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Abstract. This paper presents a review of the developments in the area
of credit risk. Starting in 1974, Merton developed a pricing method for a
bond facing default risk, which was mainly settled in the framework of Black
and Scholes (1973). Certain attempts have been made to relax the assump-
tions, giving rise to a class of models called structural models. A second class,
called hazard rate models, was first addressed in Pye (1974) and more recently
reached attention with the works of, e.g., Lando (1994). There are extensions
in different directions, e.g., models which incorporate ratings, models for a
portfolio of bonds or market models. The so called commercial models are
readily implemented models which are widely accepted in practice. Finally we
describe certain credit derivatives.

1. Structural Models

The first class of models tries to measure the credit risk of a corporate bond by
relating the firm value of the issuing company to its liabilities. If the firm value at
maturity T is below a certain level, the company is not able to pay back the full
amount of money, so that a default event occurs.

1.1. Merton (1974). In his landmark paper Merton (1974) applied the frame-
work of Black and Scholes (1973) to the pricing of a corporate bond. A corporate
bond promises the repayment F at maturity T . Since the issuing company might
not be able to pay the full amount of money back, the payoff is subject to default
risk.

Let Vt denote the firm’s value at time t. If, at time T , the firm’s value VT is below
F , the company is not able to make the promised repayment so that a default event
occurs. In Merton’s model it is assumed that there are no bankruptcy costs and
that the bond holder receives the remaining VT , thus facing a financial loss.

If we consider the payoff of the corporate bond in this model, we see that it is equal
to F in the case of no default (VT ≥ F ) and VT otherwise, i.e.,

1{VT >F}F + 1{VT≤F}VT = F − (F − VT )+.
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If we split the single liability into smaller bonds with face value 1, then we can
replicate the payoff of this bond by a portfolio of a riskless bond B(t, T ) with face
value 1 (long) and 1/F puts with strike F (short).

Consequently the price of the corporate bond at time t, which we denote by B̄(t, T ),
equals the price of the replicating portfolio:

B̄(t, T ) = B(t, T )− 1/F · P (F, Vt, t, T, σV )

= e−r(T−t) − 1
F

(
Fe−r(T−t)Φ(−d2)− VtΦ(−d1)

)

= e−r(T−t)Φ(d2) +
Vt

F
Φ(−d1),(1.1)

where Φ(·) is the cumulative distribution function of a standard normal random
variable.

Furthermore, P (F, Vt, t, T, σV ) denotes the price of a European put on the under-
lying V with strike F , evaluated at time t, when maturity is T and the volatility of
the underlying is σV . This price is calculated using the Black and Scholes option
pricing formula. The constants d1 and d2 are

d1 =
ln Vt

Fe−r(T−t) + 1
2σ2(T − t)

σ
√

T − t

d2 = d1 − σ
√

T − t.

If the current firm value Vt is far above F the put is worth almost nothing and the
price of the corporate bond equals the price of the riskless bond. If, otherwise, Vt

approaches F the put becomes more valuable and the price of the corporate bond
reduces significantly. This is the premium the buyer receives as a compensation
for the credit risk included in the contract. Price reduction implies a higher yield
for the bond. The excess yield over the risk-free rate is directly connected to the
creditworthiness of the bond and is called the credit spread. In this model the credit
spread at time t equals

s(t, T ) = − 1
T − t

ln
[
B̄(t, T )er(T−t)

]

= − 1
T − t

ln
(

Φ(d2) +
Vt

F · e−r(T−t)
Φ(−d1)

)
,

see Figure 1.

The question of hedging the corporate bond is easily solved in this context, as
hedging formulas for the put are readily available. To replicate the bond the hedger
has to trade the risk-free bond and the firm’s share simultaneously1. This reveals
the fact that in Merton’s model the corporate bond is a derivative on the risk-free
bond and the firm’s share.

1The hedge consists primarily of hedging 1
F

put and is a straightforward consequence of the

Black-Scholes Delta-Hedging.
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Figure 1. This plot shows the credit spread versus time to ma-
turity in the range from zero to two years. The upper line is the
price of a bond issued by a company whose firm value equals twice
the liabilities while for the second the liabilities are three times as
high. Note that if maturity is below 0.3 years the credit spreads
approach zero.

We face the following problems within this model:

• The credit spreads for short maturity are close to zero if the firm value is far
above F . This is in contrast to observations in the credit markets, where these
short maturity spreads are not negligible because even close to maturity the
bond holder is uncertain whether the full amount of money will be paid back or
not; cf. Wei and Guo (1991) and Jones, Mason, and Rosenfeld (1984).
The reason for this are the assumptions of the model, in particular continuity
and log-normality of the firm value process. On the other hand, the intrinsic
modeling of the default event may also be questionable. In reality there can be
many reasons for a default which are not covered by this model.

• The model is not designed for different bonds with different maturities. Also it
can happen that not all bonds default at the same time (seniority).

• In practice not all liabilities of a firm have to be paid back at the same time.
One distinguishes between short-term and long-term liabilities. To determine
the critical level where the company might default Vasiček (1984) introduced the
default point as a mixture of the level of outstandings. This concept is discussed
in Section 7.1.

• The interest rates are assumed to be constant. This assumption is relaxed, for
example, by Kim, Ramaswamy, and Sundaresan (1993), as discussed in Section
1.4.

• As there are only few parameters which determine the price of the bond, this
model cannot be calibrated to all traded bonds on the market, which reveals
arbitrage possibilities.
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Geske and Johnson (1984) extended the Merton model to coupon-bearing bonds
while Shimko, Tejima, and van Deventer (1993) considered stochastic interest rates
using the interest rate model proposed in Vasiček (1977). The second extension
is essentially equivalent to pricing a European put option with Vasiček interest
rates, where closed-form solutions are available. Of course, any other interest rate
model can be used in this framework, like Cox, Ingersoll, and Ross (1985) or Heath,
Jarrow, and Morton (1992).

1.2. Longstaff and Schwartz (1995). As already mentioned defaults in the
Merton model are restricted to happen only at maturity, if at all. In practice
defaults may happen at any time. Also, when a company offers more than one
bond with different maturities or seniorities, inconsistencies in the Merton model
show up which can be solved by the following approach.

Black and Cox (1976) first used first passage time models in the context of credit
risk. This means that a default happens at the first time, when the firm value
falls below a pre-specified level. They used a time dependent boundary, F (t) =
ke−γ(T−t), which resulted in a random default time τ . Unfortunately, this frame-
work proves to be unsatisfactory.

Longstaff and Schwartz (1995) extended the Merton, respectively Black and Cox,
framework with respect to the following issues:
• Default may happen at the first time, denoted by τ , when the firm value Vt

drops below a certain level F .
• Interest rates are stochastic and assumed to follow the Vasiček model.

As a consequence, the firm value at default equals F . In the Merton model the
value of the defaulted bond was assumed to be VT /F which equals 1 in this context.
The recovery value of the bond is therefore assumed to be a pre-specified constant
(1− w). This is the fraction of the principal the bond holder receives at maturity.
Since further defaults are excluded in this model, the bond value at default equals
B̄(τ, T ) = (1 − w)B(τ, T ), where B(t, T ) is the value of a risk-free bond maturing
at T . This assumption is often referred to as recovery of treasury value.

In the following, we present the model of Longstaff and Schwartz (1995) in greater
detail. The firm value is assumed to follow the stochastic differential equation

dV (t)
V (t)

= µ(t) dt + σ dWV (t),

and the spot rate is modeled according to the model of Vasiček (1977):

dr(t) = ν(θ − r(t)) dt + η dWr(t).(1.2)

Moreover,
IE(WV (s)Wr(t)) = ρ · (s ∧ t) for all t and s.

The last equation reveals a possible correlation between the two Brownian Motions
WV and Wr.

The Vasiček model exhibits a mean-reversion behavior at level θ and easily allows
for an explicit representation of rt. It is a classical model used in interest rate theory
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and often taken as a starting point for more sophisticated models. A drawback of
this model is the fact that it may exhibit negative interest rates with positive prob-
ability. See, for example, Brigo and Mercurio (2001) and the discussions therein.

For the price of the defaultable bond they obtain

B̄LS(t, T ) = B(t, T ) · IEQT
[
1{τ>T} + (1− w)1{τ≤T}

∣∣∣Ft

]

= B(t, T ) · [w QT (τ > T |Ft) + (1− w)
]
.(1.3)

Note that QT (τ > T |Ft) is the conditional probability (under the T -forward mea-
sure2) that the default does not happen before T .

To the best of our knowledge, a closed-form solution for this probability is not avail-
able3. Nevertheless there are certain quasi-explicit results provided by Longstaff and
Schwartz (1995). See also Lehrbass (1997) for an implementation of the model.

In the empirical investigation of Wei and Guo (1991), the Longstaff and Schwartz
model reveals a performance worse than the Merton model. According to these
authors this is mainly due to the exogenous character of the recovery rate.

1.3. Jump Models - Zhou (1997). Another approach to solve the problem
of short maturity spreads is to extend the firm value process to allow for jumps.
Mason and Bhattacharya (1981) extended the Black and Cox (1976) model to a pure
jump process for the firm value. The size of the jumps has a binomial distribution.
In this model there is some considerable probability for the default to happen even
just before maturity.

Alternatively, Zhou (1997) extended the Merton model by assuming the firm value
to follow a jump-diffusion process. The immediate consequence is that defaults are
not predictable. The model is formulated directly under an equivalent martingale
measure Q, and the firm value is assumed to follow

dVt/Vt− = (rt − λν)dt + σdWV (t) + (Πt − 1)dNt.(1.4)

Nt is a Poisson process with constant intensity λ. The jumps are Πt = UNt , where
U1, U2, . . . are i.i.d. and assumed to be independent of N , rt and WV . Denote
ν := IE(Ui)− 1. Note that the integral of (Πt − 1) dNt is shorthand for

Ys :=
∫ s

0

(Πt − 1) dNt =
Ns∑

i=1

(Ui − 1),

so that Yt is a marked point process. It can be proved4 that Yt−λνt is a martingale
so that consequently the discounted firm value is a martingale under the measure
Q.

2The T -forward measure is the risk neutral measure which has the risk-free bond with ma-
turity T as numeraire. For details see Björk (1997).

3See discussions in Bielecki and Rutkowski (2002) and ?).
4See, for example, Brémaud (1981).
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The interest rate is assumed to be stochastic and follow the Vasiček model; see
(1.2). The recovery rate is determined by a deterministic function w, so that the
bond holder receives (

1− w(Vτ/F )
)

at default. The function w represents the loss of the bond’s value due to the
reorganization of the firm. For w = 1 we have the zero recovery case.

