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Solution of a Statistical Optimization Problem
by Rearrangement Methods

By L. Riischendorf, Freiburg')

Summary: Inequalities for the rearrangement of functions are applied to obtain a solution of a
statistical optimization problem. This optimization problem arises in situations where one wants
to describe the influence of stochastic dependence on a statistical problem.

1. Introduction

LetPy,...,P, ben elementsof M' (R', B') — the set of all probability measures
on (R', B') — and define M (Py, . .. ,P,) to be the set of all probability distributions
on (R", B") with P, as i-th marginal distribution, 1 <i <n. For measurable functions
¢:R" > R! define

m:=inf{f<de:P€M(P1,...,Pn)} (1)

assuming the integrals in (1) to exist.
M(Py, ... ,Pn) is convex, tight and closed and, therefore, by Prohorov’s theorem

compact w.r.t. weak-topology. To prove tightness, let X, €R', 1 <i<n,be compact
sets withPl. (Ki)> 1—¢/n 1<i<n,thenK=K,; X...X Kn is compact and using
n

Fréchet’s lower bounds P (K) = '21 P(K)—(@m—1)=>1—eforall
=

PEM(Py,...,P,). Therefore, the set on the right hand side of (1) is an interval and
there exists a solution P* of (1) if ¢ is bounded and continuous. (For bounded measu-
rable v there exists in general only a solution in the set of normed additive set func-
tions with marginals Pi, 1<i<n)

Problem (1) arises in situations where one wants to describe the influence of
dependence on a statistical problem. Some typical examples are the following ones:
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1) Let f: [0,1] = R' be measurable and assume that a := [ fd A! exists. A rough esti-
n
mator forais T, := (1/n) i=21 f(Ul.), where (Ui)l <i<p &r€ i.i.d. random variables

with PU1 =R (0,1) — the uniform distribution on [0,1]. The problem of deter-
mining a best unbiased estimator (minimum variance) for a of the type

T, =(1/n) 5 f(V)), where Pli=R (0,1), 1 <i < n,is a problem of type (1)
i=1
with ¢ (x1,...,X,)= (EZ f(x;))? and P; =R (0,1), 1 <i <n. (In simulation
i=

studies the above estimator is combined with approximation techniques and applied
usually in higher dimensions).

2) Let ¢ be a test for the simple hypotheses H = {P((,")} and K = {Pf")} with
P,, P, €M (R, BY). Then

sup {f odP;, PEM(Py, ..., Py)}

is the worst level attained by this test if one is not sure that the underlying obser-
vations are independent.
I LetX=(X,..., X n) be a n-dimensional random variable with X = 0and

PYi=P, 1<i<n Thenwith ¢ (x,,...,x,)= ﬁlx,.,
. i=
n
sup {f ¢dP; PEM(Py, ..., P,)} gives an upper bound for E Il X, which is

i=1

n n
better than the bounds ‘Hl Il X; IId_, di >0,1<i<n, _Zl (1/dl.) = 1 obtained by
= 1 i=

Holders-inequality.

Similarly, for ¢: R” - R! convex, inf {f ¢dP;,PEM (Py, . .. ,P,)} gives a better
lower bound to E¢ (X) than ¢ (EX) - the bound given by Jensen’s inequality.
Indeed,

¢ (EX)=inf {f pdP; EX ;1s the first moment of the i-th marginal distribution
of P}.

A solution of (1) by means of duality-theory was given by Gaffke/Riischendorf
[1980], Riischendorf [1980]. The present paper relates (1) to the problem of
rearrangement of functions.

2. Rearrangement of Functions

Let f, g: [0,1] > R! be measurable functions. Then g is called a rearrangement of
fif A {g=c}=A{f=c}, ¥ ¢ ER?;in other words, g and f have the same distribution
function under A — the restriction of Lebesgue-measure to [0,1].

