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The convergence 6(Xn, Y,) ~ 0 is investigated and characterized for probability 
metrics 6 which metrize convergence in distribution or in probability. Some 
related metrics are also considered. 
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1. N O T A T I O N  

Let (S, d) be a separable  metric  space with Borel a-field ~3, and let M ( S )  
denote  the set of  Borel probabi l i ty  measures  on S. Define for p, v ~ M ( S ) ,  
0 < 2 < 0% the P roho rov - type  metrics: 

n~.(#, v) = inf{e > 0; #(F)  ~< v(F  ;~) + e for all F ~  ~ (S)}  

n0( #, v ) =  sup{ I # ( F ) -  v( r ) l ;  F e  ~ (S)}  

noo(#, v) = inf{~ > 0; #(F)  ~< v(F ~) for all F ~  ~ (S)}  

I-~(S) is the collection of closed sets in S and F ~ =  { x ~ S ;  d(x, F ) < e } . ]  
Note  that  no, n ~  are limiting cases of  n~ in the sense that  
n~(#, v ) ~  no(# ,v)  and 2 n ; ~ ( # , v ) ~  n~(# ,  v), so the class of  
metrics n;~ connects the sup remum metric  ~o and the n ~  metric, thus 
changing the topological  s t ructure extremely in the limits. 
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Define, furthermore, for S-valued random variables X, Y on (g2, 11, P) 
and 0 ~< 2 < ov the Ky-Fan type metrics: 

K;.(X, Y) = inf{e > O; P( d(X, Y) > ,~e) < e} 

K~(X, Y) = ess sup d(X, Y) 

Similarly, for the compound metrics K~ we obtain a limit version as 2 ~ ov 
by 

lim 2Kx(X, Y) = lim inf{e > 0: P(d(X, Y) > e) < e/2} 
2~co  2~ov 

= ess sup d(X, Y) = K~(X, Y) 

For  each 2 e [0, oo ], 7z~ is the minimal metric corresponding to Kx, i.e., 

rc~.(/t, v) = inf{K~(X, Y); X and Y have distributions # and v, respectively} 

(see Refs. 1, 4, and 8). The representation of 7r~. as minimal metric of K~ is 
for 0 < 2 < oo a particular case of the Strassen-Dudley theorem (cf. Refs. 2 
and 4) implying the representation for the cases 2 = 0 and 2 = oo by the 
limiting relations above (cf. Refs. 1 and 8). Alternatively, the case 2 =  oo 
can be inferred also from the following equivalence (cf. Ref. 2): For e > 0 
(1) there exists a probability Q on S x S with marginals #, v, and Q{(x, y); 
d(x, y ) >  e} = 0 if and only if (2) For  all closed sets F, ~(F)<~ v(F"). Note 
that rc = rc I is the Prohorov metric, K =  K 1 is the Ky-Fan  metric. 

The arguments given above show that the consideration of the 
parametric versions rt~, Kx is useful in order to obtain information on the 
limiting cases ~o, rc~. As an example for this interrelation, consider 
the question of whether on ~1 for some nondecreasing function r with 
q~(0+)=~0(0)=0 ,  7t<~q~(L), where L is the Levy metric. Introduce the 
parametric version L~ of L by 

L~(X, Y) = L~(Fx, Fy) = inf{~ > 0; F~(x - 2e) - 

~< F r ( x )  ~< Fx(x + 2e) + e, Vx E ~1 } 

Assume that rc ~< ~0(L) with ~o as above, then 

~ ( x ,  Y) = r~ x ,  -~ y <. q~ L ~ x ,  ~ r = ~o(L~,(x, Y)) 

For ~.---,0 the above inequality leads to the obvious contradiction 
~o ~< ~0(p), where p = Lo = lima ~ 0 L~ is the uniform distance between d.f.'s, 
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since 7r 0 is topologically stronger than p. Note however that, for 2 ~ o% 
2L~ has the same limit as 21r~, namely, 

lim 2L;.(X, Y)=~o~(X, Y)= sup JFxl ( t ) -F; ' ( t ) [  
2 ~ o o  0~<t~<l  

where F x l ,  Fr i denote the generalized inverses of Fx, Ft.  
The aim of this paper is to investigate the uniformity structure of the 

metrics rt~ (Section 2) and the corresponding compound metrics K~. More 
precisely we consider on the one hand side a Skorohod type a.s. con- 
vergence result [in the noncompact case, i.e., rc;.(/~,, v , ) ~  0] and on the 
other hand the question of convergence uniformly on some Lipschitz 
classes of functions. Some basic results and methods concerning these 
questions were developed in Dudley. (2~ Later extensions of these results 
were given in Refs. 3, 4, 10, and 11 (cf. also the references within these 
papers). 