Zhou considers two models. The first, more general model, assumes that default
happens at the first time when the firm value falls below a certain threshold. See
the previous chapter for more examples of this class of models. Since in this case
no closed-form solutions are available, the author proposes an implementation via
Monte-Carlo techniques.

In the second, more restrictive model, the author obtains closed form solutions. For
this a constant interest rate and log-normality of the Ui’s is assumed and default
happens only at maturity T , when VT < F . Furthermore w is assumed to be linear,
i.e., w(x) = 1 − w̃ x. For w̃ = 1 we obtain the recovery structure of the Merton
model.

Equation (1.4) takes the form of a Doleans-Dade exponential and can be explicitly
solved under these assumptions, cf. Protter (2004, p. 77):

Vt = V0 exp
[
σV WV (t) + (r − 1

2
σ2

V − λν)t
] Nt∏

i=1

Ui.

Denote by σ2
U the variance of ln U1. We then have the following

Proposition 1.1 (Zhou). Denote ν̃ := 1 + ν. Then the price of a defaultable bond
in the above model equals

B̄ZH(0, T ) =

w̃

F
V0e

−λT ν̃
∞∑

j=0

(λνT )j

j!
Φ

( ln F
V0
− (r + 1

2σ2
V − λν)T − j(ln ν̃ + 1

2σ2
U )√

σ2
V T + jσ2

U

)

+e−(r+λ)T
∞∑

J=0

(λT )j

j!
Φ

(
− ln F

V0
− (r − 1

2σ2
V − λν)T − j(ln ν̃ − 1

2σ2
U )√

σ2
V T + jσ2

U

)
.

Proof. The payoff of the bond equals

B̄ZH(t, T ) = 1{τ>T} + 1{τ≤T}
(
1− w(VT /F )

)

= 1{τ>T} + 1{τ≤T}w̃
VT

F
= 1 + 1{τ≤T}

(
w̃

VT

F
− 1

)
.

To compute the present value of the bond we consider the expectation of the dis-
counted payoff

B̄ZH(t, T ) = IEQ
[
e−r(T−t) ·

(
1 + 1{τ≤T}

(
w̃

VT

F
− 1

))∣∣∣Ft

]

= e−r(T−t)
[
1 + IEQ

(
1{VT <F}

(
w̃

VT

F
− 1

))∣∣∣Ft

]

= e−r(T−t)
[
1 +

w̃

F
IEQ

(
1{VT <F}VT

∣∣∣Ft

)
− IEQ

(
1{VT <F}

∣∣∣Ft

)]
.
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Note that conditionally on {NT = j} we obtain a log-normal distribution for VT :

IP(VT < F |NT = j) = IP
(
V0e

(r− 1
2 σ2

V −λν)T exp[σV WV (T )]
NT∏

i=1

Ui < F
∣∣NT = j

)

= IP
(

ln V0 + (r − 1
2
σ2

V − λν)T + σV WV (T ) +
j∑

i=1

ln Ui < ln F
)

=: IP(ξj < ln F ),

where σV W (T ) +
∑j

i=1 ln Ui as a sum of independent normally distributed ran-
dom variables is again normally distributed. Recall σ2

U , the variance of ln U1. As
IE(lnU) = ln(1 + ν)− 1

2σ2
U , we get

ξj ∼ N
(

ln V0 + (r − 1
2
σ2

V − λν)T + j(ln ν − 1
2
σ2

U ), σ2
V T + jσ2

U

)

=: N (µ̃(j), σ̃2(j)).

It is an easy exercise to verify that for ξ ∼ N (µ, σ2
V )

IE
(
eξ1{eξ<F}) = eµ+ 1

2 σ2
V Φ

( ln F − µ

σV
− σV

)
.

Conclude that

IEQ
[
1{VT <F}VT

]
=

∞∑

j=0

Q(NT = j)IEQ(1{VT <F}VT |NT = j)

=
∞∑

j=0

e−λT (λT )j

j!
exp(

1
2
σ̃2(j) + µ̃(j))Φ

( ln F − µ̃(j)
σ̃(j)

− σ̃(j)
)

= e−λT V0e
(r−λν)T

∞∑

j=0

(λνT )j

j!

·Φ
( ln F

V0
− (r + 1

2σ2
V − λν)T − j(ln(1 + ν) + 1

2σ2
U )√

σ2
V T + jσ2

U

)
.

We therefore obtain

B̄ZH(0, T ) =

e−rT +
w̃

F
V0e

−λT (1+ν)

·
∞∑

j=0

(λνT )j

j!
Φ

( ln F
V0
− (r + 1

2σ2
V − λν)T − j(ln(1 + ν) + 1

2σ2
U )√

σ2
V T + jσ2

U

)

−e−(r+λ)T
∞∑

j=0

(λT )j

j!
Φ

( ln F
V0
− (r − 1

2σ2
V − λν)T − j(ln(1 + ν)− 1

2σ2
U )√

σ2
V T + jσ2

U

)
.

Noting that

e−rT = e−(r+λ)T
∑

(λT )j/(j!),

the proof is complete.
¤
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In the case where no jumps are present, i.e., λ = 0, the sum reduces to the summand
with j = 0 so that the bond price formula of Merton (1.1) is obtained as a special
case.

This model features some properties which are also found in empirical investigations
on credit risk:
• The term structure of the credit spreads can be ”upward-sloping”, flat, humped

or ”downward-sloping”.
• The “short maturity spreads” can be significantly higher than in the Merton

model.
• As the firm value at default is random, especially not equal to F as in the

Longstaff and Schwartz (1995) model, the recovery is more realistic.
• The recovery rate is correlated with the firm value also just before default.

1.4. Further Structural Models. Kim, Ramaswamy, and Sundaresan (1993)
extended the first passage time models to also incorporate stochastic interest rates
following the model of Cox, Ingersoll, and Ross (1985). In their model there is an
additional possibility for a default to happen at maturity. The payoff they consid-
ered equals min(F, V ). Possibly the company is not able to meet its liabilities at
maturity but did not face a default up to this time.

Nielsen, Saà-Requejo, and Santa-Clara (1993) extended these models to incorporate
a stochastic default boundary. For the interest rate they used the model of Hull
and White (1990) but were only able to obtain explicit formulas in the special case
of the Vasiček model, cf. formula (1.2).

In the work of Ammann (1999) vulnerable claims are considered. These are possibly
stochastic payoffs which face a counterparty risk. Counterparty risk plays a role
if the buyer of a claim considers the default probability of the seller as significant.
He therefore will ask for a risk premium which compensates for the possible loss in
case of a default. The default is assumed to happen if VT < F , similar to Merton’s
model. In that case the buyer of the claim X receives the fraction VT

F ·X. Explicit
prices are derived for the Heath, Jarrow, and Morton (1992) forward rate structure
and Merton-like firm dynamics.

This section on structural models heavily relies on the assumption that the firm’s
value is observable or even tradeable. From a practical point of view this seems not
justifiable as the firm’s value is not tradeable and even difficult to observe. This
difficulty is discussed by Buffett (2002) and also solved in the KMV-model; see
Section 7.1.

2. Hazard Rate Models

In comparison to structural models, intensity based models or hazard rate models
use a totally different approach for modeling the default. In the structural approach
default occurs when the firm value falls below a certain boundary. The hazard rate
approach takes the default time as an exogenous random variable and tries to model
or fit its probability to default. The main tool for this is a Poisson process with
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possibly random intensity λt, and jumps denoting the default events. As in the first
passage time models recovery is not intrinsic to this model and is often assumed to
be a somehow determined constant.

The reason for this new approach lies in the very different causes for default. Precise
determination as done in structural models seems to be very difficult. Furthermore,
in structural models the calibration to market prices often causes difficulties, while
intensity based models allow for a better fit to available market data.

In some approaches basic ideas of these model classes are combined, for example by
Madan and Unal (1998) and Ammann (1999) where the default intensity explicitly
depends on the firm value. These models are called hybrid models and will be
discussed in Section 5. As the firm value approaches a certain boundary, intensity
increases sharply and default becomes very likely. So basic features of the structural
models are mimicked.

A more involved hybrid model is presented by Duffie and Lando (2001) where a
firm value model with incomplete accounting data is considered.

Basically we may distinguish three types of hazard rate models. In the first ap-
proach the default process is assumed to be independent of most economic factors,
sometimes it is even modeled independently from the underlying.

The rating based approach incorporates the firm’s rating as this constitutes readily
available information on the company’s creditworthiness. In principle one tries to
model the company’s way through different rating classes up to a possible fall to
the lowest rating class which determines the default.

A third and very recent class is in the line of the famous market models of Jamshid-
ian (1997) and Brace, Gatarek, and Musiela (1995), see Chapter 6.

2.1. Mathematical Preliminaries. In this section we consider the modeling
of the default process in greater detail. The approach is mainly based on Lando
(1994) and also discussed in many articles and books like Jeanblanc (2002) and Bi-
elecki and Rutkowski (2002). We first present a brief introduction to Cox processes.

As already mentioned different stopping times denoting the default events need to
be modeled. The Poisson process is taken as a starting point. Constant intensity
seems too restrictive so one uses Cox processes, which can be considered as Poisson
processes with random intensities5. A special case which suits well for our purposes
is the following:

Consider a stochastic process λt which is adapted to some filtration Gt. For a
Poisson process Nt with intensity 1 independent of σ(λs : 0 ≤ s ≤ T ∗) set

Ñt := N
( ∫ t

0

λu du
)
, t ≤ T ∗.

5For a full treatment of Cox processes see Brémaud (1981) and Grandell (1997).
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Ñt is a Cox process. Observe that for positive λt the process
∫ t

0
λu du is strictly

increasing and so Ñ can be viewed as a Poisson process under a random change of
time. This reveals a very powerful concept for the problems considered in credit
risk.

If just one default time τ is considered, this will be equal to the first jump τ1 of
Ñt. If more default events are considered, for example, transition to other rating
classes, further jumps τi are taken into account. The bigger λ is, the sooner the
next jump may be expected to occur. We obtain, for any t < T ∗,

IP(τ > t) = IE
[
IP (τ > t|(λs)0≤s≤t)

]

= IE
[
exp

(−
∫ t

0

λu du
)]

.

Conclude that conditionally on σ(λs : 0 ≤ s ≤ T ∗) the jumps are exponentially
distributed with parameter

∫ t

0
λu du .

It may be recalled that a fundamental assumption to obtain this is the independence
of λ and N .

