
PROPAGATION OF CHAOS ANDCONTRACTION OF STOCHASTICMAPPINGS�S. T. RachevUniversity of CaliforniaSanta Barbara L. R�uschendorfUniversity of FreiburgAbstractIn this paper we use contraction properties of stochastic mappings withrespect to suitable chosen metrics in order to establish some new examplesof propagation of chaos. In particular systems of SDE's with mean �eld typeinteractions and the corresponding nonlinear SDE's of Mc Kean-Vlasov typefor the limiting cases are considered. We also study the rate of convergenceto the limit. Assumptions on the smoothness and growth properties of thecoe�cients of the SDE's are to be reected in the choice of the probabiliymetric in order to obtain contraction properties. This allows us in particularto investigate some new kinds of interactions as well as to consider systemswith weakened Lipschitz assumptions.1 IntroductionThe idea of propagation of chaos due to Kac was to study the relation between simplemarkovian models of interacting particles and nonlinear Boltzmann type equations.For a detailed introduction to the propagation theory we refer to Sznitman (1989).A formal de�nition is the following. Let (uN) be a sequence of symmetric probabilitymeasures on EN ; E a separable metric space, and let u be a probability on E, then(uN ) is called u-chaotic, if �k un w�! u(k); �k the k-marginal distribution, u(k) thek-fold product, and w�! denotes the weak convergence.A basic example for chaotic sequences is McKean's Interacting Di�usion (cf. thelaboratory example in Sznitman (1989), p. 172), cf. for this and related examplesalso [16], [2], [13], [14], [15], [5], [6]. Consider a system of interacting di�usions:dX i;Nt = dW it + 1N NXj=1 b(X i;Nt ;Xj;Nt )dt; i = 1; : : : ; N (1.1)X i;No = xio;�This work is supported in part by a NSF Grant, a DFG Grant and Nato Grant CRG 9007981



where W i are independent Brownian motions and b satis�es a bounded Lipschitzcondition. Let uN denote the distribution of (X1;N ; : : : ;XN;N). The nonlinear limi-ting equation is given by the Mc Kean-Vlasov equationdXt = dBt + Z b(Xt; y)ut(dy)dt; (1.2)Bt a Brownian motion, ut the distribution of Xt. Then uN is u-chaotic, where u isthe distribution of X on C(IR+; IRd).An alternative example of chaotic behavior of particles, not described by SDE's,are uniform distributions on p-spheres. Let uN denote the uniform distribution onthe p-sphere of radius N in IRN+ i.e. on Sp;N := fx 2 IRN+ ; �xpi = Ng and let udenote the probability measure on IR+ with density fp(x) = p1�1=p�(1=p)e�xp=p; x � 0.Then for N > k + p, and k and N big enoughk�kuN � u(k)k � 2(k + p) + 1N � k � p ; (1.3)where k k denotes the total variation distance (cf. [9]). In particular we obtain thatuN is u-chaotic. This example has its origin in Poincare's theorem on the asym-ptotic behaviour of particle systems. More general examples of this kind have beendeveloped in statistical physics in connection with the \equivalence of ensembles"in many papers but typically without a quantitative estimate as in (1.3).The main goal of this paper is the study of the propagation of chaos of severalmodi�cations of McKean's example concerning the form of the interaction and theregularity assumptions on the coe�cients. To this end we introduce suitable proba-bility metrics allowing to derive contraction properties of the stochastic equationsde�ned by the corresponding Liouville type equatons. Dobrushin (1979) introducedthe use of the Kantorovich metric for the interacting di�usions in example (1.1),(1.2). The success of this metric is based on a coupling argument inherent in itsde�nition. This metric has been applied since then in several other papers (cf. [14],[15], [5], [6]). For our modi�cations of this example we shall need some variants ofthe Kantorovich metric giving the suitable regularity and ideality properties for theequations considered. In particular we need metrics which are of higher order idealwhen relaxing the Lipschitz conditions in equations (1.1), (1.2). Our modi�cationsof the form of interactions allow to treat much more complicated forms of interac-tions as in McKean's example. In particular we consider nonlinear interactions viasome general energy function as e.g. the p-norm of the vector of all pair interac-tions. We also consider interactions with the other particles over the whole past(history) of the process, describing some non-Markovian systems. We demonstratethe exibility of the approach based on suitable probability metrics to cope also withnonstandard forms of interactions and develop in some examples the tools to analysethese models indicating the applicability of this method also to more complicatedreal physical systems. 2



