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Abstract

Sharp tail bounds for the sum of d random variables with given marginal dis-
tributions and arbitrary dependence structure are known from Makarov [4] and
Rüschendorf [9] for d = 2 and, in some examples, for d ≥ 3. In the homogeneous
case F1 = · · · = Fn with monotone density sharp bounds were found in Wang and
Wang [11]. In this paper we derive sharp bounds for the tail risk of joint portfolios
in the homogeneous case under general conditions which include in particular the
case of monotone densities and concave densities. It turns out that the dual bounds
of Embrechts and Puccetti [1] are sharp under our conditions.
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AMS 2010 Subject Classification: 60E05, 91B30

1 Introduction
For a risk vector X = (X1, . . . , Xd), d ≥ 2, we consider the problem to find sharp
bounds for the tail probability of the sum S =

∑d
i=1 Xi under the condition that the

marginal distribution functions Fi of Xi are known but the dependence structure of X
is completely unknown. Denoting by F(F1, . . . , Fd) the Fréchet class of all joint distri-
bution functions on Rd with marginal distribution functions Fi, we study the problem
to determine

M(s) = sup {P(X1 + · · · + Xd ≥ s); FX ∈ F(F1, . . . , Fd)} . (1.1)

The problem of obtaining tail bounds as in (1.1) is relevant in quantitative risk man-
agement since bounds for the distribution and for the tail risk of the joint portfolio are
needed to compute bounds risk measures live the value-at-risk for regulatory purposes.
For the motivation of this problem, we refer to [2]. A survey of the various approaches
and literature of recent results on this problem is given in [5]. Sharp tail bounds for
d = 2 were given independently in [4] and [9]. For any s ∈ R, we have

sup {P(X1 + X2 ≥ s) : Xi ∼ Fi} = inf
x∈R

{
F1(x−) + F2(s − x)

}
, (1.2)

where F i(x) = 1 − Fi(x) = P(X1 > x) and F1(x−) = P(X1 ≥ x). For the case d ≥ 3, [1]
give an upper bound for the tail probability in the homogeneous case F1 = · · · = Fd =
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F based on the following duality result (see [8, Theorem 5] and [3]). We denote by
1(A) the indicator function of the set A. For notational simplicity, we write for instance
1(x ≥ 0) instead of 1({x ≥ 0}).

Theorem 1.1 (Duality theorem) In the homogeneous case Fi = F, 1 ≤ i ≤ d, we have
that:

1. Problem (1.1) has the following dual representation:

M(s) = inf
{

d
∫

g(x) dF(x) : g ∈ D(s)
}
, (1.3)

where

D(s) =

g : R→ R; g bounded,
d∑

i=1

g(xi) ≥ 1

 d∑
i=1

xi ≥ s

 for x1, . . . , xd ∈ R

 .
An optimal dual solution g∗ ∈ D(s) such that M(s) = d

∫
g∗ dF exists.

2. A random vector X∗ with distribution FX∗ ∈ F(F, . . . , F) is a solution of
M(s) = P(

∑d
i=1 X∗i ≥ s) if and only if there exists an admissible function g∗ ∈

D(s) such that

P

 d∑
i=1

g∗(X∗i ) = 1

 d∑
i=1

X∗i ≥ s


 = 1. (1.4)

A simple compactness argument shows that the sup in (1.1) is attained and any
solution X∗ such that M(s) = P(

∑d
i=1 X∗i ≥ s) is called an optimal coupling.

[1] introduce the following class of piecewise-linear functions defined, for t < s/d, as

gt(x) :=


0, if x < t,
x−t
s−dt if t ≤ x ≤ s − (d − 1)t,
1, otherwise.

(1.5)

They establish that gt are admissible, that is gt ∈ D(s), and define the so-called dual
bound D(s) as

D(s) = inf
t<s/d

(
d
∫

gt dF
)

= d inf
t<s/d

min


∫ s−(d−1)t

t F(x) dx

s − dt
, 1

 . (1.6)

In the homogeneous case Fi = F, 1 ≤ i ≤ d, the admissibility of the function gt implies
that

M(s) ≤ D(s), s ∈ R.