Finally for c: S x S--, R+,  a nonnegative product measurable cost 
function on S, define the Kantorovich functional: 

#c(ff, v) = inf{Ec(X, Y); X and Y have distributions # and v, respectively } 

which is the basic functional in transportation problems. 

2. CONVERGENCE IN DISTRIBUTION 

In this section we investigate the convergence nx(#,,, v,)--*0. The 
classical Skorohod-Dudley-Wichura theorem states that 7~1(#,, # ) ~ 0  is 
equivalent to the existence of S-valued random variables X,, X on some 
probability space (1"2, 1I, P) such that d(X,, X ) ~  0 P-a.s. and X,, X have 
distributions #, ,  #, respectively. For extensions of this result concerning the 
underlying assumptions, see Refs. 2~4 and ! 1. While this a.s. representation 
characterizes the topological structure (compact case), the following 
theorem concerns the corresponding a.s. characterization of the uniformity 
structure of the metrics n~ (noncompact case). Part (a) of the theorem has 
been proved already before by Dudley (4~ and, independently, by Rachev, 
Riischendorf and Schief.(10) 

Theorem 1. Let #, ,  v,,eM(S), 2~ [0, oo]. Then ~(#n ,  vn)--r0 if and 
only if there exist S-valued r.v.'s X,, Y~ on a probability space (s !I, P), 
such that X,,, Y, have distributions #n, v,, respectively, and 

(a) d(X,, Yn)-~O in P-probability, if 2e  (0, oo) 

(b) l{x,~r~ } --*0 in P-probability, i f 2 - - 0  

(c) ess sup d(X~, Y,,) ~ 0 if 2 = oo 
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The equivalence is also valid if "in P-probability" is replaced by "P-almost 
surely." 

The proof of Theorem 1 is based on the following general realization 
lemma. 

Lemma 1. Let f: S-~ ~ be a measurable function and {n, n ~ N, a 
sequence of S-valued r.v.'s on (g2,11, P) such that f o ~ n ~ 0  in 
P-probability. Then there exists a sequence ~', on a probability space 
((2', 11', P') such that PC" = P'r for each n E N and 

f~  ~'n ~ 0 U-almost surely 

Proof The method of proof is similar to some arguments used in 
Refs. 2-4 and 11. Choose Nkl" oo such that for all n>~ Nk 

(N1 = 1). For n e N let k,  be the largest integer such that n ~> Nk~ This 
implies k,  1" oo and 

P(An)~ ~ for A~= {,fo~'n[ > ~--~} 

Define for n~ N, t e  ]0, 1 [ a probability on (g2, 11) 

p, {P(-[A~) if t<.P(A~) 
~,t:= p ( [ A n )  if t>P(A~) 

On f 2 ' =  @ .  ~ ~ O, ~ I ' =  @ .  ~ ~ 11 set 

f t P;= @ P' P'= Pt2(dt) n,t~ 
n~Nl  

and 

where re, denotes the projection on the nth coordinate. We get 

P'("= 3 f P'.!"t2(dt)= pC. 

Furthermore for every t e  ]0, 1 [, t<~P(A]) for n large enough, implying 
P~(I f ~  ~'l ~< 1/k,)= 1 eventually, which yields 

P~(fo~'n ~ 0 ) =  1 for all t ~ ] 0 ,  1[ 
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and obviously 

P'(f~ ~'n ~ O) = 1 [] 

Proof of Theorem 1. 

a. Since for 0 < 2 < ~ ,  min(1, 1 / 2 ) ~ < ~ < m a x ( 1 ,  1/2)~ the metrics 
~1, ~;. are equivalent. Therefore, only the case 2 = 1 has to be con- 
sidered. As remarked above, a proof in this case was already given 
in Refs. 4 and 10. Based on Lemma 1, the proof is as follows. Since 

is the minimal metric of K, there exist random variables Xn, Y,, 
on a suitable probability space (Q, ~, P) such that PX"=l.L, , 
Pr"=v. ,  and K(Xn, Yn)40.  Apply Lemma 1 for 4.= (X., Y.), 
f = d .  

