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1. Introduction 

Let (~,  ~i), 1 < i <  n, be measure spaces let Pi~J/ I  (~ ,  Ni) - the set of probabili- 
?t 

ty measures on N' i - 1 _< i_< n, let (W, ~ )  = @ (~,  Ni) and define 
i = 1  

j d  (p~, ... ,~):  = {p~ j 1  (y; ~) ;  p~, =p~, 1 <i<n}, 

where rh: ~ is the i-th projection and P~' is the image of P under rc~. 
The following simple characterization of J((P~, ...,P~) is wellknown under 

the name of Fr6chet-bounds: 
Let p ~ , [ 1  (~, ~ ) ,  then P~J//(P~ . . . . .  ~) if and only if for all AisN~, 1 :< i :< n, 

A ~ ) - ( n - 1  <=P(A 1 x ... x A,)< min P~(Az) (1.1) 
i + l<=i~=n 

where for a~R 1, a+ =max{a,0}.  Though very simple the bounds in (1.1) are 
useful in many applications (cf. [5, 11, 16, 14]). 

In the present paper we prove that for fixed A~, . . . ,A,  the bounds in (1.1) 
are attained. Furthermore, we shall derive sharp upper and lower bounds for 
{~p d P; PeJ ( (P  1 .. . . .  P,)} for more general functions ~o on W. 

In the special case that ~ = { 0 , 1 } ,  l< i<n ,  and p~=P~{1}, l<-_iNn, the 
Fr6chet-bounds are identical with the Bonferoni-bounds of first order for prob- 

P ( ! ~  A i ) ~  whenp i=P(A)  are given (Note that (1A~, ..., 1A,) has under abilities 

P a distribution in ~/N(P1,---,P~) where P/ are binomial B(1,p)-distributed.) So 
our result especially implies the sharpness of Bonferoni-bounds of first order 
which was proved for the first time by Fr6chet [4]. 

In the general case there are only few indications for the solution of the 
problem of sharpness of Fr6chet-bounds. The original problem of Fr6chet [5] 
was to find conditions for the existence of an element P~Jg(P~,Pz) such that 
P__<#, where /~ is a given measure on ~ t |  The solution of this problem 

0044-3719/81/0057/0293/$02.00 



294 L. Ri ischendorf  

has been given in various generality and by very interesting methods by Fr6- 
chet [5], Dall'Aglio [1], Kellerer [9], Strassen [-15] and Hansel, Troallic [7]: 

There exists an element Pe~(P~,P2) with P<__# if and only if for all A~eN~, 
i=1 ,2  

#(A 1 x Az)> P~(A1)+ P2(A2)- 1. (1.2) 

Though indicating in some sense the sharpness of Fr6chet's lower bound, the 
left- and right-hand sides in (1.1) do not define probability measures. In an in- 
teresting paper of Dall'Aglio [1], Theorem 3, it was shown that even in the set 
of distribution functions of elements of XC(P,, ...,P,) (in the case (X i, Ni) 
=(R 1, N1)) for n > 3 there is only in very exceptional cases a lower bound. 

2. A Generalization of the Fr6chet-bounds 

Let B(X, N) denote the set of bounded, M-measurable functions on (X, N) and 
define for ~0 ~ B(X, N) 

m=inf  {S~odP; P~J / t (P  1 . . . . .  P,)} 
M = s u p  {~ ~odP; PeJg(P1, ..., P,)}. (2.1) 

The determination of m, M by means of duality theory was given by Gaffke, 
Riischendorf [-6] in the case where X i are compact and (p is continuous. For 
the application to Fr6chet-bounds a generalization of this result is needed. Let 

ba(P 1, ..., P,) be the set of finitely additive, nonnegative set functions on + N i 
with i-th marginal P~, 1 <i__< n, and define ~= ~ 

mo=inf  {~(pdP; P~ba(P 1, ...,P,)} 
(2.2) 

Mo=sU p {~ (p d P; P ~ ba(P1, ..., P~)} 

Proposition 1. I f  (p s B(X, N), then 

m0=su p ~fidP~; f~ ~ B(Xi, N~), l<-_i<=n, ozc~<=cp (2.3) 
k i =  1 i= 

and there exist solutions of both sides in (2.3). 