2.2. Jarrow and Turnbull (1995-2000). In the work of Jarrow and Turn-
bull (1995) a binomial model is considered. In extension of the classical Cox, Ross,
and Rubinstein (1979) approach the authors also modeled the non-default and
the default state. So for every time period four possible states may be attained:
{up,down} × {non-default,default}. They discovered an analogy to the foreign-
exchange markets. As the intensity of the model is assumed to be constant we do
not discuss it in greater detail.

In Jarrow and Turnbull (2000) a Vasiček model for the spot rate is used and the
hazard rate is explicitly modeled. Correlation of the hazard rate and spot rates are
allowed. Denote by Zt and Wt Brownian motions under the risk neutral measure
Q, with constant correlation ρ. Zt can be some economic factor, like an index or
the logarithm of the firm value.

Assume the following dynamics

drt = κ(θ − rt) dt + σdWt,

λt = a0(t) + a1(t)rt + a2(t)Zt.

Note that λ may take on negative values with positive probability.

Recovery must be modeled exogenously and the authors use the already mentioned
recovery of treasury value6. This means if default happens prior to maturity of the
bond, the bond holder receives a fraction (1−w) of the principal at maturity. For
the value of the bond we calculate the expectation of the discounted payoff under
the risk-neutral measure Q. For ease of notation we consider t = 0. By equation
(1.3),

B̄(0, T ) = (1− w)B(0, T ) + wIEQ
[
exp

(
−

∫ T

0

rs ds
)
1{τ>T}

]
.

6See the Longstaff and Schwartz model, Section 1.2.
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In the model of Jarrow and Turnbull we obtain

B̄(0, T ) = (1− w)B(0, T ) + wIEQ
[
exp(−

∫ T

0

ru du)Q(τ ≤ T |λs : 0 ≤ s ≤ T )
]

= (1− w)B(0, T ) + wIEQ
[
exp[−

∫ T

0

(ru + λu) du]
]

= (1− w)B(0, T ) + w exp(−µT +
1
2
vT ).

In the last equation µT and vT denote expectation and variance of
∫ T

0
(ru + λu) du.

Under the stated assumptions this integral is normally distributed and µ and v can
be easily calculated.

The flexibility of the model leads to a good fit to market data, which is not obtained
by most structural models. Also the model incorporates economic factors (Zt).

2.3. Duffie and Singleton (1999). The paper by Duffie and Singleton (1999)
combines two very successful model classes in interest rate modeling to access Credit
Risk: exponential affine models and the Heath, Jarrow, and Morton (1992) method-
ology.

For the exponential affine model the authors model a vector of hidden factors which
underlie the term structure of interest rates. This vector is assumed to follow a
multidimensional Cox-Ingersoll-Ross model:

dy(t) = K(Θ− y(t))dt + Σ diag(y(t))1/2dW(t).

Consequently the components of y are nonnegative random numbers. Spot and
hazard rate are assumed to be linear in y(t):

r(t) = δ0 + δ′y(t),
λ(t)(1− θ(t)) = γ0 + γ′y(t).

A main feature of the exponential affine models is that the solution of the above
SDE can be explicitly expressed in an exponential affine form. Hence we obtain
deterministic functions a(), b() such that

IE
[
exp

(
iξ′

∫ t

0

y(u) du
)]

= exp[a(t, ξ) + b(t, ξ′y(0))].

Thus the price of the defaultable bond can be calculated in closed form as the value
of the characteristic function at a proper point.

The second approach uses the well known Heath-Jarrow-Morton model of forward
rates. Denote by f̄(t, T ) the forward rates determined by the term structure of
the defaultable bond prior to default7 and by W(t, T ) a d-dimensional standard
Brownian motion. Assume the dynamics of the forward rate to be

f̄(t, T ) = f̄(0, T ) +
∫ t

0

µ(u, T ) du +
∫ t

0

σ(u, T ) dW(u).

7The forward rate is by definition f̄(t, T ) = − ∂
∂T

ln B̄(t, T ).
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Similar to Heath, Jarrow, and Morton (1992) the authors specify the dynamics
under the objective measure and consider an equivalent measure Q. For arbitrage-
freeness it is sufficient - see the work of Harrison and Pliska (1981) - that all dis-
counted price processes are martingales. Naturally this heavily relies on the recovery
assumption.

Duffie and Singleton (1999) introduced the recovery of market value which means
that immediately at default the bond loses a fraction of its value. This setup is
particularly well suited for working with SDEs. The loss rate wt is assumed to be
an adapted process. Hence

B̄(τ, T ) = (1− wt)B̄(τ−, T ).

Under these assumptions the authors derived the following drift condition for µ and
σ:

µ(t, T ) = σ(t, T )
( ∫ T

t

σ(u, T ) du
)′

.

On the other hand, using the above mentioned recovery of treasury value (cf. 1.2)
and denoting the riskless forward rate by f(t, T ), the authors obtained

µ(t, T ) = σ(t, T )
( ∫ T

t

σ(u, T ) du
)′

+ θ(t)λ(t)
v(t, T )
p(t, T )

(f̄(t, T )− f(t, T )).

3. Credit Ratings Based Methods

Simple hazard rate models are often criticized because they do not incorporate
available economic fundamental information like firm value or credit ratings. This
section reveals some models which incorporate these data. This is also a basic
feature of commercial models; see Section 7.

Credit ratings constitute a published ranking of the creditor’s ability to meet his
obligations. Such ratings are provided by independent agencies, for example Stan-
dard & Poor’s or Moody’s and mostly financed by the gauged companies. The firms
are rated even if they are not willing to pay, but for a fee they get detailed insight
in the results of the examinations and might retain fundamental insights in their
internal divisions to identify weaknesses.

Each rating company uses a different system of letters to classify the creditworthi-
ness of the rated agencies. Standard & Poor’s, for example, describes the highest
rated debt (triple-A=AAA) with the words “Capacity to pay interest and repay
principal is extremely strong”. An obligation with the lowest rating, ’D’, is in state
of default or is not believed to make payments in time or even during a grace period.
The lower the rating, the greater is the risk that interest or principal payments will
not be made.

3.1. Jarrow, Lando and Turnbull (1997). The model proposed by Jar-
row, Lando, and Turnbull (1997) circumvents some disadvantages of the hitherto
introduced models. Especially the use of credit ratings is an attractive feature.
The movements between the single rating classes is modeled by a time homogenous
Markov chain, the entry into the lowest rating class yielding a default. For exam-
ple, if a bond is rated AAA, it is a member of the highest rating class (= class
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1). If there exist K − 1 rating classes, denote by K the class of default. Default is
assumed to be an absorbing state, restructuring after default is not considered in
this model. The generator of the Markov chain is defined as

Λ =




−λ1 λ12 λ13 · · · λ1K

λ21 −λ2 λ23 · · · λ2K

...
...

. . . · · · ...
λK−1,1 λK−1,2 · · · −λK−1 λK−1,K

0 0 · · · · · · 0




.

The transition rates for the first rating class are in the first row. So λ1 =
∑

j 6=1 λ1j

is the rate for leaving this class, while λ12 is the rate for downgrading to class 2
and so on. The rate for a default directly from class one is λ1K .

We denote

qij(0, t) := IP(Rating is in class i at 0 and in class j at t),

and by Q(t) the matrix of the transition probabilities qij(0, t). The transition
probabilities can be computed from the intensity matrix via8

Q(t) = exp(tΛ) := idn +tΛ +
1
2!

(tΛ)2 +
1
3!

(tΛ)3 + . . . ,

where idn is the n× n identity-Matrix.

Under the recovery of treasury assumption9 we obtain for the price of a zero coupon
bond under default risk

B̄(t, T ) = 1{τ>t}IEt

[
e−
R τ

t
rs ds · δB(τ, T )1{τ≤T} + e−

R T
t

rs ds · 1{τ>T}
]

= 1{τ>t}IEt

[
δ1{τ≤T}e−

R T
t

rs ds + 1{τ>T}e−
R T

t
rs ds

]

= 1{τ>t}
[
δB(t, T ) + IEt

(
(1− δ)e−

R T
t

rs ds1{τ>T}
)]

= 1{τ>t}B(t, T )
[
δ + (1− δ)QT

t (τ > T )
]
.(3.1)

QT is the T -forward measure10. It is therefore crucial to have a model which
determines the transition probabilities under this measure. While rating agencies
estimate the transition probabilities using historical observations, i.e., under the
objective measure P , Jarrow, Lando, and Turnbull (1997) propose a method which
uses the defaultable bond prices and calculates transition probabilities under the
the risk-neutral measure Q.

Consider the bond with rating “i” and set QT,i
t (τ > T ) the probability that the

bond will not default until T given it is rated “i” at t. As it makes no sense to
talk about bond prices after default, we further on just consider the bond price on

8See, for example, Israel, Rosenthal, and Wei (2001).
9The bond holder receives δ equivalent and riskless bonds in case of default. See Section 1.2.
10The T -forward measure is the risk neutral measure which has the risk-free bond with

maturity T as numeraire. For details see Björk (1997).
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{τ > t} and get

(3.2) B̄i(t, T ) = B(t, T )
(
δ + (1− δ)QT,i

t (τ > T |τ > t)
)

.

Jarrow, Lando, and Turnbull (1997) split the intensity matrices into an empirical
part (under P ) and a risk adjustment like a market price of risk: They assume that
the intensities under QT have the form UΛ and U denotes a diagonal matrix where
the entries are the risk adjusting factors µi. For the transition probabilities this
yields that qij(t, T ) is the ij’th entry of the matrix exp(UΛ). Time homogeneity
of µ would entail exact calibration being impossible.

For the discrete time approximation, [0, T ] is divided into steps of length 1. Starting
with (3.2) one obtains

QT,i
0 (τ > T ) =

B(0, T )(1− δ)− B̄i(0, T ) + δB(0, T )
B(0, T )(1− δ)

=
B(0, T )− B̄i(0, T )

B(0, T )(1− δ)
.(3.3)

Denote the empirical probabilities from the rating agency by pij(t, T ). This leads
to QT,i

0 (τ ≤ 1) = µi(0)piK(0, 1), and we obtain

µi(0) =
QT,i

0 (τ > 1)
piK(0, 1)

=
B(0, 1)− B̄i(0, 1)

piK(0, 1) ·B(0, 1)(1− δ)
.

By this one obtains (µ1, . . . , µK−1)′ and consequently qij(0, 1). For the step from t
to t + 1 use

QT,i
0 (τ ≤ t + 1) = QT,i

0 (τ ≤ t + 1|τ > t) ·QT,i
0 (τ > t)

to get

QT,i
0 (τ ≤ t + 1) = µi(t)P i(τ ≤ t + 1|τ > t) ·

K−1∑

j=1

qij(0, t)

= µi(t)piK(t, t + 1) ·
K−1∑

j=1

qij(0, t).