b. Since ~o is the minimal metric of Ko, there exist probability 
measures Q. on (S• ~3| with marginals #~, v. such that 
Q.({(x, y)eS2; x C y } ) ~ 0 .  Let 

(Q, 1I, Q)=  (($2)~, (~3| ~, (~) Q . )  
n~t~ 

and let (X., Y.) be the projection on the nth component; then 
Q(X. r Y.) ~ O. Apply Lemma 1 with 

~ , = ( X . , Y . )  and f(x'Y)={O1 ifif X=Yx#y 

c. Since ~z~ is the minimal metric of K~, there exists a sequence 
~ ~. 0, ~. > ~ ( g . ,  v.), and measures Q. ~ M(S 2) with marginals 
#.,  v. such that 

Q.({(x, y); d(x, y) > ~ } )  = 0  

With (~2, lI, Q) as in the proof of part b, we obtain 

ess sup d(X., r .)  <~ ~ -~ 0 
Q 

The other implication is obvious. [] 

Remark  1. 

a .  Theorem 1 is not true for the Levy-metric L on S=[~. Let 
i~n({2j})=v.({2j+ 1})= l/n, 1 <<.j<<.n. Then L(/~n, vn)= 1In but 
~(#., v . )=  1 for all n (cf. Ref. 2). Therefore, L and g are not 
equivalent in the noncompact case. 
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b. Theorem 1 holds for many relevant probability metrics. We 
give some examples: for a(p, v) = s u p { ] # ( f ) -  v(f)k; f e  L(S)}, 
fl(#, v)= s u p { l # ( f ) - v ( f ) l ;  / ~ L ( S ) } ,  (L(S) = {f: S--* [0, 1]; 
I f(x)-f(y)l  <.d(x, y) for all x, y~S}, E(S)= {~ S--, [0, 13; 
supx~y I f ( x ) - f ( y ) l / [ d ( x ,  y)]  + SUpx I f(x)l  ~< 1 }); the inequal- 
ities 1 ~< ~ and ~rc 2 ~a~rc - ~<fl~<27r (Ref. 8) ensure that Theorem 1 
is applicable. These inequalities imply uniformity of convergence 
on classes of bounded Lipschitz functions (cf. also Refs. 2 and 4). 

c. One direction of Theorem 1 is valid for the minimal Lp-metric 
s v)=inf{(EdP(X, y))Up; X, Y have distributions #, v}. Since 

~ (j~p)p/(l+p) Lp(~n, Vn ) ~ 0 implies the existence of a.s. con- 
structions. If the metric d is bounded, both directions of 
Theorem 1 are true for s Some further examples are discussed in 
Ref. 10. 

d. The above implication is a special case [-U= M(S) • M(S), # =- 7t, 
v = s of the following: 

Proposition 1. Suppose # and v are two mappings of a space U into 
[0, ~ ]. Then the following are equivalent: 

i. v(u~)~O~#(u,)--*O. 

ii. There exists a nondecreasing function ~: [0, c~]---,E0, oo], 
qJ(0) = ~ ( 0 + ) = 0  and such that #~<~(v). 

Moreover, if inf{v(u): u ~ U} = 0, then (ii) is equivalent to the following: 

iii. There exists a nondecreasing function ~0:(0, o o ] ~ ( 0 ,  oo], 
q~(0) = 0 and such that (p(#)~< v. 

Proof (i)=:,(ii). Take r  v(u)<<.x}, x>~O. 

(i)=~(iii). Takeq~(x)=inf{v(u) :ueU,#(u)~>x},x~>0.  [] 

Note that if v and/~ are semimetrics on M(S), then 

v(P,, Q,) ~ 0 ~ #(P~, Q,) ~ 0 

is equivalent to (ii) and (iii). (In case of # and v being metrics this was 
shown in Ref. 8, Theorem 1.) 

e. In the "compact convergence" case holds (cf. Ref. 9): Let p>~ 1, 
~ t , ,#EM(S)  such that m,,p(#)=JdP(x, a)p(dx) and ma, p(#,), 
n e N exist for some a e S. Then: Lp(pn, #) ~ 0 iff there exist r.v.'s 
Xn, X on (f2, 11, P) with distributions gn, # such that d(X,, X) - ,  0 
in P-probability and ma, p(/~,)-~ ma, p(#). 