Rearrangements of functions were introduced by Hardy/Littlewood/Polya [1952].
They have important applications in many parts of analysis and were studied intensi-
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vely by Luxemburg [1967), Chong/Rice [1971] and Day [1972]. To f there exist
especially nondecreasing and nonincreasing rearrangements f*, f, and in generalization
to the discrete case for f, g€ L' (A)

J P8 AN [ fod N < [f*gd . ()

Furthermore, [f*g,dA=[f,g"dXand [f*g*d\=[f, g, d\.

(1) is related to rearrangements by means of the following lemma. Let F’ ; be the
distribution function of P;, 1 <i<n, and let Fl.'1 (x) =sup {y ER*; F.(y)<x},
x €[0,1], be the generalized inverse of F;, 1 <i<n.

Lemma I: Let U be a random variable on (M, A, P) with PY =R (0,1). Then
M@y, ... P)=PU1TnlUD); fisa
rearrangement of F; ', 1 <i <n}. (3)

Proof: If f, is a rearrangement of £, then
-1
PO = i=\fi =p 1<i<n.

So the right hand side of (3) is contained in the left hand side.
A theorem of Rohlin [1952] [cf. also Parthasaraty; Whitt, Lemma 2.7] on the
isomorphism of measure spaces implies that each Q € M' (R", B") has a representation

g= ?\(fl ""’f':)l, wherefl.: [0,1]= R! are measurable. For QE M (P4, . .. ,Pn)

)\fi =P, = )\Fi , 1 <i<n, which implies that f; is a rearrangement of Fl.'1 ,1<i<n
As consequence we obtain: .
Theorem 2.
m=inf {fo (f1(®),....f, ) dN@):f,isa )
rearrangement of F l.'l ,1<i<n). O

Rearrangement-inequalities are closely connected with a generalization of Schur-
order in the discrete case to measurable functions f, g: [0,1] > R'. Forf, g €EL'(\)
one defines Schur-order by

gt FAA@OANEO<fg*()dN@), VxE@D,1)
0 0 (5)

f<giff<gandzf‘*(t)d)\(t)=(})g*(t)d?\(t).
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Characterizations and properties of the ‘continuous’ Schur-order were intensively
discussed by Ryff [1965], Luxemburg [1967] and Chong/Rice [1971]. A famous
theorem of Hardy/Littlewood/Polya [1952], Chong [1974, Theorems 2.3, 2.5],
states that for f, g €L (\) f <gis equivalent to f ¢ O fdA < [y O gd\ for all convex,
nondecreasing ¢: R' = R!, while

f<gisequivalent to fp O fdA < [p O gdA

(6
for all convex .
Some simple relations fulfilled by <, < are the following [cf. Day, 6.1, 6.2]
[rtg.<frg<fr+g*
[ <f-g<f*—g. (7

. <f<frg* iffg €L ).

Consider the following conditions on ¢: (R", B") > (R', B').
We shall omit those arguments of ¢ which are the same in a certain formula.
A) o@;+h, U, thy—p; +h uj)—w(ui, u; +h)+o W, u].)
>0,Vu, u].ERl, h=0,i#j].
B) o;*+h)—2¢u)+yom;—h)=0, VuiERl, h=0.

Functions satisfying condition A) are called L-superadditive. For a discussion of L-
superadditive functions cf. Marshall/Olkin [1979, Chapter 6, C, D].

If  has continuous second partial derivatives, then A), B) are equivalent to
(32¢)/(aui au].) =20,1<i,j<n ) »

Let P*€ M (P, . .., P,) be defined by P* = P11 (U0 Fn (), where
PU=R(0,1).
Corollary 3.

a) IfPy,..., P, have first moments and ¢ satisfies condition A),then
sup {fodP; PEM(P,,... ,Pn)} = [odP*,

b) If y satisfies conditions A), B) and P; € M' (R*, B*) have distribution functions
G;, 1'<i<n,with G]' <F[',1<i<n, then

JeGT* @), ....Gt @NANO<[oEFT' (®),...,F,' @)d\ .