This leads to

µi(t) =
QT,i

0 (τ ≤ t + 1)∑K−1
j=1 qij(0, t) · piK(t, t + 1)

(3.3)
=

B(0, t + 1)− B̄i(0, t + 1)

B(0, t + 1)(1− δ)
(∑K−1

j=1 qij(0, t)
)

piK(t, t + 1)
,

and, via qij(0, t + 1) = µi(t)pij(0, t + 1), the required probabilities are obtained.

This model extends Jarrow and Turnbull (1995) using time dependent intensities
but still working with constant recovery rates. Das and Tufano (1996) propose a
model which also allows for correlation between interest rates and default intensities.
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It seems problematic that all bonds with the same rating automatically have the
same default probability. In reality this is definitely not the case. Naturally different
credit spreads occur for bonds with the same rating.

A further restrictive assumption is the time independence of the intensities. The
yield of a bond in this model may only change if the rating changes. Usually the
market price precedes the ratings with informations on a possible rating change
which is an important insight of the KMV model; see Section 7.1.

3.2. Lando (1998). The work of Lando (1998) uses a conditional Markov
chain11 to describe the rating transitions of the bond under consideration. All
available market information like interest rates, asset values or other company spe-
cific information is modeled as a stochastic process (Xt)t≥0. This is analogous to
the case without ratings, where Lando used λt = λ(Xt).

Assume that a risk-neutral martingale measure Q is already chosen. Then the
arbitrage-free price of a contingent claim is the conditional expectation under this
measure Q. The author lays out the framework for rating transitions where all prob-
abilities are already under the risk-neutral measure and calibrates them to available
market prices. As no historical information is used the probability distribution un-
der the objective measure is not needed. If one wants to consider risk-measures like
Value-at-Risk, note that the objective measure is still required.

We denote the generator of the conditional Markov chain Ct by

Λ(s) =




−λ1(s) λ12(s) λ13(s) · · · λ1K(s)
λ21(s) −λ2(s) λ23(s) · · · λ2K(s)

...
...

. . . · · · ...
λK−1,1(s) λK−1,2(s) · · · −λK−1(s) λK−1,K(s)

0 0 · · · · · · 0




.

We assume λij(t) to be adapted processes and nonnegative for i 6= j. Furthermore,
for all s

λi(s) =
K∑

j 6=i

λij(s), i = 1, . . . ,K − 1.

It is important for the intensities to depend on both time and interest rates. Es-
pecially for low rated companies the default rates vary considerably over time12. It
was observed by Duffee (1999), e.g., that default rates significantly depend on the
term structure of interest rates. It is certainly bad news for companies with high
debt when interest rates increase whereas for other companies it might be good
news.

Consider a series of independent exponential(1)-distributed random variables E11,
. . . , E1K , E21, . . . , E2K , . . . which are also independent of σ(Λ(s) : s ≥ 0) and
denote the rating class of the company at the beginning of the observation by η0.

11See also Section 11.3 in Bielecki and Rutkowski (2002).
12Cf. Chapter 15 in Caouette, Altmann, and Narayanan (1998).
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Define

τη0,i := inf{t :
∫ t

0

λη0,i(Xs) ds ≥ E1i}, i = 1, . . . , K

and
τ0 := min

i 6=η0
τη0,i, η1 := arg min

i 6=η0
τη0,i.

The τη0,i model the possible transitions to other rating classes starting from rat-
ing η0. The first transition to happen determines the transition that really takes
place. The reached rating class is denoted by η1 while τ0 denotes the time at which
this occurs. Analogously, the next change in rating starting in η1 is defined, and
similarly for ηi and τi.

Default is assumed to be an absorbing state of the Markov chain and we denote
the overall-time to default by τ . This is the first time when ηi = K.

The transition probabilities P (s, t) for the time interval (s, t) satisfy Kolmogorov’s
backward differential equation13

∂PX(s, t)
∂s

= −Λ(s)PX(s, t).

Consider the price of a defaultable zero recovery bond at time t, B̄i(t, T ), which
has maturity T and is rated in class i at time t. Then we obtain the following
Theorem.

Theorem 3.1. Under the above assumptions the price of the defaultable bond equals

B̄i(t, T ) = IE
(

exp
(−

∫ T

t

rs ds
)
(1− PX(t, T )i,K)

∣∣∣Ft

)
.

Here PX(t, T )i,K is the (i,K)-th element of the matrix of transition probabilities for
the time interval (t, T ), PX(t, T ).

Proof. As already mentioned the Markov chain is modeled under Q so that
the arbitrage-free price of the bond is the following conditional expectation:

B̄i(t, T ) = IE
(

exp
(−

∫ T

t

rs ds
)
1{τ>T}

∣∣∣Ft

)
.

Using conditional expectations and the independence of E1K and (Λ(s)) one con-
cludes

B̄i(t, T ) = 1{Ct=i}IE
(

exp
(−

∫ T

t

rs ds
)
IP

(
τ > T

∣∣σ(Λs : 0 ≤ s ≤ T ) ∨ Ft

)∣∣∣Ft

)

= IE
(

exp
(−

∫ T

t

rs ds
)
(1− PX(t, T )i,K)

∣∣∣Ft

)
. ¤

For the calibration to observed credit spreads explicit formulas are needed and
therefore further assumptions will be necessary. Lando chooses an Eigenvalue-
representation of the generator.

13For non-commutative Λ the solution is in general not of the form PX(s, t) = exp
R t

s Λ(u) du.

See Gill and Johannsen (1990) for solutions using product integrals.
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Denote with A(s) the matrix with entries λ1(s), . . . , λK−1(s), 0 on the diagonal and
zero otherwise. Assume that Λ(s) admits the representation

Λ(s) = BA(s)B−1,

where B is the K ×K-matrix of the Eigenvectors of Λ(s).

We conclude PX(s, t) = BC(s, t)B−1 with

C(s, t) =




exp
∫ t

s
λ1(u)du 0 · · · 0

0
. . . · · · ...

... · · · exp
∫ t

s
λK−1(u)du 0

0 · · · 0 1




.

It is easy to see that PX(s, t) satisfies the Kolmogorov-backward differential equa-
tion. For uniqueness, see Gill and Johannsen (1990).

Under these additional assumptions the price of the defaultable bond in Theorem
3.1 simplifies considerably.

Proposition 3.2. Denoting by bij the entries of B, the price of the defaultable
bond equals

B̄i(t, T ) =
K−1∑

j=1

− bij

bjK
IE

[
exp

(∫ T

t

(λj(u)− ru) du
)∣∣∣Ft

]
.

Proof. In this setup the conditional probability for a default when the bond
is in rating class i equals

IPX(t, T )i,K = 1{τ>t}
K∑

j=1

bij exp(
∫ T

t

λj(u)du)b−1
jK .

With biKb−1
KK = 1 we obtain

1− IPX(t, T )i,K =
K−1∑

j=1

− bij

bjK
exp(

∫ T

t

λj(u)du)

and the conclusion follows as in 3.1. ¤

Using the readily available tools for hazard rate models it is now easy to consider
options which explicitly depend on the credit rating or credit derivatives with a
credit trigger.

3.2.1. Calibration. Assuming a Vasiček model14 for the interest rate we are
in the position to use the model laid out above for calibration to observed credit
spreads. There are no economic factors considered other than the interest rate and,
as a consequence, λt must be adapted to Gt = σ(rs : 0 ≤ s ≤ t).

14see equation (1.2).
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Furthermore, we assume

λj(s) = γj + κjrs, j = 1, . . . , K − 1,

with constants γj , κj .

The dynamics of the generator matrix is Λ(s) = BA(s)B−1 and B has to be
estimated from historical data while γj , κj are calibrated.

The credit spread is the difference of the offered yield to the spot rate. By Theorem
3.1 the bond price satisfies

B̄i(t, T ) = −
K−1∑

j=1

− bij

bjK
IE

[
exp

( ∫ T

t

γj − (1− κj)ru du
)∣∣∣Ft

]
.

Therefore, we obtain for the bond’s yield

− ∂

∂T

∣∣∣
T=t

log B̄i(t, T ) = − ∂

∂T

∣∣∣
T=t

K−1∑

j=1

βijIE
[
exp

( ∫ T

t

γj − (1− κj)ru du
)∣∣∣Ft

]

= −
K−1∑

j=1

βij lim
T→t

IE
[
(γj + (κj − 1)rT ) exp

(∫ T

t

γj + κjrs − rsds
)∣∣∣Ft

]

= −
K−1∑

j=1

βij(γj + (κj − 1)rt).

Hence the credit spread equals

si(t) = −
K−1∑

j=1

βij(γj + κjrt).

For calibration a second relation is needed. Lando uses the sensitivity of the credit
spreads w.r.t. the spot rate:

∂

∂rt
si(t) = −

K−1∑

j=1

βijκj .

Denote by ŝ0, dŝ0 the observed credit spreads and their estimated sensitivities. One
finally has to solve the following equation to calibrate the model:

−β(γ + κr0) = ŝ0

−βκ = dŝ0.

It turns out to be problematic that observed credit spreads are not always monotone
with respect to the ratings. The author argues that in practice this would occur
rather seldom.

4. Basket Models

Usually there is a whole portfolio under consideration instead of just one single
asset. Therefore the so far presented models were extended to models which may
handle the behavior of a larger number of individual assets with default risk, a
so-called portfolio or basket.
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There are several approaches in the literature and they can be grouped into mod-
els which use a conditional independence concept and others which are based on
copulas.

From the first class we present the methods of Kijima and Muromachi (2000), which
provide a pricing formula for a credit derivative on baskets with a first- or second-
to-default feature. An example is the first-to-default put, which covers the loss of
the first defaulted asset in the considered portfolio, see also Section 8.6. From the
second class we discuss an implementation based on the normal copula in Section
4.2.

Besides that, Jarrow and Yu (2001) model a kind of direct interaction between
default intensities of different companies. In their model the default of a primary
company has some impact on the hazard rate of a secondary company, whose income
significantly depends on the primary company.

4.1. Kijima and Muromachi (2000). Consider a portfolio of n defaultable
bonds and denote by τi the default time of the i-th bond. Let (Gt)t≥0 represent the
general market information and assume that for any t1, . . . , tn ≤ T

Q(τ1 > t1, . . . , τn > tn|GT ) = Q(τ1 > t1|GT ) · · · · ·Q(τn > tn|GT ),(4.1)

where Q is assumed to be the unique risk neutral measure. Using the representation
via Cox processes, this yields

(4.1) = exp(−
n∑

i=1

∫ ti

0

λi(s) ds).