2 Equations With p-Norm Interacting DriftsConsider the system of N interacting di�usions with p-th norm interacting drifts,i.e. the drift is given by the p-th norm of the vector of all pair interactions, whichcan be considered as driving force in the system.dX i;Nt = dW it + f 1N NXj=1 bp(X i;Nt ;Xj;Nt )g1=pdt (2.1)X i;No = X io; 1 � i � N;b � 0; p � 1: ((W it );X io) are independent identically distributed for all i.) We shallestablish that each X i;N has a natural limit �X i, where ( �X i) are independent copiesof the solutions of a nonlinear equation� dXt = dBt + (R b(Xt; y)p ut(dy))1=pdtXt=0 = X (2.2)with B d= W 1 a process on CT ; ut = PXt . In order to obtain the necessary contrac-tion properties of these equations we consider the L�p resp. the minimal L�p-metric `�pde�ned for processes X;Y (resp. probability measures m1;m2 2M1(CT ), here andin the following M1(CT ) denotes the class of all probability distributions on CT , byL�p;t(X;Y ) = (E sups�t jXs � Ysjp)1=p (2.3)and `�p;t(m1;m2) = inffL�p;t(X;Y ); X d= m1; Y d= m2g: (2.4)In (2.4) we tacitly assumed that the probability space is rich enough to support allpossible couplings of m1;m2, which is true, for example, in case of atomless spaces.De�ne for mo 2M1(CT )Mp(CT ;mo) := fm1 2M1(CT ); `�p;T (mo;m1) <1g; (2.5)Xp(CT ;mo) the class of processes on CT with distribution m 2Mp(CT ;mo).For mo = �a the one-point measure in a 2 CT , this is the class of all distributionson CT with �nite p-th moment of the norm. For m 2 Mp(CT ;mo) consider theLiouville type equation corresponding to (2.2)Xt = Bt + Z t0 (ZCT b(Xs; ys)p dm(y))1=pds; (2.6)where ys is the value of y at time s. Let (Bt) be a real valued process on CT = C[0; T ]with �nite p-th absolute moment (E sups�T jBsjp <1) and let b � 0 be a Lipschitzfunction in x jb(x1; y)� b(x2; y)j � cjx1 � x2j: (2.7)A strong solution of the SDE (2.6) means as usual a solution measurable w.r.t. theaugmented �ltration of the process (Bt); in constrast a weak solution of (2.6) is asolution on a suitable �ltered space in distribution.3



Lemma 2.1 Assume (2.7) and let R (R b(0; ys)p dm(y))1=pds <1, then:(a) Equation (2.6) has a unique strong solution X.(b) If �(m) is the law of X, then �(m) 2Mp(CT ;mo), that is,� : Mp(CT ;mo)!Mp(CT ;mo).Proof: Let X 2 Xp(CT ;mo) and de�ne(SX)t := Bt + Z t0 (Z b(Xs; ys)p dm(y))1=pds:Then for Y 2 Xp(CT ;mo)j(SX)t � (SY )tj � Z t0 dsj(Z b(Xs; ys)p dm(y))1=p� (Z b(Ys; y)p dm(y))1=pj� Z t0 (Z jb(Xs; ys)� b(Ys; ys)jp dm(y))1=p ds� cZ t0 jXs � Ysjds:This implies sups�t j(SX)s � (SY )sj � cZ t0 supu�s jXu � Yujdsand, furthermore,L�p;t(SX;SY ) = (E sups�t j(SX)s � (SY )sjp)1=p� c(E(Z t0 supu�s jXu � Yujds)p)1=p� cZ t0 L�p;s(X;Y )ds:De�ne inductively, X0 := B; Xn := SXn�1, then by iterationL�p;T (Xn;Xn�1) � cnT nn! L�p;T (X1;X0):SinceL�p;T (X1;X0) � c0 Z T0 [EjBsjp + Z b(0; ys)p dm(y)]1=p ds� c0 Z T0 (E supu�s jBujp)1=p ds + c0 Z T0 (Z b(0; ys)p dm(y))1=p ds� c0T (E sups�T jBsjp)1=p + c0 Z T0 (Z b(0; ys)p dm(y))1=p ds;4



