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Solution of a Statistical Optimization Problem 
by Rearrangement Methods 

By L. Riischendorf,  Freiburg I ) 

Summary: Inequalities for the rearrangement of functions are applied to obtain a solution of a 
statistical optimization problem. This optimization problem arises in situations where one wants 
to describe the influence of stochastic dependence on a statistical problem. 

1. Introduction 

LetP1 . . . . .  Pn be n elements of M 1 (R 1 , B 1) - the set of all probability measures 

on (R 1 , 81) - and define M (P1 . . . . .  Pn) to be the set of all probability distributions 

on (R n, B n) with Pi as i-th marginal distribution, 1 ~< i ~< n. For measurable functions 

: R n ~ R 1 define 

m : = i n f { f g d P : P E M ( P 1 , . . .  ,Pn ) )  (1) 

assuming the integrals in (1) to exist. 
M (Pt . . . . .  Pn ) is convex, tight and closed and, therefore, by Prohorov's theorem 

compact w.r.t, weak-topology. To prove tightness, let K i E R 1, 1 <. i <. n, be compact 

sets with P. (K  i) >t 1 -- e/n, I <<. i <<. n, then K = K1 • �9 �9 �9 X K n is compact and using 
n 

Fr6chet's lower bounds P (K) t> Z P; (K;) --  (n - 1)/> 1 -- e for all 
i= 1 " " 

P E M (P1, �9 �9 �9 Pn ). Therefore, the set on the right hand side of (1) is an interval and 

there exists a solution P* of (1) if ~o is bounded and continuous. (For bounded measu- 
rable r there exists in general only a solution in the set of normed additive set func- 
tions with marginals Pi' 1 <~ i <~ n.) 

Problem (1) arises in situations where one wants to describe the influence of 

dependence on a statistical problem. Some typical examples are the following ones: 
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1) Let f :  [0,1 ] -* R 1 be measurable and assume that a := f fd  X 1 exists. A rough esti- 
n 

mator  for a is T n := ( l / n )  ~ f(Ui),  where (Ui) l ~ i ~ n  are i.i.d, random variables 
i=1 

with pU1 = R (0,1) - the uniform distribution on [0,1 ]. The problem of  deter- 
mining a best unbiased estimator (minimum variance) for a of  the type 

n 

T'n = ( l /n )  I~ f (Vi ) ,  where pgi = R (0,1), 1 ~< i ~ n, is a problem of  type (1) 
i=1 

n 

with ~0 (xl . . . . .  Xn) = ('2; f(xi))2 and Pi = R (0,1), 1 ~< i <~ n. (In simulation 
i=1 

studies the above estimator is combined with approximation techniques and applied 
usually in higher dimensions). 

2) Let ~o be a test for the simple hypotheses H = {p(n)} and K = {p~n)} with 

Po, PI EM 1 (R 1, B1).Then 

sup ( f  , d P ; P E  ld (Po . . . . .  eo))  

is the worst level attained by this test if one is not sure that the underlying obser- 
vations are independent. 

3) Let X = (X1 . . . . .  Xn) be a n-dimensional random variable with X i i> 0 and 
n 

pXi=pi ,  1 <~i~<n. Thenwi th  ~0(xl . . . . .  Xn)= II xi, 
i=1 n 

sup {f  ~o dP; P E M (P1 . . . . .  Pn)} gives an upper bound for E II X i which is 
i=1 

n n 

better than the bounds H LI X i Ild i, d i > O, 1 ~ i <~ n, ~, (1/di) = 1 obtained by 
i = 1 i= 1 

H61ders-inequality. 
Similarly, for ~0: R n ~ R 1 convex, inf {f ~o dP; P E M (P1 . . . . .  Pn )} gives a better 
lower bound to E~o (At) than ~0 (EX) - the bound given by Jensen's inequality. 
Indeed, 

~0 (EX) = inf ( f  ~o dP; EX i is the first moment  of  the i-th marginal distribution 

of  P}. 

A solution of (1) by means of  duality-theory was given by Gaffke/Riischendorf 
[1980], Riischendorf [1980]. The present paper relates (1) to the problem of  
rearrangement of  functions. 

2. Rearrangement of Functions 

Let f, g: [0,1] ~/~1 be measurable functions. Then g is called a rearrangement of  
f i f  ~ ~g i> c) = ~ (f~> c), V c E R 1 ; in other words, g and f h a v e  the same distribution 
function under h - the restriction of  Lebesgue-measure to [0,1 ]. 