Uniformities for Convergence 39 

The following counterexample shows that this equivalence cannot be 
extended to the case of "noncompact convergence." Let p = 2, S = ~, and 

1 n - 1  1 n - 1  
]An=-s 'S2x/~']- El enx/n/(n_l) , %=--e/~+n n e , ~ l )  

Then ~(#, ,  v~) <. 1In implying the existence of r.v.'s X~, Y~ with distribu- 
tions ~ ,  v~ such that d(X~, g~) --, 0 a.s. Furthermore, mo,2(gn) - m o ,  z(vn) = 
~ n 2 - x/1 + n 2 ~ 0 [even: m~,2(/~) - m~,2(v~) ~ O, Va holds]. But 

s vn) ~> inf{E([Xn - xfnl 2 1{ y~ X,,, Y~ have distributions/z~, v~} 

1 / - -  

n 

Theorem 1 can partially be extended to Kantorovich-functionals #~ for 
general nonnegative cost functions c. 

Theorem 2. Let /~, v . ~ M ( S )  and #c(P., vn )~0 ;  then there exist 
S-valued random variables Xn, Yn with distributions #.,  v. on a probabil- 
ity space (g2, li, P), such that c(X. ,  Y . )  ~ 0 P-a.s. 

Proof  Let ~., r/n be random variables on a probability space 
(O',11', Q) with distributions l~.,v,, such that Z~=c ( ( . , q~ ) - - , 0  in 
Q-probability. Apply now Lemma 1 for ~ = (X~, Y,) and f =  c. [] 

In the case of a universally measurable space S a proof of Theorem 2 
can also be based on the a.s. construction method developed in Ref. 9. 

3. CONVERGENCE IN PROBABILITY 

The convergence in probability is metrized by K = K  1. The a.s. 
construction result of Theorem 1 can be sharpened in this case. 

Theorem 3. Let X~, Y~ be S-valued random variables. Then the 
following are equivalent: 

a. K(Xn, Y,,) --, O. 

b. There exist S-valued random variables _~',. f'n on a probability 
space (s P) such that (X., Y.), (X~, Y.) are identically 
distributed and d(.Yn, 'Yn)--* 0 P-a.s, 

Proof  Take f = d, ~n = (Xn, Y~) in Lemma 1. [] 

The question of uniformity of convergence on bounded Lipschitz func- 
tions turns out to be more difficult w.r.t. K than w.r.t. ~ in Section 2. To 
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formulate this question more precisely, define BL(S, d)= {f'. S--+ [-1 ,  1]; 
I f ( x ) - f ( y ) l  <<. d(x, y) for all x, y e  S}, and for S-valued r.v.'s X, Y, define 
the metric dBL(X, Y) = sup {E ] f(X) - f (  Y)[; f e  BL(S, d) }. The following 
lemma shows that BL(S, d) is a class of functions determining the unifor- 
mity. 

Lemma 2. Let x , ,  y ,  ~ S. Then the following are equivalent: 

1. d(x., y , )~O 

2. f ( x , ) -  f(y,)--,O for all f~BL(S, d). 

Proof 1 ~ 2  is obvious. 2=>1: If d(xn, yn)~O, we may assume 
d(xn, y, )  ~> 1 for all n E ~. 

1. Case: There exists aeS, such that I { n ~ ;  x~K1/4(a)}l-=~, 
K,(a) the ball of radius e with center a. We may assume that 
xn~K1/4(a) for all n E~ .  This implies that y,r and 
d(xn, Ym) >/1 for all n, m ~ [~. Set f(x,)  = 0, f(y,~) = �88 and apply 
the Kirszbraun-McShane Theorem (cf. Ref. 4, Theorem 6.1.1) to. 
finish the proof of the first case. 

2. Case: Exchange x and y. 

3. Case: None of the above. 

Define n l = l ,  n k + l = m a x { n e N ;  x, EU~=lKx/4(yn,) or yne  
1 U~=I K1/4(x,)} + 1. Then for any k vLl we get d(x,k, y,)>>. ~ and we may 

1 assume for any m, n, d(x,, Ym) >~ ~. The proof is completed as above. [] 

We define for a subset F of the set of continuous functions: F is a 
uniformly determining class (UD-class) if F fulfills Lemma2,  i.e., 
d(x,, y , )- ,O iff ]f(xn)-f(y,)[--+0 for all f E  F. 