we obtain from the assumptions on B and b that L�p;T (X1;X0) <1. Consequently,P1n=1 L�p;T (Xn;Xn�1) � ecT L�p;T (X1;X0) < 1 by the Gronwall Lemma. This re-sults in P1n=1 sups�T jXns �Xn�1s j < 1 a.s. and, therefore, Xn converges to someprocess X a.s., uniformly on bounded intervals. X is a.s. continuous, has �nitep-th moments (i.e. kXk�p;t := E sups�t jXsjp < 1) and is a �xed point of S. So,�(m) = PX 2Mp(CT ;mo); this holds as kBk�p;T <1 and L�p;T (X;B) <1. 2In addition suppose that b is Lipschitz in both arguments,jb(x1; y1)� b(x2; y2)j � c[jx1 � y1j+ jx2 � y2j] (2.8)and consider the map � : Mp(CT ;mo)!Mp(CT ;mo).Lemma 2.2 (Contraction of � w.r.t. `�p;t)Under (2.8) and the assumptions of Lemma 2.1, for t � T and m1;m2 2Mp(CT ;mo),it holds: `�p;t(�(m1);�(m2)) � cect Z t0 `�p;u(m1;m2)du: (2.9)Proof: Let for i = 1; 2 and t � TX(i)t = Bt + Z t0 (ZCT b(X(i)s ; ys)p dmi(y))1=p dsand let m 2M1(m1;m2), the class of probability measures on CT �CT with margi-nals m1;m2. Thensups�t jX(1)s �X(2)s j � Z t0 dsj[ZCT b(X(1)s ; y(1)s )p dm1(y(1))]1=p�[ZCT b(X(2)s ; y(2)s )p dm2(y(2))]1=pj� Z t0 ds[ZCT�CT jb(X(1)s ; y(1)s )� b(X(2)s ; y(2)s )jp dm(y(1); y(2))]1=p� cZ t0 dsfjX(1)s �X(2)s j+ [Z jy(1)s � y(2)s jp dm(y(1); y(2))]1=pg:Minimizing the RHS with respect to the coupling m we obtainsups�t jX(1)s �X(2)s j � cZ t0 ds supu�s jX(1)u �X(2)u j+ cZ t0 ds`�p;s(m1;m2): (2.10)Consequently, by Gronwall's lemma,sups�t jX(1)s �X(2)s j � c ect Z t0 `�p;s(m1;m2)ds; (2.11)which proves the lemma, passing to the p-th norm in the LHS of (2.11), and thento `�p;t. 25



Theorem 2.3 Under (2.8) and R T0 (R b(0; ys)p dmo(y))1=p ds < 1, equation (2.2)has a unique weak and strong solution in Xp(CT ;mo).Proof: From Lemma 2.2 we obtain for m 2Mp(CT ;mo)`�p;T (�k+1(m);�k(m)) � ckT T kk! `�p;T (�(m);m) (cT = c ecT )� ckT T kk! (`�p;T (�(m);mo) + `�p;T (m;mo)) <1:Consequently, (�k(m)) is a Cauchy-sequence in (CT ; `�p;T ) and converges to a �xedpoint of �. Let Xk+1; Xk denotes the couplings of �k+1(m); �k(m) correspondingto the iteration, then by (2.9) we have that L�p;T (Xk+1;Xk) � ckT T kk! `�p;T (�(m);m)and, therefore, we get a unique strong solution with �nite p-th moment. 2Remark 1.(a) While the Liouville equation in Lemma 2.1 can be handled with the L1-metric,in Lemma 2.2 we only obtain a contraction w.r.t. the minimal `p-metric `�p;T(cf. equation (2.9) in this respect).(b) The result of Theorem 2.3 can be extended to the case p =1, using the metricL�1;T (X;Y ) = ess sup sups�T jXs � Ysj (2.12)and the corresponding minimal metric`�1;T (m1;m2) = inffL�1;T (X;Y ); X d= m1; Y d= m2g: (2.13)Again the equation Xt = Bt + Z t0 ess supus(dy) b(Xs; y)ds (2.14)has a unique solution inM1(CT ;mo) ifB is a.s. bounded, i.e. ess sups�T jBsj <1.(c) Several extensions of equation (2.2) can be handled in a similar way, as forexample Xt = Bt + Z t0 (Z b(Xs; y)p u(k)s (dy))1=p ds; (2.15)where u(k)s ) =Nki=1 PXs stands for the k-fold product of us and y = (y1; : : : ; yk) 2IRk. More generally b = b(s; x; y) could depend upon s and the past of theprocess y = (yu)u�s. In this case us has to be replaced by u(s) := P (Xu)u�s thedistribution of the past, and we have to assume a functional Lipschitz condi-tion on b. In a similar way we can handle also the d-dimensional case. 26