The dual bound D(s) is numerically easy to evaluate independently of the size d of the
portfolio X. Based on the results of a numerical algorithm, sharpness of the dual bound
(M(s) = D(s)) was conjectured in [6]. In a recent work of [11] and [10] based on the
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concept of complete mixability, optimal couplings X∗ for problem (1.1) were found for
the class of distribution functions F with monotone densities.

In this paper we derive sharp bounds for the tail of sums in the homogeneous case
posing an attainment, a mixing and an ordering condition (see (A1)– (A3) below).
Our main result implies sharpness of the dual bounds of [1] under these conditions. It
implies in particular the results of [11], resp. [10] in the case of monotone densities and
gives a strongly simplified proof. It also implies sharp bounds for further cases like the
case of concave densities and for distributions which are typically used in quantitative
risk management. In addition to the results stated in the above mentioned papers, we
not only derive the optimal couplings but also give an effective method to calculate the
sharp bounds.

The proofs of our main results (Proposition 2.3 and Proposition 2.4 below) are
based on the complete mixability of the optimal dual function g∗, more precisely of
g∗(Xi). Therefore, we start with a summary of results on completely mixable distribu-
tions, used frequently in the remainder of the paper.

1.1 Some preliminaries on complete mixability
The following results on complete mixability can be found in [11] and references
therein.

Definition 1.2 A distribution function F on R is called d-completely mixable (d-CM)
if there exist d random variables X1, . . . , Xd identically distributed as F such that

P(X1 + · · · + Xd = dµ) = 1, (1.7)

for some µ ∈ R. Any such µ is called a center of F and any vector (X1, . . . , Xd) satisfy-
ing (1.7) with Xi ∼ F, 1 ≤ i ≤ n, is called a d-complete mix.

If F is d-CM and has finite mean, then its center is unique and equal to its mean.

Definition 1.3 If X has distribution F, we say that F is d-CM on the interval A ⊂ R if
the conditional distribution of (X|X ∈ A) is d-CM.

Theorem 1.4 The following statements hold.

1. The convex sum of d-CM distributions with center µ is d-CM with center µ.

2. Any linear transformation L(x) = mx + q of a d-CM distribution with center µ is
d-CM with center mµ + q.

3. The Binomial distribution B(n, p/q), p, q ∈ N is q-CM.

4. Suppose F is a distribution on the real interval [a, b], a = F−1(0) and b = F−1(1),
having mean µ. A necessary condition for F to be d-CM is that

a + (b − a)/d ≤ µ ≤ b − (b − a)/d. (1.8)

5. If F is continuous with a monotone density on [a, b], then condition (1.8) is
sufficient for F to be d-CM.
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2 Sharpness of dual bounds
In our main result, we state some general conditions which imply that, if the infimum
in (1.6) is attained at t = a < s/d, the dual bound

D(s) = inf
t<s/d

d
∫

gt dF = d
∫

ga dF

is sharp, that is D(s) = M(s). The proof uses the following property of optimal cou-
plings (see Proposition 3(c) in [9]).

Theorem 2.1 For any marginal distribution F there exists an optimal coupling X∗ with
distribution FX∗ ∈ F(F, . . . , F) such that M(s) = P

(∑d
i=1 X∗i ≥ s

)
and for any such X∗

we have{
X∗i > F−1(1 − M(s))

}
⊂

 d∑
i=1

X∗i ≥ s

 ⊂ {
X∗i ≥ F−1(1 − M(s))

}
a.s.. (2.1)

In case F is continuous, one gets that d∑
i=1

X∗i ≥ s

 =
{
X∗i ≥ F−1(1 − M(s))

}
a.s..