Proof. The proof of Proposition 1 is similar to that of Theorem 1, Proposi- 
tion 2 and Corollary 3 of [-6]. We only indicate a sketch of the proof. 

Let Z=B(X,  N), X =  ( I  B(Xi, Ni), F: X--*R' defined by 
i=1  

defined by 

,yo)= S ae, 0 x- z 
i=1  

O(fl,  . . . , f , ) = -  ~ fi~ z0=~~ (2.4) 
i=1  
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and the cone 5 ~ {fEB(Y(, ~);  f >0}. Choosing norm-topology on B(S, N) the 
dual space (B(f,  ~))* equals the set of bounded, additive set functions on ~ .  
By this choice similarly to the proof of Theorem 1 in [6] the following duality 
theorem of Isii [8], Theorem 2, 3 can be applied. 

sup {F(x); x e X ,  O ( x ) + z o ~ 0  } 
=inf{z*(zo); z*~Z*, z*>O, z*(g,(x))+F(x)<O, V x ~ X } .  (2.5) 

The left hand side of (2.5) is identical to 

sup ~f:dP~; f sB(Y(~,~) ,  l <i<n, f, orci~ p 
( 5 =  1 i 

while the right hand side of (2.5) is identical to 

inf{I~0dP; P~ba(P1 . . . .  , P,)}. 

The proof of existence of a solution of the right hand side of (2.3) is anal- 
ogously to the proof of Proposition 2 of [6], since only boundedness of (p has 
been used in this proof. The existence of a solution of the left hand side follows 
from Theorem 2.1 of [8]. _J 

Remark. a) Proposition 2 implies that 

M o = i n f  f~dP~; f~B(~Ci, ~i), 1 <__i<__n, f~orc~o (2.6) 
i / = 1  

and also the existence of solutions. 
b) ha(P1, ...,P,) is by Alaoglu's Theorem (clr. [3], Theorem 2, p.424) com- 

pact in weak*-topology. This again implies the existence of a solution of the 
left hand side of (2.3). _.J 

We now want to give some conditions which imply that mo=m and M o 

= M. We need the following lemmas. Let 0~ (1~ ~ )  be the algebra generated 
i =  

by f i  Bi. 
i = 1  

Lemma 2. I f  (fi ,  r162 1 <i<n, are polish spaces (with Borel a-Algebra Ni) and 

P e b a(P1 . . . . .  P,), then P is a-additive on ~ 2i . 
i 

Pro@ If A ~  Ni then there exist J __<j A i ~ 2~, 1 < m, 1 < i < n, such that A 
i m 

= ~ A~ x. . .  • A~. For A k E Nk, k +  i, 
i = 1  

~ = P ( A  1 x. . .  xAi_ 1 x . xAi+ 1 x . . .  xA,)  

considered as map on ~i  is dominated by Pi, fii(A') <Pi(A'), u  N i, and, there- 
fore, is o--additive on ~i,  1 _< i _< n. Since (SY i, 2i), 1 __< i < n, are polish ~ are tight 
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Ti ~ A i ,  measures on N~, l<_i<_n. Therefore, there exist compact subsets ~ 
l<i<_n, l<j<=m, such that for e>0  

8 
P(A~ x ... xAJ,)K=P(Aj x ... xA~_~ x T.~)+ - 

m n  

28 
<P(Aj x ... x TJ_I X T,;)+ <... 

t t ln  

8 
< P(T/ x ... x T~)+--. 

1Tl 

This implies P(A)<= ~ P(T/x  ... x T~)+s and, therefore, by Proposition 1.6.2 
1=1 

of Neveu [12] P is a-additive on N Ni �9 
i 

Let (Y, ~d) be a topological space, let N be an algebra on Y. A non-negative 
content # on d ( N )  is called outer (inner) regular if 

#(U)=inf{#(0); 0e~dc~d(N), Uc0} ,  

(#(U)=sup{#(F); f closed, f s d ( ~ ) ,  F c U } )  

for all U ~ d ( ~ ) .  (This is a specialization of Definition 11, p. 137 of [3].) If # is 
bounded, then outer regularity of # is equivalent to inner regularity of # and # 
is called regular in this case. 