Theorem 4. Let X,,  I1, be r.v.'s with values in S. 

a. If F~BL(S,d), then K(Xn, Y,)~O implies dF(X,, Y,)=  

supf~r E [ f(Xn) - f(Yn)l --' 0. 

b. If F is a countable UD-class, then dF(X,, Y , )~O implies 
K(Xn, Y.)~O. 

Proof Point a: This follows from the inequality dr(X., Y.)<. 
dBL(X., Y.) ~ E min{d(X., Y.), 2}. Point b: For any subsequence (nk)~ 
choose a subsequence (n t ) c  (nk) such that 

~ ldF(X,t , Y,) < oo 
I = 1  
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For f ~  F the inequality P(I f ( Y Q ) - f (  Y,t)t > 1/l)~ ldF(~nl , Ynl)implies by 
Borel-Cantelli that f (X, , ) - f (Y , ,~)  ~ 0 P-a.s. (cf. Ref. 5, 1.11.8). Therefore 
(using that F is countable), d(Xn,, Y , , )~  0 P-a.s. and, thus, d(X,,, Y,)---, 0 
in P-probability. 

Corollary 1. If (S, d) is a compact metric space, then the following 
are equivalent: 

a. K ( X . ,  r~) ~ 0 

b. dBL(X~, Y~) --+ 0 

c. E ] f ( X , ) - f ( Y n ) ]  ~ 0 ,  VfsBL(S ,  d). 

Proof. For compact metric spaces (S, d), (BL(S, d), Jl H o o) is by 
Arzela-Ascoli separable. So any dense, countable set F c  BL(S, d) is UD 
and the equivalence of (a) and (h) follows from Theorem 4. It remains to 
show that (c) ~ (a). We have to prove d(X,, Yn) -* 0 in probability. Given 
any subsequence nk, using the fact f ( X , ) - f ( Y n ) - *  0 in P-probability and 
a diagonal argument, we extract a subsubsequence (nt)~ (n~) such that 

f(Xn,) -- f(Yn,) ~ 0 P-a.s. 

for all f belonging to a dense, countable set F c B L ( S ,  d). Clearly we get 
d(X,~, Y,~)~ 0 P-a.s., since F is UD. 

In Ek we can find a finite UD-class F of Lipschitz functions, namely, 
F =  {f~ ,..., fk}, f~ (2~) = xi, 1 ~< i <~ k. The implication "K(X,, Y,) ~ 0 implies 
dF(X,, Y,)-+ 0" needs in this case an additional integrability condition. 

The following observation that ( c ) ~  (a) is true in the special case 
S = ~, d(n, m) ~> 1, if n :~ m is due to the referee. Indeed, if K(X, Y) > g for 
an e > 0, we get P ( X #  Y) > e or without loss of generality P(X< Y) > e/2. 
The following recursion yields a set A in N such that 

E(t 1A(X) -- IA(Y)] ) > ~ (1A ~ BL(S, d) is obvious): 

16A 

2 6 A  
1 n~A.c~ P(X<n,  Y=n ,Xr  P(X<n,  Y = n ) .  ~ 

For general separable metric spaces we use a somewhat different 
approach than that suggested by Theorem 4. 

Theorem 5. Let X,,  Yn be S-valued r.v.'s and assume that p r ,  have 
densities hn w.r.t, a measure/~ such that ]h,I ~<h for some h ELI(#). Then 
the equivalences of Corollary 1 hold. 
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Proof 

(a) = (b). 

(b) ~ (c). 

(c) =~ (a). 

By Theorem 4. 

Obvious. 

Let So = {xl, x2,... } be dense in S and for e > 0 define 

f~(x) = {~/ if xeK~/4(xi) 
4 if x (~ K3~/4(xi) 

Extend f~ by the Kirszbraun-McShane theorem (cf. Ref. 4, 
Theorem6.1.1) to S [note that for the extension 
0 <<.f~(x) ~< s/4 and f,  e BL(S, d)]. Define, furthermore, 

A I =  {(x, y ) e S x S ;  yeK~/4(Xl) } 

A~= {(x, y ) e S x S ;  y eB , }  
i - -1  

where Bi = K~/4(x~) c~ n (K~/4(xj)) C 
j = l  

Then with Q~ = p(x.,r.), P(d(X., Y.) > ~) = 
Z,  Qn({d(x, y) > s} c~ A~) <<. E,Q,({d(x ,  y) > 3} n A,)<<. 
(4/e)E~J'A~IL(x)-L(y)I dQ,(x, y). Since d(x,x~)> 3e 
implies f~(x) = s/4 and (x, y) e A~ implies f,.(y) = 0. With 
g,(i) = (4/~) ~A~ I f ~ ( x ) -  f,(Y)l clQ,(x, y) and g(i)=~s~h dp 
holds g,(i) <~ g(i)~, ~g ( i )  = ~ h d # < o %  and g,(i) <<. 
E [ f i ( X , ) - f ~ ( Y , )  L ,~oo~0. Therefore, by dominated 
convergence lim, P(d(X,, Y,) > ~) = O. 