Based on Theorem 2.3 we next investigate the system of interacting equationsin (2.1). The following theorem asserts that, as N goes to in�nity, each X i;N hasa natural limit �X i. ( �X i) are independent copies of the solutions of the nonlinearequation (2.2).Theorem 2.4 Let b satisfy the Lipschitz condition (2.8) and suppose thatR jb( �X1s ; ys)j2p us(dys) <1, a.s.; thensupN pN E1=p supt�T jX i;Nt � �X it jp <1 for p � 2 and (2.16)Np�1 E supt�T jX i;Nt � �X it jp = o(1) for 1 � p � 2:Proof: For notational convenience we drop the superscript N ; thenX it � �X it = Z t0 (f 1N NXj=1 b(X is;Xjs )pg1=p � fZ b( �X is; y)p us(dy)g1=p)ds= Z t0 dsf[( 1N Xj b(X is;Xjs )p)1=p � ( 1N Xj b( �X is;Xjs )p]1=p+[( 1N Xj b( �X is;Xjs )p)1=p � ( 1N Xj bp( �X is; �Xjs ))1=p]+[( 1N Xj b( �X is; �Xjs )p)1=p � (Z b( �X is; y)p us(dy)1=p]g:By the Minkowski inequality and the Lipschitz condition on b, the above equalityimplies (jXjT := sups�T jXsj)kX i � �X ikT;p : = (EjX i � �X ijpT )1=p� Z T0 dsfckX is � �X iskp + c 1N NXj=1 kXjs � �Xjskp+(Ej( 1N Xj b( �X is; �Xjs )p)1=p � (Z b( �X is; y)p us(dy))1=pjp)1=pg:Summing up over i and using the symmetry, we �ndNkX1 � �X1kT;p = NXi=1 kX i � �X ikT;p� 2cZ T0 dsf NXi=1 kX is � �X iskp + NXi=1 Ej( 1N NXj=1 b( �X is; �Xjs )p)1=p�(Z b( �X is; y)p us(dy))1=pjpg:7



This amounts tokX i � �X ikT;p � 2cZ T0 dsfkX i � �X iks;p+ 1N NXi=1 [Ej( 1N Xj b( �X is; �Xjs )p)1=p � (Z b( �X is; y)p us(dy))1=pjpg;and, consequently, by the Gronwall lemmakX i � �X ikT;p � 2c e2cT Z T0 ds 1N NXi=1 [Ej( 1N NXj=1 b( �X is; �Xjs )p)1=p�(Z b( �X is; y)p us(dy))1=pjp]= 2c e2cT Z T0 dsEj( 1N Xj b( �X1s ; �Xjs )p)1=p�(Z b( �X1s ; y)p us(dy))1=pjp:By Taylor-expansion and with Yj := b( �X is; �Xjs )p (conditionally on �X is) we obtainEj(SNN + a)1=p � a1=pjp � 1pp a1�pEjSNN jp; (2.17)where SN =P(Yj � a); a = EYj > 0. Therefore, from the Marcinkiewicz-Zygmundinequality (cf. Chow-Teicher, p. 357) we concludepNE1=pj(SNN + a)1=p� a1=pjp � const. E1=pj SNpN jp = 0(1);which yields (2.16) for p � 2. For 1 � p < 2 the claim follows from the momentbounds of Pyke and Root giving Ej SNN1=p jp = 0(1) and, therefore,Np�1Ej(SNN + a)1=p � a1=pjp = o(1): (2.18)2We next interprete Theorem 2.4 as a chaotic property of the di�usions governedby (2.1). Recall that by Proposition 2.2 in Sznitman (1989) a sequence (uN ) ofsymmetricprobability measures on E(N) is u-chaotic, u 2M1(E), if for (X1; : : : ;XN )distributed as uN , it holds 1N NXi=1 �Xi w�! u: (2.19)For �XN := 1N PNi=1 �Xi;N we obtain from Theorem 2.4�XN w�! �X; (2.20)where �X is the solution of equation (2.2). Therefore, with m denoting the law of �Xand mN denoting the law of (X1;N ; : : : ;XN;N) we obtain from (2.19)8