Lemma 3. I f  ~ contains a countable base of the topology of Y and if P is a 
bounded, nonnegative, regular content on d ( ~ )  which is a-additive on ~, then P 
is a-additive on d (~) .  

Proof. Let t3 be the unique extension of P/N as measure on d ( N )  and let 0 

0 t (d. Then there exist Oi~N~(d  with 0 O i. This implies P(O)>P ~ O~ 
i=1  i=1  

=15 O~ , V n e N  and, therefore, 
i 

P(O) >/5(0), VOE~f. (2.7) 

By outer regularity of P (2.7) implies for all closed sets F ~ d ( ~ )  

P(F)=inf{P(O); O~d, 0 ~ F }  
>inf{/5(0); 0zcg, O~F} >=P(F)>=P(F). 

This implies P(0)= P(0) for all 0 e cg and, therefore, for A e d ( N )  

P(A)=inf{P(O); 0ecg, 0~A} 

=inf{/~(0); 0 ~ f ,  0 ~ A } > P ( A )  

and,similarly, P(AC)>P(A c) which implies p=/5.  _3 

Let rba(W, ~) denote the set of regular, bounded, nonnegative contents on 
(~, ~). 
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Corollary 4. I f  (Y(i, 2) ,  1 < i < n, are polish spaces, then 

rba(YY, 2)mba(P~, ..., P,)= dg (P~ .... , P,). 

For Peba(P,, ...,P,) let L 1 X,~.~ 2 i , P  denote the set of P-integr- 
i 

able functions where P is considered as content on sR ~'i (cf. Dunford, 
Schwartz [3-1, Def. 17, p. 112) and define i 

contains the closure of all l  ear 
\ \ l l / n  \ 

combinations of characteristic functions of sets in .~ ( ~ i ) w . r , t .  uniform 
\ - ' i  / i= 

metric. Let Cb(Y 0 denote the set of bounded, continuous functions on X. The 
following theorem is the main result of this section. 

Theorem 5. Let (YE i, 2i), 1 < i < n, be polish spaces. 
a) I f  qo~Ll(ba(Pa, ..., P,))uCb(~r), then for each P6ba(P1, ..., P,) there ex- 

ists a f i e  J / [ (P  1 . . . .  , P,) with ~ (pdP=S cpdP. Especially, mo=m and Mo=M. 
b) I f  P* eJ/I(P1, ..., P,) and qoeLl(ba(P1, ..., P,))u Cb(~r), then S~odP* =m if 

and only if there exist fi*eB(YEi, 2i), l<i<_n, with ~,fi*oni<q) and 
?l  

i = 1  

P* f/* o ~i=~0 =1, 
i 

Proof. a) Each P~ba(P1,...,Pn) considered as content on 2 2 i has by 
i 

Lemma 2 a unique extension to an element 15 of JCl(P I, ..., Pn). Therefore, by 
Lemma 1, p. 165 of [3] it holds for qo~Ll(ba(P1, ..., P,)) that ~odP=S~odP. 

If (p~ Cb(X ) we can replace in the proof of Proposition 1 B(X i , 2 )  by 
Cb(Xi) and B ( ~  2)  by Cb(Yf ) and obtain from (2.5) using that rba(X, N(cg)) 
= {ze(Cb(~))*; z_>0} 

inf{S(pdP; Per b a (~  ~(~)), ~f~o 7Edp=~f~dP~, Vf~e Cb(X), 1 <=i<__n} 

=sup i=1 ~ ~dP~; ~eCb(3Ei), l <=i<=n, ,~1~o~i_<(8.= (2.8) 

where (8 is the system of open sets in 2 .  Using Lemmas 2, 3 and Corollary 4 
each Perba(X, ~((8)) with marginals /1 , - - - ,  Pn has a unique G-additive exten- 
sion to an dement  of rba(X, 2)nba(P~, ..., Pn)=~(P~, "",Pn) such that inte- 
grals w.r.t, elements of Ch(X) are identical. Therefore, the left hand side of (2.8) 
equals m. The right hand side of (2.8) is easily shown to be identical to 

sup{ k~fidP~;fieB(3Ci'2)'l<=i<=n' i = l  i = l  ~ f/~ T~i~--- ~0) ' 

b) is immediate from a) and Proposition i. _l 
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Remark. a) A very interesting result of Douglas [2], Theorem 1 implies that an 
element P of JN(P1, ..., P,) is an extreme point of Jg(P1, ..., P,) if and only if 