Proof.
a) By Theorem 2
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sup {fodP;PEM(Py,...,P))}
=sup {fo (fi @),....f, AN (@) f;isa

rearrangement ofFl.", 1<i<n}.

In the case that F. l‘ ! are nonnegative and bounded, a) follows from a theorem of
Lorentz [1953] on the rearrangement of functions. The condition of nonnegativity
is not necessary for Lorentz’s result while the general case (of integrable

Fi—l , 1 <i<'n)can be obtained similarly to the extension of a theorem of Hardy,

Littlewood, Polya proved by Chong [1974, Theorem 2.5].

b) is implied similarly by Theorem 1 of Ky Fan/Lorentz [1954]. O
Examples:
n
a) If P, have support inR+, 1<i<n,then¢(x;,...,x,)= .Hl x, Xx; 20,
l:

n
1 <i<n, satisfies condition A), so that [pdP* = E.H1 F'."l (U),PU =R (0,1)is
l=
n
the best upper bound for £ .Hl X, obtainable by fixing marginal distributions. For
l:
the case of continuous distributions with compact support cf. Gaffke/Riischendorf
[1980].

b) Let ¢ (xy,...,x,)= max x,— min xi,x.€R1,1<j<n.
1<i<sn ' 1<i<n /

Then ¢ is convex, — y satisfies condition A). Therefore, f@dP* =
=inf {fpdP, PE M (P, ... ,Pn)} and [@dP* is better than the lower bound

obtained from Jensen’s inequality. This result was obtained by Schaefer [1976]
using Fréchet-bounds.

¢) (6) and Lemma 1 (with n = 1) imply that for P, Q € M' (R!, B") with existing
first moments:

SedP < [pdQ, V¥ convex ¢: R' = R! is equivalent to
F~! <G71;F, G are the distribution functions of P, Q, ®

which is equivalent to
F (t—x)dF ()< (t —x)dG (f), VxER".
X x

This characterization of convex ordering of distributions on (R!, B') was proved in
a different way by Stoyan [1972]. For applications of this ordering cf. Stoyan
[1977].

d) For¢: R' > R! convex and integrable, real random variables X, Y with distribution
functions F, G:
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EoF' ()+GT (1 -UNSEpX+Y)<Eo(F' ()+G (1))

)
Eo(F ()—G ()<EpX—YV)<EpF ' (-G (1 -
IfX « YEL! (P), then for all nondecreasing, convex ¢
Ee(F* ()G (1 —U)<Ep XY)<E¢ (F* () G™* (V). (10)
I£X,,. .., X, are integrable with '/ = P, 1 <i<n, then
Eo(X, +... +Xn)<E‘p(‘§1 F7H ) an
=

where F ; are the distribution functions of Pi’ 1 <i<nand pis assumed to be
convex.
(9), (10) follow from (2), (6) and (7) observing that F~* (1 — £) is the nonincreasing
rearrangement of F~! (¢). (11) follows from Corollary 3 since
fGey,..n, xn) =p@,; +...+ xn), @ convex, satisfies condition A). Otherwise, it
is also implied by the obvious generalization of (7)

fobo AL <fHH. 4L

(10) generalizes a wellknown result of Hoeffding on the extreme correlation of two
random variables [cf. Whitt, Lemma 2.3] while (9), (11) generalize results on the
distance between distributions [cf. Dall’Aglio] and solve e.g. the problem of construc-
tion of random variables with maximum variance of the sum.

¢) Part b) of Corollary 3 implies that

sup {fedP;PEM (P, ... ,Pn)}<sup {JpdP;, PEM(Q,, ... ,Qn)}

for p satisfying A), B) and Q; € M' (R*, B'), 1 <i<n,if F;' <G[',1<i<n
where F o Gi are the distribution functions of Pi’ Qi’ 1<i<n

Remark: The results of this paper can be generalized partially to more general spaces
using results of Luxemburg [1967] on ‘adequate’ measure spaces.
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