Corollary 2.5 Under the assumptions of Theorems 2.3 and 2.4, (mN) is m-chaotic.Remark 2.(a) For p =1 (see (2.14)) the propagation of chaos property does not hold. Alsothe case 0 < p < 1 does not lead to propagation of chaos and there does notexist a unique strong solution ofXt = Bt + Z t0 Z b(Xs; ys)p dm(y)ds: (2.21)(b) An example leading to Burger's type equationIn our exampledX it = dW it + ( 1N NXj=1 b(X it ;Xjt )p)1=p dt; i = 1; : : : ; N; (2.22)with b(�; �) Lipschitz, the instantaneous drift term seen by particle i, is�i = ( 1N NXj=1 b(X it ;Xjt )p)1=p:Under the assumptions of Theorem 2.4,limN!1E[ 1N NXi=1 (�pi � (Z bp(X it ; y)ut(dy))1=p)2] = 0;as well as limN!1E[ 1N NXi=1 (�pi � Z bp(X it ; y)ut(dy))]2 = 0:Similar to the above limit relation we would like to examine the average beha-vior of the \pseudo drift" 1N Pni=1 Zpi . Here, Zpi := 1N�1Pj 6=i �pN;a(X it �Xjt ),and �N;a(x � y) = Nad=p�(Na(x � y)), where �(�) � 0 is smooth, compactlysupported on IRd and R �(x)dx = 1 (we consider the vector valued case here).Note that Zp1 = 1N � 1 NXj=2 �pN;a(X1t �Xjt )= 1N � 1 NXj=1 Nad�p(Na(X it �Xjt ));and consequently,EZp1 = Nad(E�p(Na(X1t �X2t )))= (NadE�p(Na(X1t �X2t ))R �p )Z �p�!N!1 kutk2L2 Z �p =: ut;p(Xt):9



Consider an = E[ 1N NXi=1 (Zpi � ut;p(X1t ))]2= E[ 1N NXi=1 ( 1N � 1Xj 6=i �pN;a(X it �Xjt ))� ut;p(X1t ))]2= E[ 1N � 1 NXj=1 �pN;a(X1t �Xjt ))� ut;p(X1t )]2:Arguing as Sznitman (1989), p. 196, we �nd thataN ! 8><>: 0 if 0 < a < 1d(R �2p dx)kutk2L2 (R �p)2R �2p if a = 1d1 if a > 1d :Therefore, only in the case of moderate interaction we obtain Burger's equa-tion in the limit. 23 A Random Number of ParticlesLet (W i)i2IN be an iid system of real-valued processes (as in (2.1)) with p-th mo-ments and let (Nn)n�1 be an iid integer valued sequence of r.v.'s independent of(W i). Consider the following system of SDE with a random number of particles andinteractions: dX i;nt = dW it + (1n NnXj=1 b(X i;nt ;Xj;nt )p)1=p dt; i = 1; : : : ; Nn: (3.1)We assume the asymptotic stability conditionNnn ! Y a.s. as n!1: (3.2)As in Section 2 it turns out that X i;N have a natural limit �X i, a solution of thefollowing nonlinear SDEdXt = dBt + Y 1=p(Z b(Xt; y)p ut(dy))1=p; (3.3)where B d=W 1 and Y is assumed to be independent of B.For mo 2M1(CT ) let Mp(CT ;mo); L�p;T ; `�p;T be de�ned as in Section 2.Lemma 3.1 Let R t0 jBsjds < 1 a.s., then for any m 2 Mp(CT ;mo) there exists aunique strong solution of the equationXt = Bt + Y 1=p Z t0 (ZCT b(Xs; ys)p dm(y))1=p ds: (3.4)10