Theorem 2.1 allows to reduce the class of admissible functions D(s) in Theorem 1.1.
First, note that any g ∈ D(s) has to be nonnegative since

d g(x) ≥ 1(x ≥ s/d) ≥ 0.

Then, combining point 2. in Theorem 1.1 with Theorem 2.1, we obtain that, if g∗ ∈
D(s) is an optimal choice for (1.3), then

P

 d∑
i=1

g∗(X∗i ) = 0
∣∣∣∣∣ d∑

i=1

X∗i < s

 = P

 d∑
i=1

g∗(X∗i ) = 0
∣∣∣∣∣ X∗i < a∗

 = 1, (2.2)

where the second equality in the above equation follows from (2.1) with a∗ = F−1(1 −
M(s)). Since g∗ is non-negative, we conclude from (2.2) that

P
(
g∗(X∗i ) = 0

∣∣∣∣∣ X∗i < a∗
)

= 1, 1 ≤ i ≤ d. (2.3)

As a consequence, any optimal dual choice g∗ is a.s. zero on the interval (−∞, a∗). This
means that, in order to solve problem (1.3), it is sufficient to determine the behavior
of an optimal function g∗ above the threshold a∗. This behavior is illustrated by the
following theorem.

Theorem 2.2 Let a∗ = F−1(1 − M(s)). A random vector X∗ with distribution FX∗ ∈

F(F, . . . , F) is a solution of M(s) = P(
∑d

i=1 X∗i ≥ s) if and only if there exists an
admissible function g∗ ∈ D(s) such that the conditional distribution of(

g∗(X1)
∣∣∣ X1 ≥ a∗

)
, 1 ≤ i ≤ d,

is d-CM with center µ = 1/d.
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Proof. Assume that X∗ and g∗ are an optimal coupling and, respectively, an optimal
dual function for. By (2.3), we can assume that any g∗ ∈ D(s) is zero below the
threshold a∗. Using (1.4) and (2.1) similarly as in (2.2), we obtain that g∗ ∈ D is an
optimal choice for (1.3) if and only if

P

 d∑
i=1

g∗(X∗i ) = 1
∣∣∣∣∣ d∑

i=1

X∗i ≥ s

 = P

 d∑
i=1

g∗(X∗i ) = 1
∣∣∣∣∣ X∗i ≥ a∗

 = 1, (2.4)

for 1 ≤ i ≤ d. �

We are now ready to prove the sharpness of the dual bound D(s) defined in (1.6).
We obtain this result in two steps. First, in Proposition 2.3 we state the complete
mixability of the dual function gt (see (1.5)) above a certain threshold a∗ and for a
suitable choice of the parameter t = a. Then, in Proposition 2.4, we show that a∗ =

M−1(s), hence obtaining the optimality of ga.

Proposition 2.3 In the homogeneous case Fi = F, 1 ≤ i ≤ d, with d ≥ 3, let F be a
continuous distribution and let X1 have distribution F. For a real threshold s, suppose
that it is possible to find a real value a < s/d such that

D(s) = inf
t<s/d

d
∫ s−(d−1)t

t F(x)dx

(s − dt)
=

d
∫ b

a F(x)dx

(b − a)
, (A1)

where b = s − (d − 1)a, with a∗ = F−1(1 − D(s)) ≤ a. Suppose also that

the conditional distribution of (X1|X1 ≥ a∗) is d-CM on (a, b). (A2)

Then:

(i) The conditional distribution H of (ga(X1)|X1 ≥ a∗) is d-CM with center µ = 1/d.