In the recovery of treasury model, the loss of bond i upon default equals the pre-
specified constant wi := (1 − δi). So the first-to-default put is the option which
pays wi if the ith asset is the first one to default before T and zero if there is no
default. Denote the event that the first defaulted bond is number i by

Di := {τi ≤ T, τj > τi,∀j 6= i}.
Then, using the risk neutral valuation principle, the price of the bond can be
computed as the expectation w.r.t. the risk-neutral measure Q and equals

S̄F = IE
[
exp(−

∫ T

0

ru du)
n∑

i=1

wi1Ai

]

=
n∑

i=1

wiIE
[
exp(−

∫ T

0

ru du)Q(Ai|GT )
]
.

We obtain this probability using the factorization

IP(τi ≤ T, τk > τi, ∀k 6= i|GT ∨ {τi = x})
= 1{x≤T}IP(τk > x, ∀k 6= i|GT ∨ {τi = x})

= 1{x≤T} exp(−
∑

k 6=i

∫ x

0

λk(s) ds).



20 THORSTEN SCHMIDT AND WINFRIED STUTE

We therefore obtain15

IP(τi ≤ T, τk > τi, ∀k 6= i|GT )

= IE
[
1{τi≤T} exp(−

∑

k 6=i

∫ τi

0

λk(s) ds)|GT

]

= IE
[ ∫ T

0

λi(u) exp(−
∫ u

0

λi(s) ds) exp(−
∑

k 6=i

∫ u

0

λk(s) ds) du
]

=
∫ T

0

IE
[
λi(u) exp(−

∫ u

0

n∑

k=1

λk(s) ds)
]
du.

We conclude for the price of the first-to-default put:

S̄F =
n∑

i=1

δi

∫ T

0

IE
[
λi(u) exp(−

∫ T

0

rs ds−
n∑

k=1

∫ u

0

λk(s) ds)
]
du.

This formula simplifies considerably if wi ≡ w, as in that case

S̄F = wIE
[ ∫ T

0

n∑

i=1

λi(u) exp(−
∫ u

0

n∑

k=1

λk(s) ds) du exp(−
∫ T

0

rs ds)
]

= wIE
[(− exp(−

n∑

i=1

∫ T

0

λi(u) du)
)∣∣T

0
· exp(−

∫ T

0

rs ds)
]

= (1− δ)B(0, T )
[
1− IET

(
exp(−

∫ T

0

n∑

i=1

λi(u) du)
)]

.

Using similar methods, we determine the swap-price, if wi is paid immediately at
default to the swap-holder. Set

S̄∗F = IE
[
exp(−

∫ τ

0

ru du) ·
n∑

i=1

wi1Ai

]
.

Certainly,
∫ τ

0
ru du is not GT -measurable, so that a slight modification of the pre-

viously used method is necessary. We obtain for the factorization

IE
[
exp(−

∫ x

0

ru du)1{x≤T}1{τk>x,∀k 6=i}
∣∣GT ∨ {τi = x}]

= 1{x≤T} exp(−
∫ x

0

ru +
∑

k 6=i

λk(u) du)

and conclude

S̄∗F =
n∑

i=1

wi

∫ T

0

IE
[
λi(u) exp(−

∫ u

0

rs +
n∑

k=1

λk(s) ds)
]
du.

15See Bielecki and Rutkowski (2002, Proposition 5.1.1.).
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Similarly, the authors provide the following price of a (first and) second-to-default
swap, which protects the holder against the first two defaults in the portfolio:

S̄S =
n∑

i=1

δiIE
[
exp(−

∫ T

0

λi(u) du)
]−B(0, T )

n∑

i=1

δi

+
∑

i 6=j

(δi + δj)
∫ T

0

IE
[
λk(u) exp(−

∫ T

0

rs ds−
n∑

j=1

∫ u

0

λj(u) du)
]

−(n− 2)
n∑

i=1

δi

∫ T

0

IE
[
λi(u) exp(−

∫ T

0

rs ds−
∫ u

0

n∑

j=1

λj(s) ds)
]

4.1.1. Extended Vasiček implementation. Kijima and Muromachi (2000) dis-
cuss a special case of the above implementation. The main idea is to perform
a calibration similar to the one of Hull and White (1990) for credit risk models.
Assume for the dynamics of the hazard rates

dλi(t) =
(
φi(t)− aiλi(t)

)
dt + σi dwi(t), i = 1, . . . , n,(4.2)

where wi are standard Brownian motions with correlation ρij , which is sometimes
stated as dwidwj = ρij dt. Furthermore, assume for the short rate rt

drt =
(
φ0(t)− a0rt

)
dt + σ0 dw0(t).

Note that equations of the type (4.2) admit explicit solutions, see Schmidt (1997).
From this, we get

λi(t) = λi(0)e−ait +
∫ t

0

φi(s)e−ai(t−s) ds + σi

∫ t

0

e−ai(t−s) dwi(s).

Using the recovery of treasure assumption the bond price equals

B̄i(0, t) = δiB(0, t) + (1− δi)IE
[
exp(−

∫ t

0

(ru + λi(u)) du)
]
.

Note that
∫

(ru + λi(u)) du is normally distributed and therefore the expectation
equals the Laplace transform of a normal random variable with mean

IE
[−

∫ t

0

(ru + λi(u)) du
]

= −
∫ t

0

(
r0e

−a0u +
∫ u

0

φ0(s)e−a0(u−s) ds
)

−
∫ t

0

(
λi(0)e−aiu +

∫ u

0

φi(s)e−ai(u−s) ds
)
du

and variance

Var
[ ∫ t

0

(ru + λi(u)) du
]

= Var
[ ∫ t

0

σ0

∫ u

0

e−a0(u−s)dz0(s) du +
∫ t

0

σi

∫ u

0

e−ai(u−s)dwi(s) du
]
.
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To compute the variances it is sufficient to calculate the variances of all summands
and the covariances. Setting ρii = 1, we have

IE
[ ∫ t

0

∫ t

0

σiσj

∫ u1

0

∫ u2

0

exp(−ai(u1 − s1)− aj(u2 − s2)) dwj(s2) dwi(s1) du2 du1

]

= σiσjIE
[ ∫ t

0

∫ t

0

∫ s1

0

∫ s2

0

exp(−ai(u1 − s1)− aj(u2 − s2)) du2 du1 dwj(s2) dwi(s1)
]

= σiσjIE
[ ∫ t

0

∫ t

0

eais1+ajs2
1

aiaj
(1− e−ais1)(1− e−ajs2) dwj(s2) dwi(s1)

]

= σiσjρij

∫ t

0

eais+ajs 1
aiaj

(1− e−ais)(1− e−ajs) ds

=
σiσjρij

aiaj

[
t +

1
ai

(e−ait − 1) +
1
aj

(e−ajt − 1) +
1

ai + aj
(1− e−(ai+aj)t)

]

=: cij(t)

Therefore,

Var
[ ∫ t

0

σi

∫ u

0

e−ai(u−s)dwi(s) du
]

=
σ2

i

a2
i

[
t +

2
ai

(e−ait − 1) +
1

2ai
(1− e−2ait)

]
=: v2(t).

Recall that we want to calibrate the model to the bond prices, which means cal-
culating φi(s). φ0(s) is computed as in the risk neutral case, see Hull and White
(1990). Consider

1
B(0, t)

IE
[
exp(−

∫ t

0

(ru + λi(u)) du)
]

=
1

1− δi

[Bi(0, t)
B(0, t)

− δi

]
=: γi(t),

which can be obtained from available prices, since δi is assumed to be known. Note
that γi(t) does not involve φ0(s) as

γi(t) = exp
[
−

∫ t

0

(
λi(0)e−aiu +

∫ u

0

φi(s)e−ai(u−s) ds
)
du

+
1
2
(
c0i(t) + v2(t)

)]
.

As we want to solve this expression for φi, we consider the following derivatives:

− ∂

∂t
ln γi(t) = λi(0)e−ait +

∫ t

0

φi(s)e−ai(t−s) ds− 1
2

[
c0i(t) + v2(t)

]′

=: gi(t)

With

∂

∂t
gi(t) = −aiλi(0)e−ait + φi(t)− aie

−ait

∫ t

0

φi(s)eais ds− 1
2

[
c0i(t) + v2(t)

]′′

we conclude

φi(t) =
∂

∂t
gi(t) + aigi(t) + ai

1
2

[
c0i(t) + v2(t)

]′
+

1
2

[
c0i(t) + v2(t)

]′′
.
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Hence

aic0i(t)′ + c0i(t)′′ = σ0σiρ0i

[ 1
a0
− 1

a0
e−a0t − 1

a0
e−ait +

1
a0

e−(a0+ai)t
]

+σ0σiρ0i

[ 1
ai

e−a0t +
1
a0

e−ait − a0 + ai

a0ai
e−(a0+ai)t

]

= σ0σiρ0i

[1− e−a0t

a0
+ e−a0t 1− e−ait

ai

]

and

aiv2(t)′ + v2(t)′′ = σ2
i

[ 1
ai
− 2

ai
e−ait − 1

ai
e−2ait +

2
ai

e−ait +
2
ai

e−2ait
]

=
σ2

i

ai

[
1 + e−2ait

]

which finally leads to

φi(t) =
∂

∂t
gi(t) + aigi(t) +

σ2
i

2ai
(1− e−2ait)

+
1
2
σ0σiρ0i

[1− e−a0t

a0
+ e−a0t 1− e−ait

ai

]
.

Using similar methods Kijima and Muromachi (2000) obtain an explicit formula for
the first-to-default swap. In Kijima (2000) these methods are extended to pricing
a credit swap on a basket, which might incorporate a first-to-default feature.

4.2. Copula Models. The concept of copulas is well known in statistics and
probability theory, and has been applied to finance quite recently. Modeling de-
pendent defaults using copulas can be found, for example, in Li (2000) or Frey
and McNeil (2001). We give an outline of Schmidt and Ward (2002), who apply a
special copula, the normal copula, to the pricing of basket derivatives.

Fix t = 0. The goal of the model is to present a calibration method. Consider
the default times τ1, . . . , τn and assume for the beginning that t = 0. The link
between the marginals Qi(t) := Q(τi ≤ t) and the joint distribution is the so-called
copula C(t1, . . . , tn). Assuming continuous marginals, Ui := Qi(τi) is uniformly
distributed. The joint distribution of the transformed random times is the copula

C(u1, . . . , un) := Q(U1 ≤ u1, . . . , Un ≤ un)

and defines the joint distribution of the τi’s via

Q(τ1 ≤ t1, . . . , τn ≤ tn) = C
(
Q1(t1), . . . , Qn(tn)

)
.