Proof: With (SX)t := Y 1=p R t0 (RCT b(Xs; ys)p dm(y))1=p ds we obtain as in the proofof Lemma 2.1 sups�t j(SX)s � (SY )sj � cY 1=p Z t0 sup0�u�s jXu � Yujdu:De�ning inductively X0 := B; Xn := SXn�1, we havesups�t jXns �Xn�1s j � cnY n=p tnn! sups�t jX1s �X0s j� cnY (n+1)=p tnn! [Z t0 jBs ds+ Z t0 (Z jysjp dm(y))1=p ds] <1:This implies the existence of a unique strong solution. 2Let for m 2 Mp(CT ;mo); �(m) denote the distribution of the solution of (3.4),thenLemma 3.2 Let Ap := kcY 1=p ecY 1=pkp <1, then for t � T; m1;m2 2Mp(CT ;mo):`�p;t(�(m1);�(m2)) � Ap Z t0 `�p;s(m1;m2)ds: (3.5)Proof: Let X(i) be solutions ofX(i)t = Bt + Y 1=p Z t0 (ZCT b(X(i)s ; ys)p dmi(y))1=pds;then as in the proof of Lemma 2.2sups�t jX(1)s �X(2)s j � cY 1=p Z t0 supu�s jX(1)u �X(2)u j+ cZ t0 ds `p;s(m1;m2):By Gronwall's lemmasups�t jX1s �X2s j � cY 1=p ecY 1=p Z t0 `p;s(m1;m2)dsimplying that `�p;t(�(m1);�(m2)) � kcY 1=p ecY 1=pkp Z t0 `�p;s(m1;m2)ds: 2From Lemmas 3.1 and 3.2 we conclude that (3.3) has a unique solution. Theproof is similar to that of Theorem 2.3.Theorem 3.3 Under the assumptions of Lemmas 3.1 and 3.2, equation (3.3) hasa unique solution ifkBk�p;T <1 and Z (Z b(0; ys)p dmo(y))1=p ds <1:11



4 p-th Mean Interaction in Time; A Non-Markov-ian CaseLet (X i;Nt )i=1;:::;N describe a system of N particles and let b(X i;Ns ; �) :=(b(X i;Ns ;Xj;Ns ))1�i�N denote the interaction vector. While in Section 2 we consideredin equation (2.1) a drift of the form kb(X i;Ns ; �)kp { the p-th norm of the interactionvector { in this section we study mean interactions in time.Let Fi(s) := j 1N NXj=1 b(X i;Ns ;Xj;Ns )j (4.1)be the average of the interaction vector and consider the equations:X i;Nt = W it + (Z t0 jFi(s)jp ds)1=p (4.2)X i;No = X io; 1 � i � N; for 1 � p <1;X i;Nt = W it + ess sups�t;�� jFi(s)j (4.3)X i;No = X io; 1 � i � N; for p =1;X i;Nt = W it + Z t0 jFi(s)jp ds (4.4)X i;No = X io 1 � i � N; for 0 < p < 1;i.e. we consider a drift, resulting from the p-th mean in time of the average ofthe interaction vector. It is clear from the de�nition that this describes a systemwhich no longer behaves as a Markovian one but the instantaneous drift jFi(t)jp isweighted by the mean interaction 1p(R t0 jFi(s)jp ds)1=p�1 over the whole past of theprocess. From this point of view the propagation of chaos property seems to be notso obvious in this case.First we consider the case 1 � p <1: The nonlinear limiting equation is givenby Xt = Bt + (Z t0 jZ b(Xs; y)us(dy)jp ds)1=p; us = PXs; (4.5)where Xt; Bt; b are real-valued, Bt is a process in CT = C[0; T ] andjb(x1; y)� b(x2; y)j � cjx1 � x2j for some c > 0: (4.6)De�ne for mo 2M1(`T )Mp(CT ;mo) = fm1 2M1(CT ) : `�p;t(m1;mo) <1g: (4.7)For m 2Mp(CT ;mo) consider the Liouville type equationXt = Bt + (Z t0 jZCT b(Xs; ys)dm(y)jp ds)1=p; (4.8)where ys is the value of y at time s. 12