(ii) We have that
M(s) ≤ F(a∗) = F(a) + (d − 1)F(b). (2.5)

Proof. (i) First order conditions on the argument of the infimum in (A1) at t = a imply
that

d
∫ b

a F(x)dx

(b − a)
= F(a) + (d − 1)F(b). (2.6)

Therefore, a∗ ≤ a satisfies

F(a∗) = D(s) =
d
∫ b

a F(x)dx

(b − a)
= F(a) + (d − 1)F(b). (2.7)

Let Ya∗
d
= (X1|X1 ≥ a∗). We have to show that the distribution H of ga(Ya∗ ) is d-

CM. From the definition (1.5) of the linear functions gt, t < s/d, it follows that H
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is the convex sum of a continuous distribution G1 on (0, 1) and of a discrete dis-
tribution G2 on {0, 1}. Formally, if we denote by G1 the conditional distribution of(
ga(Ya∗ )

∣∣∣ Ya∗ ∈ (a, b)
)
, and we define the distribution G2 as

G2(x) =
p1

p1 + p3
1(x ≥ 0) +

p3

p1 + p3
1(x ≥ 1),

we can write H as
H = p2G1 + (p1 + p3)G2,

where p1 = P(Ya∗ ≤ a), p2 = P(a < Ya∗ ≤ b), and p3 = 1 − p2 − p1 = P(Ya∗ > b). Note
that G1 is the distribution of a linear transformation of the random variable Ya∗ on the
interval (a, b). Using the assumption of complete mixability of the distribution of Ya∗

on (a, b) and point 5. in Theorem 1.4, it follows that G1 is d-CM with center given by

∫
x dG1(x) =

∫ b

a

(x − a)dF(x)

(b − a)(F(a) − F(b))
dx =

∫ b
a F(x)dx

(b−a) − F(b)

F(a) − F(b)
= 1/d. (2.8)

Similarly, the mean of G2 is given by∫
x dG2(x) =

p3

p1 + p3
=

F(b)

F(b) + F(a∗) − F(a)
= 1/d. (2.9)

In the above equations (2.8) and (2.9), the last equalities follow from (2.7). Note that
the distribution G2 is a Binomial B(1, 1/d). By point 3. in Theorem 1.4, also G2 is d-
CM with center 1/d. The distribution H is then the convex combination of two d-CM
distributions with the same center. Thus, by point 1. in Theorem 1.4, H is d-CM with
center 1/d.
(ii) Inequality (2.5) is a direct consequence of the fact that ga ∈ D(s). Thus

M(s) ≤ d
∫

ga dF =
d
∫ b

a F(x)dx

(b − a)
= F(a) + (d − 1)F(b),

where, in the above equation, the last equality follows from (2.6). �

Postulating the optimality of the the dual function ga, it is possible to find a candi-
date for the optimal coupling in (1.1). The complete mixability of the distribution of
Ya∗ on the interval (a, b) implies that there exist random variables Y1, . . . ,Yd identically
distributed as Ya∗ such that their sum is constant when one of them lies in (a, b). More-
over, using the complete mixability of the distribution of the random variable ga(Ya∗ )
on the set {0, 1}, it is possible to construct random variables Y1, . . . ,Yd identically dis-
tributed as Ya∗ such that

P

⋂
i, j

{Yi ≤ a}
∣∣∣∣∣ Y j > b

 = 1.

It turns out that a random vector satisfying the properties listed above is optimal under
an extra ordering assumption.
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Proposition 2.4 Under the assumptions of Proposition 2.3, suppose that

(d − 1) (F(y) − F(b)) ≤ F(a) − F
( s − y
d − 1

)
, (A3)

for all y ≥ b. Then, there exist a random vector X∗ with distribution FX∗ ∈ F(F, . . . , F)
for which

P

 d∑
i=1

X∗i ≥ s

 = F(a∗).

Proof. For a∗ satisfying (A1), denote by Fa∗ (x) = (F(x)− F(a∗))/F(a∗) the distribution
of the random variable Ya∗

d
= (X1|X1 ≥ a∗). We show that there exist a random vector

Y = (Y1, . . . ,Yd) with distribution FY ∈ F(Fa∗ , . . . , Fa∗ ) for which

P

 d∑
i=1

Yi ≥ s

 = 1. (2.10)

This will imply the existence of a vector X∗ such that P
(∑d

i=1 X∗i ≥ s
)

= F(a∗). For
instance, X∗ can be defined as

X∗ = (X1, . . . , X1) 1
(
∪d

i=1{Xi ≤ a∗}
)

+ Y 1
(
∩d

i=1{Xi > a∗}
)
.