Rearrangements of  functions were introduced by Hardy/Littlewood/Polya [1952]. 
They have important applications in many parts of  analysis and were studied intensi- 
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rely by Luxemburg [1967], Chong/Rice [1971] and Day [1972]. To f there exist 
especially nondecreasing and nonincreasing rearrangements f*, f ,  and in generalization 
to the discrete case for f, g E L 1 (X) 

f f*g ,  dX <~ f fgdX <~ ff*g*dX. (2) 

Furthermore, f f*g ,  dX = f f , g*dX and f f ' g *  dX = f f , g ,  dX. 
(1) is related to rearrangements by means of  the following lemma. Let F /be  the 

distribution function of Pi, 1 ~< i ~< n, and let F~ -I  (x) = sup ~ E R 1; F i (y) ~< x) ,  

x E [0,1 ], be the generalized inverse o f f  i, 1 <~i <~n. 

Lemma 1: Let U be a random variable on (M, A, P) with pU = R (0,1). Then 

bt (PI . . . . .  Pn) = (p(fl(U) ..... :n(U)); f i is  a 

rearrangement ofF/-~ , 1 ~< i <~ n). (3) 

Proof: I f f i  is a rearrangement o f F .  1 , then 

:(U) = ~ .  = ~k F~ 1 = Pi' 1 <<,i <~ n. 

So the right hand side of  (3) is contained in the left hand side. 
A theorem of Rohlin [1952] [cf. also Parthasaraty; Whitt, Lemma 2.7] on the 

isomorphism of measure spaces implies that each Q E M 1 (R n, t3 n) has a representation 
(/1 . . . . .  /n) .+ I Q = ~ , where f;:  [0,1] R are measurable. For Q E M (P1 . . . . .  Pn) 

~/i = P / =  ~ F i l  , 1 ~<t ~ n, which lmphes that f i  is a rearrangement of  F: 1,1 ~< i <~ n. 
[] 

As consequence we obtain: 

Theorem 2. 

m = inf { f r  (fl (t) . . . . .  fn (t)) d~ ( t ) ; f  i is a 

rearrangement o fF71  , 1 <~ i <~ n). 

( 4 )  

[] 

Rearrangement-inequalities are closely connected with a generalization of Schur- 
order in the discrete case to measurable functions f, g: [0,1 ] -~ R x. For f, g E L 1 (~) 
one defines Schur-order by 

X X 

f ~ g i f f f * ( t ) d h ( t ) < ~ g * ( t ) d X ( t ) , o  V x E ( O , 1 )  

1 1 
f < g  i f f ~ g  and fo f *  (t) d;k (t) = fO g* (t) d~ (t). 

(5) 
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Characterizations and properties of the 'continuous' Schur-order were intensively 
discussed by Ryff[1965], Luxemburg [1967] and Chong/Rice [1971 ]. A famous 
theorem of Hardy/Littlewood/Polya [1952], Chong [1974, Theorems 2.3, 2.5], 
states that for f, g E L 1 (X)f '~ g is equivalent to f ~0 o fdX <<. f r  o gdX for all convex, 
nondecreasing r R 1 ~ R 1, while 

f <g is equivalent to f r  o fdX <<. fo  ogdX 

for all convex r 
(6) 

Some simple relations fulfilled by <,  "~ are the following [cf. Day, 6.1, 6.2] 

f* +g ,  < f  + g < f *  +g* 

f*- -g*  < f --g < f * - - g ,  

f*g , ~ fg ~ f*g*, if fg @ L 1 (X ). 

Consider the following conditions on ~o: (R n, B n) -~ (R 1 , B1). 
We shall omit those arguments of ~o which are the same in a certain formula. 

A) ~o (ui + h, u/ + h) - -r  (ui + h, ul) --r (ui, ~ + h) + ~o (ui, ~)  

>10, V u i, uI. ER1, h >~O,i ~]. 

B) ~o(ui + h)--2~o(ui)+~o(ui--h)>~O, V u i E R l ,  h >~O. 

Functions satisfying condition A) are called L-superadditive. For a discussion of L- 
superadditive functions cf. Marshall/Olkin [1979, Chapter 6, C, D]. 

If ~ has continuous second partial derivatives, then A), B) are equivalent to 
(a2~o)/(aui aU]) >1 0, 1 ~< i, ] ~< n. 
' Let P* E M (P1 . . . . .  Pn) be defined by P* = P (F7I (U) ..... Fn 1 (U)), where 
pU = R (0,1). 

(7) 

Corollary 3. 

a) If P1 . . . .  , Pn have first moments and ~o satisfies condition A),then 

sup {f ~odP; P E M (PI . . . . .  /On)} = f r 

b) If q satisfies conditions A), B) and P; E td 1 (R 1 , B 1) have distribution functions 

Gi, 1 '<. i ~ n, with G[ 1 < Fi-1,1 <<. i <<. n, then 

f~o (G? 1 (t) . . . . .  Gn 1 (t)) dh  (t) <~ f~  (F71 (t) . . . . .  Fn I (t)) dh (t). 