F = {i__~1 f/o 7zi; f~eB(Wi, ~i), 1__<i-<n} 

is dense in Lt(P). An extension of this result to ba(Pl, ..., 4 )  is possible by 
techniques which are used in the proof of Theorem 1 of Plachky [13]. Clearly 
the inf and sup of (2.1) are attained in extreme points. Theorem 5 and Proposi- 
tion 1 show that in this case one even can approximate q~ by elements of F 
which are less than or equal to q) (resp. larger than or equal). 

b) A somewhat shorter proof of Corollary 4 (without reference to Lemma 3 
could have been given by refering to Alexandroffs Theorem (cf. [3], Th. 13, 
p. 138). 

3. Sharpness of Fr6chet-Bounds 

The aim of this section is to prove that the bounds given in (1.1) are sharp. 

Theorem 6. Let (~ ,  Ni), 1 < i < n, be polish spaces, then for all A i e Ni, 1 < i < n, 

a) max {P(A 1 x ... xA,); P e  Jg(P1, ..., P,)} 
=rain {P~(A~); 1 <i<n} ,  (3.1) 

b) rain {P (A 1 x. . .  x A,); P e J//(/ '1,...,  P,)} 
n 

Proof. a) Let 

A= in f  f~dPi; f~eB(~Y~,~i), l<=i<=n, f~~ . . . . . .  A~ 
i i = 1  

Let (fi) be admissible for (3.3) and define 

ai=inf{fi(x); xe$?i}, 

then i a~ > 0. Define 
i = 1  

Jo={i<_n; ai<0}, f i = f i - a i ,  
and 

l <_i<_n, 

n 

- - -  ~=laj, f / = f i - a i q - [ J - d o [  j= 

i eJo 

i e J - J o ,  j = { 1  . . . .  ,~}. 

(3.3) 

Then fi__>0, l<-i-<n and ~ rio hi= i f/~ ni such that (f/) are admissible for 
i = 1  i = 1  

(3.3) and ~ ~fidPi= ~ ~fidPi. Therefore, w.l.g, we can assume, that ai>O, 
l < i < n ,  i=l i=i 
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Define b i = i n f { f & ) ;  x ~ A i }  , l<i<n, then 
This implies that (f/*) are admissible, where 

Therefore, 

bi>O, l<i<n, and 
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~ bi> l. 
i = 1  

i = 1  i = 1  

> ~, bi lAoni:  ~ fi*oni and ~ [.fidPi> ~ biPi(Ai). 
i = 1  i = l  i = 1  i = l  

ti } A = i n f  biPi(Ai); bi>O, l <i<n, bi=l 
I . i = l  i = 1  

=min {P~(A~); 1 <=i<=n}. 

(3.4) 

Now Theorem 5 and Proposition 1 imply (3.1). 

b) Let 

B=sup dPi; f/E B(~Yz, ~i), 
i 

. . . . .  

Let (f/) be admissible for (3.4) and let bi=inf{f/(x);  x~A~}, ai=inf{fi(x); 
x ~ Ai} - b i, 1 < i <- n. Then (f/) is admissible for (3.4), where 

fi=ailA,+b i and f / < f / ,  l<_i<_n. 

Therefore, w.l.g, we may assume that f /=  a i 1A, +b~, 1-<i< n. With b = ~ b i ad- 
missibility of (f/) is equivalent to i= 1 

~ ai+b-<l and ~ aj+b<_O, V J C { 1 , . . . , n }  
i =  1 - j ~ j  - ( 3 . 5 )  

(C means strict inclusion) and 

B = m a x  aiPi(Ai)+b; (ai), b satisfy (3.5) . 
~.i= 1 

If the max is attained then equality holds in at least one restriction of (3.5). 