We define the vector Y = (Y1, . . . ,Yd) with distribution FY ∈ F(Fa∗ , . . . , Fa∗ ) as fol-
lows:

(a) When one of the Yi’s lies in the interval (a, b), then all the Yi’s lie in (a, b) and

P
(
Y1 + · · · + Yd = s

∣∣∣∣∣ Yi ∈ (a, b)
)

= 1;

(b) For all 1 ≤ i ≤ d, we have that

P
(
Y j = F−1

a∗
(
(d − 1)Fa∗ (Yi)

) ∣∣∣∣∣ Yi ≥ b
)

= 1, for all j , i.

First, we note that a random vector Y with properties (a) and (b) exists. From the
mixing condition (A2), the distribution Fa∗ is completely mixable on the interval (a, b).
Using linearity of the function ga in the interval (a, b) and (2.8), it is easy to see that
the conditional distribution of (Ya∗ |Ya∗ ∈ (a, b)) has mean∫ b

a x dF(x)

F(b) − F(a)
= s/d.

Therefore, there exists a vector Y having marginals Fa∗ and satisfying property (a).
From (2.7), it follows that F−1

a∗
(
(d − 1)Fa∗ (b)

)
= a. From property (b), we obtain that

P
(
Y j ≤ a

∣∣∣∣∣ Yi ≥ b
)

= 1, for all j , i.
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Consequently, the properties (a) and (b) describe the behavior of the vector Y in disjoint
and complementary sets of Rd. It is straightforward to see that property (b) is coherent
with the fact that the Yi’s are identically distributed as Fa∗ .

As
∑d

i=1 Yi = s a.s. when all the Yi’s lie in the interval (a, b), in order to prove (2.10)
it remains to show that

∑d
i=1 Yi ≥ s when one of the Yi’s is larger than b. To this aim,

we define the function ψ : [b,+∞)→ R as

ψ(y) = y + (d − 1)F−1
a∗

(
(d − 1)Fa∗ (y)

)
. (2.11)

Note that ψ(y) ≥ s if and only if

(d − 1)Fa∗ (y) ≥ Fa∗

( s − y
d − 1

)
.

Expressing the above equation in terms of F, and using (2.5), we obtain that ψ(y) ≥
s, y ≥ b, is equivalent to condition (A3). �

As a corollary of Proposition 2.3 and Proposition 2.4, we now state the main result
of our paper.

Theorem 2.5 (Sharpness of dual bounds) Under the attainment formula (A1), the
mixing condition (A2) and the ordering condition (A3), the dual bounds are sharp,
that is

M(s) = D(s) = inf
t<s/d

d
∫ s−(d−1)t

t F(x)dx

(s − dt)
=

d
∫ b

a F(x)dx

(b − a)
.

Proof. From Proposition 2.3 and Proposition 2.4, we obtain that M(s) = F(a∗) and
that the conditional distribution of (ga(X1)|X1 > a∗) is d-CM with center µ = 1/d.
By Theorem 2.2, the function ga is then a solution of the dual problem in (1.3) and,
therefore

M(s) = d
∫

ga dF =
d
∫ b

a F(x)dx

(b − a)
= inf

t<s/d

d
∫ s−(d−1)t

t F(x)dx

(s − dt)
= D(s). �

Remark 2.6 1. (Monotone densities) All continuous distribution functions F hav-
ing a positive and decreasing density f on the unbounded interval (a∗,+∞) sat-
isfy the assumption (A2) and (A3). In this case, the conditional distribution of
(Ya∗ |Ya∗ ∈ (a, b)) inherits a decreasing density from F and has mean µ = s/d.
By point 5. in Theorem 1.4, the distribution of the random variable Ya∗ is then
d-CM on (a, b). Moreover, if F is continuous with a decreasing density, then F
is concave and F−1 is differentiable and convex. Then, the function ψ defined
in (2.11) turns out to be convex and

ψ(b) = b + (d− 1)F−1
a∗

(
(d− 1)Fa∗ (b)

)
= b + (d− 1)a = s− (d− 1)a + (d− 1)a = s.