For more detailed information on copulas see Nelsen (1999).

The choice of the copula certainly depends on the application. Schmidt and Ward
(2002) choose the normal copula because in a Merton framework with correlated
firm value processes such a dependence is obtained, and secondary the normal
copula is determined by correlation coefficients which can be estimated from data.
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Assume that (Y1, . . . , Yn) follows an n−dimensional normal distribution with cor-
relation matrix Σ = (ρij), where ρii = 1 for all i. Denoting their joint distribution
function by Φn(y1, . . . , yn,Σ) yields the normal copula

C(u1, . . . , un) = Φn

(
Φ−1(u1), . . . , Φ−1(un)

)
.

For modeling purposes it is useful to note that setting

τi := Q−1
i (Φ(Yi)),

results in {τ1, . . . , τn} having a normal copula with correlation matrix Σ.

The above methods enable us to calculate the joint distribution of n default times,
and the required correlations can be estimated using historical data. Thus, a value
at risk can be determined.

For the pricing of a derivative with first-to-default feature, note that

Q(τ1st ≤ T ) = 1−Q(τ1 > T, . . . , τn > T )(4.3)

which can be calculated from the copula and the marginals. A more involved, but
also explicit formula can be obtained for a kth-to-default option.

For example, consider a first-to-default swap, which is also discussed in Section
8.6. This is a derivative which offers default protection against the first defaulted
asset in a specified portfolio. Under the assumption, that all credits have the same
recovery rate δi ≡ δ, the swap pays (1− δ) at τ1st if τ1st ≤ T . In exchange to this,
the swap holder pays the premium S at times T1, . . . , Tm, but at most until τ1st.
As explained in Section 8.3, calculating expectations of the discounted cash flows
yields the first-to-default swap premium. Thus, using Equation (8.1), we obtain

S1st =
(1− δ)IE

[
exp(− ∫ τ1st

t
ru du)1{τ1st≤T}

]
∑m

i=1 IE
[
exp(− ∫ Ti

0
ru du)1{τ1st>Ti}

] .

To calculate the expectations, the distribution of τ1st under any forward measure
is needed. Assuming, for simplicity, independence of the default intensity and the
risk-free interest rate, one obtains

IE
[
exp(−

∫ Ti

0

ru du)1{τ1st>Ti}
]

= B(0, Ti)Q(τ1st > Ti).

The bond prices are readily available and the probability can be calculated via
(4.3), once the copula is determined.

For the second expectation, use

IE
[
exp(−

∫ τ1st

t

ru du)1{τ1st≤T}
]

=
∫ T

0

B(0, s)IE
[
exp(−

∫ s

t

λ1st
u du)λ1st(s)].
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Note that this expectation can be obtained via
∂

∂s
Q(τ1st > s) =

∂

∂s
IE

[
exp(−

∫ s

t

λ1st
u du)

]

= IE
[
exp(−

∫ s

t

λ1st
u du)λ1st(s)

]
.

Further on, Schmidt and Ward (2002) derive interesting results on spread widening,
once a default occurred. For example, if one of two strongly related companies
defaults, it might be likely that the remaining one gets into difficulties, and therefore
credit spreads increase. It seems interesting that traders have a good intuition on
this amount of spread widening, which also could be used as an input parameter
to the model, which determines the copulas.

5. Hybrid models

Hybrid models incorporate both preceding models, for example the firm value is
modeled, and a hazard rate framework is derived within this model.
The approach of Madan and Unal (1998) mimics the behavior of the Merton model
in a hazard rate framework. They assume the following structure for the default
intensity:

λ(t) =
c(

ln V (t)
F ·B(t)

)2 .

Here V (t) denotes the firm value which as in Merton’s model is assumed to follow a
geometric Brownian motion. B(t) is the discounting factor exp(− ∫ t

0
ru du) and F

is the amount of outstanding liabilities. If the firm value approaches F the default
intensity increases sharply and it is very likely that the bond defaults. As defaults
can happen at any time this model is much more flexible than the Merton model.
Unlike in Longstaff and Schwartz’s model, the default can even happen when the
firm value is far above F , though with low probability.

The authors also consider parameter estimation in their model. A closed form solu-
tion for the bond price is not available and for calculating the prices of derivatives
numerical methods need to be used.

Further hybrid models of this type can be found in Ammann (1999) or Bielecki and
Rutkowski (2002).

The approach of Duffie and Lando (2001) accounts for the fact that bond holders
only obtain imperfect information on the firm value. Thus, starting in a structural
framework, this leads to a hazard rate model.

6. Market Models with Credit Risk

Schönbucher (2000) discusses the framework for a defaultable market model. The
difference between the market models and the continuous time models is that mar-
ket models rely only on a finite number of bonds, whereas continuous time models
assume a continuity of bonds traded in the market. As a matter of fact, many im-
portant variables are not available in these models as, for example, the short rate or
continuously derived forward rates, which form the basis for the setting in Heath,
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Jarrow, and Morton (1992). Introductions to market models without default risk
can be found for example in Brace, Gatarek, and Musiela (1995), Rebonato (1996)
or Brigo and Mercurio (2001).

Assume we are given a collection of settlement dates T1 < · · · < TK , the tenor
structure, which denotes the maturities of all traded bonds.

Denote by Bk(t) := B(t, Tk) the riskless bonds traded in the market. The discrete
forward rate for the interval [Tk, Tk+1] is defined as

F (t, Tk, Tk+1) =: Fk(t) =
1

Tk+1 − Tk

( Bk(t)
Bk+1(t)

− 1
)
.

The defaultable zero coupon bond is denoted by B̄(t, Tk). As a starting point for
modeling, it is assumed that this is a zero recovery bond, i.e., at default the value
of the bond falls to zero. Put B̄k(t) = B̄(t, Tk) = 1{τ>t}B̄(t, Tk). The default risk
factor is denoted by

Dk(t) :=
B̄k(t)
Bk(t)

.

If there exists an equivalent martingale measure Q we have

Dk(t) =
1

Bk(t)
IEQ

[
exp(−

∫ Tk

t

ru du)1{τ>Tk}
∣∣∣Ft

]

=
Bk(t)
Bk(t)

IETk
[
1{τ>Tk}

∣∣∣Ft

]

= QTk
(
τ > Tk

∣∣Ft

)

where QTk denotes the Tk-forward measure16 and IETk the expectation w.r.t. this
measure. So Dk(t) denotes the probability that, under the forward measure, the
bond survives time Tk.

Define

H(t, Tk, Tk+1) := Hk(t) =
1

Tk+1 − Tk

( Dk(t)
Dk+1(t)

− 1
)
.

To simplify the notation we write B1 for B1(t) (similarly for F,D, H) and Tj+1 −
Tj = δj .

16The Tk-forward measure is the risk neutral measure which has the risk-free bond with
maturity Tk as numeraire. For details see Björk (1997).
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This leads to the following decomposition

B̄k = B̄1

k−1∏

j=1

B̄j+1

B̄j

= B̄1

k−1∏

j=1

B̄j+1

Bj+1

Bj

B̄j

Bj+1

Bj

= D1

k−1∏

j=1

Dj+1

Dj
B1

k−1∏

j=1

Bj+1

Bj

= D1B1

k−1∏

j=1

(
1 + δjHj

)−1 · (1 + δjFj

)−1
.

The discrete forward rates of the defaultable bond are split into a risk-free part and
a risky part which is represented by the “discrete-tenor hazard rate” H.

Defining the credit spread

Sk(t) = S(t, Tk, Tk+1) := F̄k(t)− Fk(t),

we immediately obtain

Sk(t) =
1
δk

( B̄k

B̄k+1
− 1

)
− 1

δk

( Bk

Bk+1 − 1

)

=
Bk

Bk+1

1
δk

( B̄k Bk+1

B̄k+1 Bk
− 1

)

= (1 + δkFk)Hk.

The main motivation for market models was to reproduce Black-like formulas for
prices of caps and swaptions. This was particularly possible in the so-called LIBOR-
market models. The basic assumption in these models is that the discrete forward
rate has a log-normal distribution. There are also other models, see, for example,
Andersen and Andreasen (2000).

Schönbucher (2000) concentrates on LIBOR-like models and assumes

dFk(t)
Fk(t)

= µF
k (t) dt + σF

k · dW(t)

dSk(t)
Sk(t)

= µS
k (t) dt + σS

k · dW(t).

Here W denotes a N -dimensional standard Brownian motion, whereas σk are con-
stant vectors and µk are adapted processes.

Alternatively, also the dynamics of H could be specified and the dynamics of S
derived.
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Since Hk = Sk/(1 + δkFk), we obtain

dHk(t) =
1

(1 + δkFk)2
[
(1 + δkFk)Sk(µS

k (t) dt + σS
k · dWt)

− SkδkFk(µF
k (t) dt + σF

k · dWt)− SkδkFkσS
k · σF

k dt
]

− Sk

(1 + δkFk)3
δ2
kF 2

k σF
k · σF

k dt

= . . . dt +
Sk

1 + δkFk

[
σS

k −
δkFk

1 + δkFk
σF

k

]
· dWt

=: Hk(t)
[
µH

k (t) dt + σH
k (t) · dWt].

Note that σH
k is not a constant, but an adapted process with

σH
k (t) = σS

k −
δkFk(t)

1 + δkFk(t)
σF

k .

Using Itô’s formula we obtain for the dynamics of the defaultable forward rates

dF̄k(t) = dSk(t) + dFk(t) + d < Sk, Fk >t

=
[
SkµS

k + FkµF
k + SkFkσS

k · σF
k

]
dt +

(
SkσS

k + FkσF
k

) · dWt

=: F̄k(t)
[
µF̄

k (t) dt + σF̄
k (t) · dWt

]
.

The main reason for the popularity of the market models lies in the agreement be-
tween the model and well-established market formulas for basic derivative products.
Therefore the model is usually calibrated to actual market data and afterwards used,
for example, to price more complicated derivatives. For this reason the dynamics
are directly modeled under the risk-neutral measure, or even more conveniently,
under the Tk-forward measures. In search of something analogous for market mod-
els with credit risk, the Tk-survival measure turns up naturally. It is the measure
under which the defaultable bond B̄k(t) becomes a numeraire.