Case 1. ~ a i + b = l  , then ai>ai+ ~ aj+b=l, l<i<n, and 
i= 1 j# i  

~, ai Pig (Ai) + b = ~ a i (Pi (Ai) - 1) + 1 
i = 1  i = 1  

__< ~ P,(A)-(n-1) 
i = 1  

(3.6) 
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and the right hand side of (3.6) is attained for a~=l, 1<=iNn, b=-(n-1) 
(which are admissible). 

Case 2. There exists J0 C {1, ..., n} with ~ aj + b = 0. If a i <0, define 
j e d o  

~aj, j ~ i 
fiJ=(0, j=i. 

Then 

~ gtj+b= ~ aj+b<O, V J C { 1  . . . .  ,n}. 
j ~ J  j e J  \ {i} 

So (~j), b are admissible and 

ghPi(Ai)+ b> ~, aiPi(Ai)+b. 
i = 1  i = 1  

Therefore, w.l.g, we can assume that a~ > 0, 1 <_ i _< n. 

Case2. a) Let ] Jo l<n-1 ,  then a~>O, l<i<n, and ~ aj+b=O imply that aj 
=0, VjeJ~ and, therefore, J~Jo 

aiPi(Ai)+b= ~ ai(Pi(Ai)-l)<_-0. (3.7) 
i= 1 i~Jo 

So the max is obtained in this case for a~ = 0, 1 < i < n. 

Case 2.b) Let I Jo [=n-1  and i~Jo such that ~ a~+b=0.  This implies that for 
all j oe{ l ,  ..., n}, jo=~i j,i 

2 aj+b=ai+ Z aj-Zaj=ai-ajo<O, 
J * J o  j * j o ,  i j * i  

and, therefore, a i<min  {aj;j=l=i}. So in case 2b) 

} max ajPj(Aj); (aj), b admissible, ~ aj--}-b=O 
I j =  1 j * i  

: max 

: max 

(3.6), (3.7), (3.8) imply that 

B = ~1 ~ (Aj ) -  (n -  1) 
j + 

and, therefore, Theorem 5 and Proposition 1 imply (3.2). 

aiPi(Ai)+ ~ aj(Pj(Aj)-I); O<=ai<=aj, j+i, ai<=l } 
j * i  

{a~Pi(Ai)+a~ ~ (Pj(Aj)- 1); O<=ai <= 1} 
j + i  

_1 

(3.8) 
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From Theorem 5 and Theorem 6 we obtain 

Corollary 7. Let A i ~ ~ ,  1 < i < n, then there exists a P ~ ~(P1,  ..., P,) with 

a) P has support in ( I A I u Y F I x . . . x Y ( j _ l x A ~ x . . . x ~ ,  if Pj(Aj) 
= min Pi(Ai)  i=1 

l <i<=n 

b) P has support in U Y(1 x ... x Aj x ... x f ,  if ~ P i (Ai )>n-1  
j = l  i= l  

c) P has support in 0 Y'I x . . .  xA~x . . ,  xS~, if i Pi(Ai) < n - l "  
j = l  i= l  

Remark. a) If (5~i, Ni )=(Ra ,~ l ) ,  l < i < n ,  Ai=(--oQ, x], l < i < n ,  with x e R  1, 
then for PeJd(P1,  ..., Pn) 

P(A 1 • x A , ) = P (  max x i < x  ). 
l<i<=n 

For this special case it has been shown in an interesting paper of Lai, Robbins 
[10] that the bounds (3.2) are attained by an element P o a ~ ( P 1 ,  ..., P,) simul- 
taneously for all x ~ R  1, in other words: the distribution of max xl is stochasti- 
cally maximized by P0 w.r.t. J/d(P1, ..., P,). 1_<i_<, 

b) With A i = W i x . . . x W , .  l x A i x . . . x X ,  and pi=Pi(Ai), l<_i<_n, Theo- 
rem 6 says that the upper and lower Fr6chet-bounds for A n x. . .  xA,  are 

identical with the Bonferoni-bounds of first order for A~ .. . .  ,A,  (Note that 

P(A~ x ... x A , ) = P  ( ~= A~) ). This remark has for applications to \ 

confidence intervals some interesting consequences. 
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