(2.12)
Differentiating ψ on a right neighborhood of b, we obtain

ψ′+(b) = 1 − (d − 1)2 f (b)
f (a)

.
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If F also satisfies the attainment condition (A1), second order conditions on the
argument of the infimum in (A1) at t = a imply that

f (a) − (d − 1)2 f (b) ≥ 0, (2.13)

that is ψ′+(1−c) ≥ 0. Convexity of ψ and (2.12) finally imply that ψ(x) ≥ s for all
x ≥ b. In consequence, Theorem 2.5 implies as particular case the results in [11]
and [10] for the case of monotone decreasing densities. The couplings used in
the proof of Proposition 2.4 are of a similar form as in [10] in this case. In our
paper we obtain a motivation for the structure of the optimal coupling and for the
mixing from the duality characterization of optimal couplings in Theorem 2.2.
Also equation (2.7) gives us an useful clue to the calculation of the sharp bound.

2. (Monotonicity in the tail) As a consequence of the remark above, sharpness of
the dual bound D(s) can be stated, for s large enough, for all continuous, un-
bounded distribution functions which have a ultimately decreasing density. This
is particularly useful in applications of quantitative risk management, where
sharp bounds M(s) are typically calculated for high thresholds s and positive,
unbounded and continuous distributions F. In particular, the Pareto distribution
F(x) = 1 − (1 + x)−θ, x > 0, with tail parameter θ > 0, satisfies the assump-
tions (A1)–(A3) for all s ∈ R at which D(s) < 1. As a consequence, the bounds
in Section 5.2 in [1] are sharp. We will give some numerical examples regarding
the Pareto and other types of distributions in Section 3.

3. (Concave densities) All continuous distribution functions F having a concave
density f on the interval (a, b) satisfy the mixing assumption (A2). This result
follows from Theorem 4.3 in [7]. In order to obtain sharpness of the dual bound
D(s) for these distributions, conditions (A1) and (A3) has to be checked numer-
ically. In Proposition 2.7 below, we give an equivalent formulation of (A3) in
terms of stochastic order.

4. (d = 2) When d = 2, condition (A1) is typically not satisfied at a point a < s/d.
For the sum of two random variables, the sharp bound (1.2) is obtained by an
optimal dual function which is the average of indicator functions. In some cases
(see Section 4 in [1]) it is possible that the sharp bound is still given by the dual
bound D(s) for d = 2, but the infimum in (1.6) is not attained.

5. (Lower tails) The sharp bound M(s) for the upper tail of the sum S =
∑d

i=1 Xi

can be used to get sharp bounds for the lower tail of S , i.e. for

m(s) = sup

P

 d∑
i=1

Xi ≤ s

 ; FX ∈ F(F, . . . , F)

 , (2.14)

by switching the sign of the Xi’s.

We conclude this section by giving an equivalent formulation of condition (A3) in
terms of stochastic ordering. Define the distribution functions F1 and F2 as

F1(y) =
F

(
s−y
d−1

)
− F(a)

F(a∗) − F(a)
and F2(y) =

F(b) − F(y)

F(b)
, for y ≥ b.
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Proposition 2.7 Under the assumption of Proposition 2.3, inequality (A3) holds if and
only if F2(y) ≤ F1(y) for all y ≥ b, that is if and only if F2 is stochastically larger than
F1 (F1 ≤st F2).