Remark 2. The proof of Theorem 5 shows that there exists a coun- 
table class F c B L ( S ,  d) for all sequences (Xn, Y~), where (Y~) satisfies the 
boundedness assumption of Theorem 5. (Take e~ ~ 0 and the union of the 
classes of functions corresponding to ~. in that proof.) 

Corollary 2. If F is a uniformly bounded class of uniformly equicon- 
tinuous functions. Then under the assumptions of Theorem5 or 
Corollary 1 the following holds: K(Xn, Yn) ~ 0 implies de(Xn, Y,) ~ O. 

Proof On S define the pseudometric g/e(X, y ) =  SUPs~F Lf(x)--f(y)].  
Since F is uniformly equicontinuous. (S, glF) is separable and K(Xn, Yn) -~ 0 
implies Ke(Xn, Yn) ~ O, where KF is the Ky-Fan metric w.r.t, g/F. Further- 
more, i f f e F ,  then IlflhB/~ 1 +SUpy~F Ilfll~ < oo (w.r.t. g/F). Therefore, 
from Theorem 5 resp. Corollary 1 we obtain dF(X,, Y,) <. dsL(X,, In) --, O. 

[-7 
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From C0rollary2 and Proposition 1 it follows that there exist 
functions (p and ~, defined as in Proposition 1 such that q~(dF)<~K and 

dF< ~b(K). 
The following counterexample for the implication ( c ) ~  (a) is due to 

the referee. 

Example 1. Corollary 1 does not hold in arbitrary separable metric 
spaces, Theorem 4b does not hold for arbitrary UD-classes. 

Proof Let S ~ be the Euclidean sphere S" equipped with the geodesic 
Euclidean distance dR, and let S = ~ ,  ~ v S" equipped with 

O0 

d(x, y)= d.(x, y) 
if x~S~, yeSm, n4:m 
if x, yeS ,  

Let /~, be the rotation-invariant probability on S ~ and #, its trivial 
extension to S. Consider r.v.'s X, with pX~ ~,, and II, = - X ~ .  Levy's 
isoperimetric inequality (cf. Ref. 7, Corollary 1.2, or Ref. 6, p. 221) yields for 
e > 0  

sup Ix.(lf(x)-med.fl>e)<~~) e x p ~ , - - -  
f e  BL(S, d) 

where med. f denotes the median o f f  with respect to ~t.. It follows that 

E If(X.)-f(Y~)l  <~2E If(Xn)-mednfl 

fo --2 P(lf(Xn)-mednfl  > e ) &  

~< 2 exp - de = 

and, therefore, dBL(X,, Yn) ~ O. K(X,, Y~) ~ 0 is obvious. [] 

While the Ky-Fan metric is related to the Prohorov metric (rt = K), 
the dBL metric is related to the Kantorovich metric ~. In fact, for S 
bounded ( d ~ l ) ,  dBL coincides with dL:=dF, where F = { f : S ~ R I ;  
[ f (x) - f (y) f  <~d(x, y) for x, y~  S}. In other words, dBL may be viewed as 
dr on (S,d/(1 +d)). Then the Kantorovich metric ~(~t,v)= 
supferllsfd(#--V)l is the minimal metric w.r.t, dL, dL=u .  Here we 
simply use that z~<dc~<s and by the Kantorovich theorem s =~.  
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Moreover, :~ appears as a "minimal norm" w.r.t, daL--a property which 
and K do not enjoy-- 

v) := inf ~dL(b) dL(., := sup fs If(x) - / ( y ) [  
f ~ F  • S 

• b(dx, dy); b(A • S) - b(S x A) 

= ( # -  v)(A),  A ~ ~3(S)~ = •(#, ~) 
) 

(See Ref. 4.) These relations seem to justify the consideration and analysis 
of the dBz metric and uniformity. 
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