
càdlàg in x ∈ I for all t and z ∈ Z.

Let A and B be given as solutions of the Riccati equations (27), and let Z be
a continuous Z-valued solution of (23), for some z ∈ Z. Then the conclusions
of Theorem 6.1 apply and

P (t, T, x) = 1{Lt≤x}e
−A(t,T,x)−B(t,T,x)>·Zt

defines an arbitrage-free, doubly stochastic (T, x)-bond market.

Proof. It follows as in the proof of Theorem 7.1 that (11) is equivalent to (28),
which again is implied by (27). Moreover,

f(t, t, x) = A′(t, t, x) +B′(t, t, x)> · Zt (29)

satisfies the required properties in Theorem 6.1. Hence the conclusions of The-
orem 6.1 apply.

Remark 7.3. Using the affine toolbox, as developed in e.g. [10, 23, 5], and the
fact that f(t, t, x) in (29) is an affine function of the affine process Z, derivative
prices such as in Lemma 4.1 and (18) can now efficiently be computed.

7.1 Example

As simple example, we consider: d = 1, Z = R+, µ0 ≥ 0, µ1 ∈ R, ν1 = σ2/2,
for some σ > 0. That is, Z is a Feller square root process:

dZt = (µ0 + µ1Zt)dt+ σ
√
ZtdWt, Z0 = z ∈ R+.
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Moreover, we let A′(t, t, x) = α(t, x) and B′(t, t, x) = β(x), for some R+-
valued bounded measurable functions α(t, x) and β(x) which are decreasing
and càdlàg in x ∈ I with α(t, 1) ≡ r ≥ 0 and β(1) = 0. That is, we have a
constant risk free short rate

rt ≡ r, and λ(t, x) = α(t, x)− r + β(x)Zt.

The Riccati equations (27) become

A(t, T, x) =
∫ T

t

(α(s, x) + µ0B(s, T, x)) ds

−∂tB(t, T, x) = β(x) + µ1B(t, T, x)− σ2

2
B(t, T, x)2, B(T, T, x) = 0.

The equation for B has the solution

B(t, T, x) ≡ B(T − t, x) =
2β(x)

(
eρ(x)(T−t) − 1

)
ρ(x)

(
eρ(x)(T−t) + 1

)
− µ1

(
eρ(x)(T−t) − 1

)
where ρ(x) =

√
µ2

1 + 2σ2β(x). Note that

∂TA(t, T, x) = α(T, x) + µ0B(T − t, x).

Hence, we obtain

f(t, T, x) = α(T, x) + µ0B(T − t, x) + ∂TB(T − t, x)Zt
f(t, T ) ≡ r.

Since the independence assumption in the second part of Lemma 4.1 is clearly
met, we conclude that γ(t, y) in (17) can be replaced by

γ(t, y) = r

∫ Tn

T0

p(t, u, y) du,

where
p(t, T, x) = e−A(t,T,x)−B(T−t,x)Zt .

Hence STCDO values, and thus swap rates and swaptions, are efficiently com-
putable via (17). We conclude with the remarkable fact that this simple model is
capable of capturing any given initial forward curve f(0, T, x) by an appropriate
choice of the function α(T, x).

8 Conclusion

We have provided a universal framework for arbitrage-free CDO term structure
movements, where forward rates are driven by Brownian market noise and con-
tagion feedback from the loss process. This extends the Heath–Jarrow–Morton
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[16] methodology to the defaultable case. Our first main result was a necessary
and sufficient condition on the drift and default intensity for the absence of ar-
bitrage. As second main result, we have shown that any exogenous specification
of volatility and contagion parameters uniquely determines the loss process such
that the no-arbitrage conditions are met. Moreover, we have provided formulas
and an algorithm for CDO derivative pricing, both for the general and the dou-
bly stochastic case, which was then further specified for affine term structures.
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