Proof. 
a) By Theorem 2 
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sup {y~odP,'PE ld (P1 . . . . .  Pn)) 

= sup {f~ (f l  (t) . . . . .  fn ( t ) )ax  ( t ) ; f  i is a 

rearrangement ofF/-~ , 1 ~< i ~< n}. 

In the case that F~ "l are nonnegative and bounded, a) follows from a theorem of 

Lorentz [ 1953 ] on the rearrangement of  functions. The condition of nonnegativity 
is not necessary for Lorentz's result while the general case (of  integrable 
F~71 , 1 <~ i ~< n) can be obtained similarly to the extension of  a theorem of  Hardy, 

Littlewood, Polya proved by Chong [1974, Theorem 2.5]. 
b) is implied similarly by Theorem 1 ofKy Fan/Lorentz [1954]. [] 

Examples: 
n 

a) I f  P/have support in R+, 1 ~< i <~ n, then ~0 (Xl . . . . .  Xn) = i~  1Xi, X i ~ 0, 
n 

1 ~< i ~< n, satisfies condition A), so that f~dP* = E II ~-~ (U), pU = R (0 , I )  is 
i=l n 

the best upper bound for E II X i obtainable by fixing marginal distributions. For 
i = 1 

the case of  continuous distributions with compact support cf. Gaffke/Riischendorf 
[1980]. 

b) Let~0(xl . . . . .  Xn)= max x i -  min xi, x/ERl, l<<./<~n.  
1 ~ i ~ n  1 ~ i ~ n  

Then ~0 is convex, - tp satisfies condition A). Therefore, fcdP* = 

= inf {f~odP; P ~ M (P1 . . . . .  Pn)) and f~odP* is better than the lower bound 

obtained from Jensen's inequality. This result was obtained by Schaefer [ 1976] 
using Fr~chet-bounds. 

c) (6) and I_emma 1 (with n = 1) imply that for P, Q E M 1 (R 1 ,/31 ) with existing 
first moments:  

f~odP <<. f~odQ, V convex ~0: R 1 ~ R 1 is equivalent to 

F -1 < G-l;  F, G are the distribution functions of  P, Q, (8) 

which is equivalent to 

7 (t - x) dE (t) < ~f (t -- x) dG (t), V x E R 1 . 
X x 

d) 

This characterization of  convex ordering of  distributions on (R a ,/3 a ) was proved in 
a different way by Stoyan [ 1972]. For applications of  this ordering cf. Stoyan 
[1977]. 
For ~0: R 1 ~ R 1 convex and integrable, real random variables X, Y with distribution 

functions F, G: 
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E~o(F-' (U )+ G- '  ( 1 - - U ) ) < ~ E ~ o ( X +  Y)<<.E~o(F-' ( U) + G- '  (U)) 

E~o(F -1 ( U ) - G  -1 (U))<~E~o(X--Y)<~E~o(F-' (U)--G- '  ( 1 - U ) ) .  
(9) 

I f X  �9 Y E L  1 (P), then for all nondecreasing, convex ~0 

E~o (F -~ (U) G-'  (1--U))<<.E~o(XY)<<.E~o(F -1 (U) G-' (U)). 

If  X,  . . . . .  X n are integrable with P xi = P/, 1 ~< i < n, then 

(10) 

n 

E~(XI  + . . .  + Xn)<F,~(i~=l Ft-I (U)) (11) 

where F i are the distribution functions ofPi ,  1 ~< i ~< n and ~0 is assumed to be 

convex. 

(9), (10) follow from (2), (6) and (7) observing that F -1 (1 -- t) is the nonincreasing 
rearrangement o f F  -1 (t). (11) follows from Corollary 3 since 
f (x~ . . . . .  X n) = ~o (xl + . . .  + X n), ~o convex, satisfies condition A). Otherwise, it 

is also implied by the obvious generalization of  (7) 

+...+f. 

(10) generalizes a wellknown result of  Hoeffding on the extreme correlation of  two 
random variables [cf. Whitt, Lemma 2.3] while (9), (11) generalize results on the 
distance between distributions [cf. Dall'Aglio] and solve e.g. the problem of  construc- 
tion of  random variables with maximum variance of  the sum. 

e) Part b) of  Corollary 3 implies that 

sup (f~odP,'PE Id (P1 . . . . .  Pn) ) ~< sup {f~odP;PE M (Ql . . . .  , Qn)) 

for ~0 satisfying A), B) and Qi E M I (R ~, B1), 1 ~<i ~<n, ifF,7 ~ < G i  -~, 1 <~i<~n 

where F i, G i are the distribution functions of P i, Qi' 1 <~ i <~ n. 

Remark: The results o f  this paper can be generalized partially to more general spaces 
using results o f  Luxemburg [1967] on 'adequate'  measure spaces. 
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