Proof. Using (2.7), the proposition immediately follows by noting that F2(y) ≤ F1(y),
y ≥ b is equivalent to

F(b) − F(y)

F(b)
≥

F
(

s−y
d−1

)
− F(a)

F(a∗) − F(a)
=

F
(

s−y
d−1

)
− F(a)

(d − 1)F(b)
,

which is equivalent to (A3). �

Remark 2.8 We remark the following points about Proposition 2.7.

1. If F has a density f , then by a well known condition stochastic ordering F1 ≤st
F2 is implied by the monotone likelihood ratio criterion for their densities stating
that that f2/ f1 is increasing or, equivalently, that

f (y)

f
(

s−y
d−1

) is increasing in y, for y ≥ b. (2.15)

This condition allows to be checked in examples.

2. For distributions with monotone densities, condition (A3) holds true. In several
examples of non-monotone densities we found that condition (A3), resp. (2.15),
is satisfied; see Section 3.

3 Applications and numerical verifications
Equation (2.6) provides a clue to calculate the basic point a and, hence, the dual bound
D(s). Having calculated a, one can easily check the second order condition (2.13)
which is necessary to guarantee that a is a point of minimum for (A1). At this point, the
sharpness of the dual bound D(s) can be obtained from different sets of assumptions:

• If F has a positive and decreasing density f on (a∗,+∞), then the mixing condi-
tion (A2) and the ordering condition (A3) are satisfied and the dual bound D(s)
is sharp; see point 1. in Remark 2.6.

• If F has a concave density f on (a, b), then the the mixing condition (A2) is
satisfied (see point 3. in Remark 2.6) and one has only to check the ordering
condition (A3) to get sharpness of dual bounds. This can be done numerically or
by using the increasing densities quotient as indicated in point 1. in Remark 2.8.

These two sets of assumptions cover the distribution functions F typically used in appli-
cations of quantitative risk management. In the following, we provide some illustrative
examples in which sharpness of dual bounds holds.

In Figure 1, we plot the dual bound D(s) in (1.6) for a random vector X of d = 3
Pareto(2)-distributed risks. In the same figure, we also provide numerical values for
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the sharp bounds M(s), at some thresholds s of interest. These values have been calcu-
lated using the rearrangement algorithm introduced in [6]. In Figure 2- 3, we plot the
dual bound D(s) in (1.6) for a random vector X of d = 3 LogNormal(2,1)- and, respec-
tively, Gamma(3,1)-distributed risks, with numerical values for the sharp bounds M(s).
Finally, in Figure 4, we plot the dual bound D(s) in (1.6) for a random vector X of
d = 1000 Pareto(2)-distributed risks. For high dimensionality d > 30, the computation
of the numerical values for M(s) is not possible via the rearrangement algorithm intro-
duced in [6]. In the homogeneous case, the dual bound methodology is the only way to
obtain sharp bounds M(s) for high dimensional vectors of risks. At this point, it is im-
portant to remark that the computation of the dual bound M(s) is completely analytical
and based on the solution of a one-dimensional equation. Therefore, all the analytical
curves in the above figures can be obtained within seconds and this independently of
the dimension d of the vector X.
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Figure 1: Dual bounds D(s) (see (1.6)), for the sum of d = 3 Pareto(2)-distributed risks.
Numerical values for the sharp bounds M(s) are also provided at some thresholds s of
interest.
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Figure 2: Dual bounds D(s) (see (1.6)), for the sum of d = 3 LogNormal(2, 1)-
distributed risks. Numerical values for the sharp bounds M(s) are also provided at
some thresholds s of interest.

12



20 30 40 50

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

s

 

dual bound (analytical)
sharp bound (numerical)

Figure 3: Dual bounds D(s) (see (1.6)) for the sum of d = 3 Gamma(3, 1)-distributed
risks. Numerical values for the sharp bounds M(s) are also provided at some thresholds
s of interest.
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Figure 4: Dual bounds D(s) (see (1.6)), for the sum of d = 1000 Pareto(2)-distributed
risks.
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