The Tk-survival measure Q̄k is defined by the density

L̄k :=
β(t)1{τ>Tk}

B̄k(0)
=

dQ̄k

dQ
.

Note that the density has Q-expectation 1 but becomes zero at default. In view of
this, Q̄k is not equivalent to Q but only absolutely continuous w.r.t. Q.

At this point different changes of measures can be obtained. Changes from the
survival to the forward measure and the analogy of the spot LIBOR measure in a
credit risk context are also discussed in Schönbucher (2000).

Finally, consider an FT -measurable claim XT , which is paid only when τ > T .
Assuming zero recovery, then this claim can be valued by the following result, see
Bielecki and Rutkowski (2002):

St = B̄(t, T )Ēk

(
XT

∣∣Ft

)
.

Here Ēk denotes the expectation with respect to Q̄k.
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7. Commercial Models

The models presented in this section, the so-called commercial models, are quite
different from the models presented up to now. These models were developed by
several companies and are widely accepted in practice. They all offer an imple-
mented software, but the complete procedure of this implementation is published
only for some models.

7.1. The KMV Model (1995) - CreditMonitor. The procedure of KMV
is based on Merton’s approach (see Section 1.1) and combines it with historical
information via a statistical procedure.

KMV do not publish the exact procedure implemented in their software but the
following illustrative example may be considered to be very close to their approach.

In Merton’s model the firm value of the company was assumed to be observable.
In reality this is unfortunately not the case. Usually shares of a company are
traded but the real firm value is even difficult to estimate for internals. Using the
traded shares as an estimate of the unknown firm value dates back to Modigliani
and Miller, see Caouette, Altmann, and Narayanan (1998, p. 142 p.p.) for more
information. The share is viewed as a call option on the firm value, where the
exercise price is the level of the company’s debt.

With the dynamic chosen as in Merton’s model and denoting by D the debt level
at time T , the value of the shares E corresponds to the Black-Scholes formula

E = V Φ(d1)−De−r(T−t)Φ(d2),

where the constants d1, d2 are

d1 =
ln V

De−r(T−t) + 1
2σ2(T − t)

σ
√

T − t

d2 = d1 − σ
√

T − t.

Inverting this relation results in the firm value. Also an estimate for the volatility
of the share results in an estimate of the firm’s value.

KMV found that in general firms do not default when their asset value reaches the
book value of their total liabilities. This is due to the long-term nature of some of
their liabilities which provides some breathing space. The default point therefore lies
somewhere in between the total liabilities and the short-term (or current) liabilities.
For this reason set

default point := short-term debt + 50% long-term debt.

In the next step they calculate the distance-to-default

DD =
firm value− default point

firm value× vola of firm value
.
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Finally KMV obtains the default probability from data on historical default and
bankruptcy frequencies including over 250,000 company-years of data and over 4,700
incidents of bankruptcy17.

7.2. Moody’s. Besides Merton’s approach, which is often stated as contin-
gent claims analysis (CCA), there are statistical approaches, pioneered by Altman
(1968), which predict default events using market information and accounting vari-
ables via econometric methods. Moody’s public firm risk model bridges between
these models and is therefore named a ’hybrid’ model. The procedure, as described
in Sobehart and Klein (2000), uses a variant of Merton’s CCA as well as rating in-
formation (if available), certain reported accounting information and some macroe-
conomic variables to represent the state of the economy and of specific industries
through logistic regression. On this basis they provide a one-year estimated default
probability (EDP).

7.3. CreditMetrics. CreditMetrics was originally developed by J.P. Morgan
and belongs to RiskMetrics Group since 1998. The procedure is totally published
to clarify the model and the used data are provided in the Internet.

The target of CreditMetrics is a full valuation of a whole portfolio. This includes
different assets and derivatives like loans, bonds, commitments to lend, financial
letters-of-credit, receivables and market driven instruments like swaps, forwards
and options.

The determination of the actual price of the portfolio proceeds in three steps. First
the probability of a default is determined, second the probability of changes in
rating (which directly results in a different price) and third the determination of
the changes in value which are evoked by either a default or a change in rating.

For the three steps certain inputs are needed. They can be obtained by historical
estimation or are observable in the market18:
• Transition matrices - transition probabilities for changes in rating,
• Recovery rates in default - ordered by seniority, countries and sectors,
• Risk-free yield curve,
• Credit spreads - for all maturities and ratings.

The transition matrices are also provided by Moody’s and Standard & Poor’s and
therefore have to be listed separately (Moody’s rates in eight and Standard & Poor’s
in 18 classes). In our example we consider the Table 1.
Observe that there are some unusual figures in this table. For example, the proba-
bility that a company rated CCC is rated AAA after one year equals 0.22 %. This
seems to be unusually high in comparison to the other entries. As there are few
CCC ratings this seems to be a consequence of an exceptional event. Also critical
is that the probability to default for a company rated AAA or AA equals zero. For
sure there is a small but positive probability that such an event may happen. At
this point smoothing algorithms are recommended to obtain a transition-matrix

17See Crosbie and Bohn (2001) for further information.
18See www.riskmetrics.com/products/data/datasets/creditmetrics.
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Table 1

Rating Rating in 1 year - Prob. in %
(now)

AAA AA A BBB BB B CCC D

AAA 90.81 8.33 0.68 0.06 0.12 0 0 0

AA 0.7 90.65 7.79 0.64 0.06 0.14 0.02 0

A 0.09 2.27 91.05 5.52 0.74 0.26 0.01 0.06

BBB 0.02 0.33 5.95 86.93 5.3 1.17 0.12 0.18

BB 0.03 0.14 0.67 7.73 80.53 8.84 1 1.06

B 0 0.11 0.24 0.43 6.48 83.46 4.07 5.2

CCC 0.22 0 0.22 1.3 2.38 11.24 64.86 19.79

Figure 2. Recovery Rates

which is well suited for further calculations; see Gupton, Finger, and Bhatia (1997,
p. 66-67).

For the second set of data, recovery rates are estimated on a historical basis. Usually
this information is provided by rating agencies. There are some studies on recovery
rates, and we discuss an example of Asarnow and Edwards (1995). CreditMetrics
though uses just mean and standard deviation. The use of a beta distribution is
discussed but not implemented.

The seniority of the bond certainly has a significant influence on the recovery rate.
Table 2 illustrates this.
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Table 2

Seniority mean (%) SD (%)

Senior Secured 53.80 26.86

Senior Unsecured 51.13 25.45

Senior Subordinated 38.52 23.81

Subordinated 32.74 20.18

Junior Subordinated 17.09 10.90

CreditMetrics also uses the actual term structure of interest rates and observable
credit spreads. As the target is the valuation of bonds in a year’s horizon not only
default information should be used but also price changes due to rating changes.
One needs to answer the question “What will be the value of a bond rated XXX
in a year?”. This is done by calculating stripped forward rates with respect to the
rating. Stripping is the procedure to calculate zero coupon prices from a set of
bonds offering coupons.

Assume for now that the current credit spreads do not change. The risk-free term
structure provides forward rates and the current credit spreads are added to obtain
the future (defaultable) forward-rates.

We show the full procedure in the context of an example. We face the problem to
price a BBB-rated senior unsecured bond with maturity 5Y and annual coupons of
6%. Face value is 100 USD.

As described above one strips the bond prices to obtain the defaultable forward
zero coupon curve. We want to explain this procedure in greater detail using the
figures in Table 3.

Table 3

Category 1Y 2Y 3Y 4Y (in %)

AAA 3.60 4.17 4.73 5.12

AA 3.65 4.22 4.78 5.17

A 3.72 4.32 4.93 5.32

BBB 4.10 4.67 5.25 5.63

BB 5.55 6.02 6.78 7.27

B 6.05 7.02 8.03 8.52

CCC 15.05 15.02 14.03 13.52
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Assume the bond has rating A at the end of the year. The forward value then
becomes

FV = 6 +
6

1 + 3, 72%
+

6
(1 + 4.32%)2

+
6

(1 + 4.93%)3
+

106
(1 + 5.32%)4

= 108.64.

The other forward values are

Rating AAA AA A BBB BB B CCC
Forward Value($) 109.35 109.17 108.64 107.53 102.01 98.09 83.63

The results may be found in Table 4.

Table 4

State in 1Y Prob. (%) Forward Value (FV − F̄ V )2

AAA 0.02 109.35 5.21

AA 0.33 109.17 4.42

A 5.95 108.64 2.48

BBB 86.93 107.53 0.21

BB 5.3 102.01 25.63

B 1.17 98.09 80.70

CCC 0.12 83.63 549.60

Default 0.18 51.13 3129.21

mean/ SD: 107.07 8.94

The value at default is assumed to be the mean of historical recovery values for
senior unsecured debt. In the above calculation we followed the CreditMetrics
Technical Document. For the standard deviation they do not include the estimated
standard deviation of the recovery rates. If this is incorporated (SD for senior
unsecured debt = 25.45%, see the table on the previous page) one obtains a standard
deviation of 10.11 which is considerably higher.

8. Credit Derivatives

In this section we introduce several types of derivatives that relate to credit risk.
Unless explicitly mentioned, we assume that the protection seller has no default risk.
In reality, strong correlations between protection seller and underlying prove to be
quite dangerous. The protection seller might default shortly after the underlying
and the protection becomes worthless.

Additionally to the derivatives presented in this section, there exist so-called vul-
nerable options. These are derivatives whose writer may default, thus facing a
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counterparty risk. They are considered, for example, in Ammann (1999) or Bi-
elecki and Rutkowski (2002). We do not consider derivatives on large baskets like
collateralized debt obligations or others. See Blum, Overbeck, and Wagner (2003)
for more information.

8.1. Credit Default Swaps and Options. A credit default swap or a credit
default option is an exchange of a fee for a contingent payment if a credit default
event occurs. The fee is usually called default swap premium. The difference be-
tween swap and option is determined by the way the fee is paid. If the fee is paid
up-front, the agreement is called option, while if the fee is paid over time, it is
called swap19.

The “default event” is not a precise notion. Quite contrary, the event, which
triggers the payment, is negotiable. It could be a certain level of spread widening,
occurrence of publicly available information of failure to pay or an event, that the
partners can agree upon. See Das (1998) for examples of credit derivatives and the
underlying contracts. Not surprisingly, terms of documentation risk or legal risk
arise in the context of credit risk.

If the payoff is some predetermined constant, the derivative is called digital, for
example default digital put or default digital swap.

There are also options on a basket which have specific features. For example,
a first-to-default swap is based on a basket of underlyings, where the protection
seller agrees to cover the exposure of the first entity triggering a default event.
The first-to-default structure is similar to a collateralized bond or loan obligation.
Usually there are bonds or loans with similar credit ratings in the basket, because
otherwise the weakest credit would dominate the derivative’s behavior.

Like in the interest rate case, there are options with early exercise possibility, called
American, credit derivatives with knock-in/out features, options directly on the
credit spreads or leveraged credit default structures, see Tavakoli (1998). Also
reduced loss credit default options are mentioned therein, which yields a way to
reduce the cost of default protection. In this contract the protection buyer still
takes a fixed percentage of the loss on a default event, while the further loss is
covered by the protection seller.

8.2. Digital Options. In the case of a digital swap or option the payment,
which is exchanged if the default event occurs within the lifetime of the option, is
fixed. Assume, for simplicity, that the payoff equals 1. There are two possibilities
for the time, when the payoff is exchanged, either at maturity T of the option or
directly at default τ :

19See, for example, Tavakoli (1998, p.61 p.p.).
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1. If the payoff takes place at maturity, the price of the option (usually called put)
at time t, if there was no default before t, equals20

1{τ>t}Pd(t, T ) = 1{τ>t}IEt

[
exp(−

∫ T

t

ru du)1{τ≤T}
]

= 1{τ>t}B(t, T ) QT
t

[
τ ≤ T

]
.

This default digital put is closely related to a zero recovery bond, as

Pd(t, T ) + B0(t, T ) = B(t, T ), ∀t.
2. If the payoff is done at default, we obtain21

1{τ>t}Pd(t, T ) = 1{τ>t}IEt

[
exp(−

∫ τ

t

ru du)1{τ≤T}
]

= 1{τ>t}IEt

[ ∫ T

t

exp(−
∫ s

t

(ru + λu) du)λs ds
]

= 1{τ>t}

∫ T

t

B(t, s) IEs
t

[
exp(−

∫ s

t

λu du)λs

]
ds.

Remark 8.1. The payoff of the digital default put is similar to the payoff of the
zero recovery bond. In fact, if we denote the defaultable bond with zero recovery
and maturity T by B0(·, T ), we obtain

1{τ>t}Pd(t, T ) = 1{τ>t}IEt

[
exp(−

∫ T

t

ru du)(1− 1{τ>T})
]

= 1{τ>t}[B(t, T )−B0(t, T )].

So, once the price of the zero recovery bond is known, the price of the default put
can be easily calculated. Economically spoken, as a defaultable put and a zero
recovery bond with same maturities guarantee the payoff 1, their price must be
equal to the price of a risk-free bond, which is B(t, T ).

8.3. Default Option and Default Swap. To clarify the payments taking
place for a default option or a default swap, consider figures 3 and 4. In the case of
the default option, the protection buyer pays a fee up-front, which equals the price
of the option. For the default swap the premium S is paid at time points t1, . . . , tn
until either maturity of the contract or default.

There are several structural options for the default payment22:
Difference to par: If a default event occurs, the protection seller has either to pay
the par value (which we always assume to be 1) in exchange for the defaulted bond,
or pay the par value minus the post-default price of the underlying bond. The
payoff is equivalent to

1− B̄(τ, T ), if τ ≤ T.

20For convenience we write IEt(·) for IEQ(·|Ft) and IET
t (·) for EQT

(·|Ft), when QT is the

T-forward measure.
21See Bielecki and Rutkowski (2002, Proposition 5.1.1.).
22See, for example, Das (1998, p. 63).
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τ
t

T

P (t, T )

B(τ, T )− B̄(τ, T )

Figure 3. Cash flows for a default put. Default occurs at τ before
the option expires. The payoff is agreed to be the “difference to
an equivalent default-free bond”, which is denoted by B(τ, T ) −
B̄(τ, T ). The price of the default put is denoted by P (t, T ) and is
paid initially at t.

Difference to an equivalent bond: The payoff in the case that a default event occurs
is the value of an equivalent, default-free bond minus the market value of the
defaulted bond. In this case the payoff equals

B(τ, T )− B̄(τ, T ), if τ ≤ T.

In the case of a coupon bond, there is usually a protection of the principal, and
possibly of the accrued interest.

The first step in pricing the defaultable swap is the pricing of the defaultable option
with the same payoff. The price of the option, denoted by P (t, T ), yields the
discounted value of the payoff at time t. The premium S is paid at times t1, . . . , tn
until a default event occurs. Denoting the price of a zero recovery bond by B0(t, T ),
this yields

P (t, T ) =
n∑

i=1

S ·B0(t, Ti).

Consequently, the swap premium can be obtained, once the price of the defaultable
option and the zero recovery bond prices are known, as

S(t) =
P (t, T )∑n

i=1 B0(t, Ti)
.(8.1)

For example, if we assume recovery of treasury for the defaultable bond, we have

P (t, T ) = IEt

[
exp(−

∫ τ

t

ru du) (1− δ)1{t<τ≤T}
]
,
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T

1− B̄(τ, T )

t τ
S

Figure 4. Cash flows for a credit default swap. Default occurs
at τ before the option expires. The payoff is agreed to be the
“difference to par”, 1 − B̄(τ, T ). The default swap spread, S, is
paid regularly at times t1, . . . , t4 until default.

which can be expressed using the default digital put as

P (t, T ) = IEt(1− δ)Pd(t, T ).

As already mentioned, this gets slightly more difficult if the underlying is a coupon
bond, see Schmid (2002) for details.

8.4. Default Swaptions. A credit default swaption offers the right, but not
the obligation, to buy or sell a credit default swap at a future time point T for
a pre-specified swap premium K. The contract is knocked out if a default of the
reference entity occurs before T . We refer to a credit default swap call (CDS call) if
the assigned right is to buy a credit default swap and otherwise to a credit default
put (CDS put). Credit default swaptions are not yet standard instruments which
are liquidly traded, but, for example, Hull and White (2002) report that a market
for such contracts is developing.

Denoting the tenor structure of the underlying swap by T = {T1, . . . , Tn} and the
price of the CDS call at time t by CS(t, T, T ), we obtain for the payoff of the CDS
call at maturity T ≤ T1

CS(T, T, T ) =
[
S̄(T )−K

]+ n∑

i=1

B0(T, Ti)1{τ>T}.

S̄(T ) is the swap rate at time T . For simplicity we set the day-count fraction to
one23.

If the swap offers the replacement of the difference to an equivalent default-free
bond in the case of a default, the swap rate equals

S̄(T ) =
B(T, Tn)− B̄(T, Tn)∑n

i=1 B0(T, Ti)
.

23For a discussion on the different day-count fractions, see James and Webber (2000, p. 51
p.p.). With arbitrary day-count fraction ∆i we would have to consider

Pn
i=1 ∆iB

0(T, Ti).



38 THORSTEN SCHMIDT AND WINFRIED STUTE

We conclude for the price of the CDS call

CS(0, T, T ) =

IE
[
exp(−

∫ T

0

ru du)
(
B(T, Tn)− B̄(T, Tn)−K

n∑

i=1

B0(T, Ti)
)+

1{τ>T}
]
.

Otherwise, if difference to par is considered, the swap price depends on the recovery.
In a recovery of treasury model, the swap rate, as shown in the previous section,
equals

S̄(T ) =
(1− δ) Pd(T, Tn)∑n

i=1 B0(T, Ti)
.

This yields that the price of the CDS call can be computed via

CS(0, T, T ) = IE
[
exp(−

∫ T

0

ru du)
(
(1− δ)Pd(T, Tn)−K

n∑

i=1

B0(T, Ti)
)+]

.

8.5. Credit Spread Options. A credit spread option is an option which de-
pends on the credit spread, that is the difference between the yield of the underlying
defaultable bond and the yield of a reference bond, which is usually assumed to be
default-free. For example, a credit spread call with strike (yield) K at maturity T
has the payoff (

B̄(T, T ′)− e−K(T ′−T )B(T, T ′)
)+

,

where T ′ > T is the maturity of the underlying defaultable bond.

Thus the call is in the money if the yield of the defaultable bond is higher than the
yield of the riskless bond plus the strike (yield) K. We use continuous compound-
ing24 of the yield rate, and note that this represents an annual yield, if the time
scale is denoted in entities of 1 year.

Schmid (2002) discusses credit spread options with a knock-out feature. In this case
a credit spread call option with maturity T on an underlying defaultable bond with
maturity T ′ and strike K, knocked out at default, has the payoff

1{τ>T}
(
B̄(T, T ′)− e−K(T ′−T )B(T, T ′)

)+

.

In contrast to the option-specific payoff, a credit spread swap with strike K and
maturity T has the payoff

B̄(T, T ′)− e−K(T ′−T )B(T, T ′).

24The relation to the discrete time value of money concept is the following. The discounting
factor for a time period of T years are

1

(1 + y)nT
= e−K·T ,

if the yield y is paid n times a year. This yields the relation

y = (ln K)
1
n .



References 39

To replicate the payoff of the credit spread swap, the seller buys a portfolio at time
t, which consists of the defaultable bond with maturity T ′ and sells (1+K ·B(t, T ))
risk free bonds with maturity T ′. A replicating argument yields the value at time
t of the above payoff to be B̄(t, T ′)−B(t, T ′) exp[−K(T ′ − T )]. Consequently, the
credit spread swap premium, which has to be paid at times t1, . . . , tn, equals

S =
B̄(t, T ′)− e−K(T ′−T )B(t, T ′)∑n

i=1 B(ti, T )
.

If the credit spread swap is knocked out at default of the underlying, the premium
relates to zero recovery bonds B0(·, T ′), which promise the par value, 1, if the
reference bond B̄(·, T ′) did not default until its maturity T ′ and zero otherwise.
Then the premium equals

S =
B̄(t, T ′)− e−K(T ′−T )B(t, T ′)∑n

i=1 B0(ti, T )
.

8.6. kth-to-default Options. Derivatives with a kth-to-default feature are
quite common in the market. For example, a first-to-default put covers the loss of
the first defaulted asset in a considered portfolio. These types of products offer a
cheaper protection against losses, if one considers more than k assets to default in a
certain time interval as unlikely, and therefore offer tailor-made credit risk profiles,
which may be used to redistribute credit risk or release regulatory capital.

Once a price for a kth-to-default put is obtained, the premium of a kth-to-default
swap can be calculated via formula (8.1). See Section 4 for applications, where we
already obtained the following formula for the premium of a first-to-default swap

S1st =
(1− δ)IE

[
exp(− ∫ τ1st

t
ru du)1{τ1st≤T}

]
∑m

i=1 IE
[
exp(− ∫ Ti

0
ru du)1{τ1st>Ti}

] .
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