Lemma 4.1 Assume (4.6) and letZ T0 jZCT b(0; ys)ms(dy)jp ds <1;ms the distribution at time s under m. Then(a) Equation (4.8) has a unique strong solution X.(b) If �(m) is the law of X, then �(m) 2Mp(CT ;mo), that is� : Mp(CT ;mo)!Mp(CT ;mo).Proof: Let X 2 Xp(CT ;mo) and de�ne(SX)t := Bt + (Z t0 jZ b(Xs; y)ms(dy)jp ds)1=p: (4.9)Thenj(SX)t � (SY )tjp = j(Z t0 jZ b(Xs; y)ms(dy)jp ds)1=p� (Z t0 jZ b(Ys; y)ms(dy)jp ds)1=p)p� (Z t0 jZ (b(Xs; y)� b(Ys; y))ms(dy)jp ds)1=p(by the Minkowski inequality)� Z t0 cpjXs � Ysjp ds (by the Lipschitz condition (4.6)).This implies sups�t j(SX)s � (SY )sjp � cp Z t0 supu�s jXu � Yujp ds; (4.10)and, furthermore, L�pp;t(SX;SY ) � cp Z t0 L�pp;s(X;Y )ds:De�ne, inductively, X0 := B; Xn := SXn�1;then L�pp;t(Xn;Xn�1) � cpnT nn! L�pp;T (X1;X0):By (4.6), the integral RCT b(Xs; ys)m(dy) is a Lipschitz function of Xs andL�pp;T (X1;X0) = E supt�T Z t0 jZ b(Bs; y)ms(dy)jp ds� E Z T0 (Z (jb(0; y)j+ cjBsj)ms(dy))p ds� c0 Z T0 (Z jb(0; y)jms(dy))p ds+c0E Z T0 jBsjp ds <113



as by the assumptions the integrals on the RHS are �nite. Therefore,Xn�1 L�p;T (Xn;Xn�1) �Xn�1 cn(T nn! )1=p L�p;T (X1;X0) <1:This impliesPn�1 L�p;T (Xn;Xn�1) <1. ThenXn�1 L�1;T (Xn;Xn�1) <1:In consequence Xn converges to some process X a.s. uniformly on bounded inter-vals. X is a.s. continuous, and E sups�t jXsjp < 1, since E sups�t jBsjp < 1; so�(m) 2Mp(CT ;mo). 2In addition, suppose that b is Lipschitz in both arguments,jb(x1; y1)� b(x2; y2)j � c[jx1 � x2j+ jy1 � y2j] (4.11)and consider the map � : Mp(XT ;mo)!Mp(CT ;mo).Lemma 4.2 (Contraction of � w.r.t. `�p;t)Under (4.11) and the assumption of Lemma 4.1, for t < T and m1;m2 2Mp(CT ;mo),it holds: `�p;t(�(m1);�(m2)) � cp ecpt Z t0 `�pp;s(m1;m2)ds; (4.12)where cp := c 2p�1.Proof: Let for i = 1; 2; and t � T ,X(i)t = Bt(Z t0 jZCT b(X(i)s ; ys)dmi(y)jp ds)1=pand let m 2 M1(m1;m2), the class of probabilities on CT � CT with marginals m1and m2. Thensups�t jX(1)s �X(2)s jp = j(Z t0 jZCT b(X(1)s ; y(1)s )dm1(y(1))jp ds)1=p�jZ t0 jZCT b(X(2)s ; y(2)s )dm2(y(2))jp ds)1=pjp� Z t0 ds[ZCT�CT jb(X(1)s ; y(1)s ) � b(X(2)s ; y(2)s )jdm(y(1); y(2))]p� Z t0 ds[cjX(1)s �X(2)s j+ Z jy(1)s � y(2)s jdm(y(1); y(2))]p:Minimizing the RHS w.r.t. all couplings we getsups�t jX(1)s �X(2)s jp � c � 2p�1| {z }=:cp Z t0 ds supu�s jX(1)u �X(2)u jp + c � 2p�1| {z }=:cp Z t0 ds`�p1;s(m1;m2):14



Consequently, for p � 1 by the Gronwall lemma as `�1;s � `�p;ssups<t jX(1)s �X(2)s jp � cp ecpT Z t0 ds`�pp;s(m1;m2);which implies `�pp;t(�(m1);�(m2)) � cp ecpt Z t0 `�pp;s(m1;m2)ds: 2Theorem 4.3 Under (4.11) and R T0 (RCT b(0; ys)dmo(y))p ds < 1, equation (4.8)has a unique weak and strong solution in Xp(CT ;mo).Proof: From Lemma 4.2 we obtain for m 2Mp(CT ;mo)`�pp;T (�k+1(m);�k(m)) � CT T kk! `�pp;T (�(m);m)� 2p�1CT T kk! [`�pp;T (�(m);mo) + `�pp;T (m;mo)] <1:The remaining part of the proof is similar to that of Theorem 2.3. 2In the next step we now turn to the system of interacting particles de�ned in(4.2), where ((W it );X io) are independent processes identically distributed for all i.The next theorem asserts that as N ! 1 each X i;N has a natural limit �X i. ( �X i)are independent copies of the solution of the nonlinear equation of Mc Kean-Vlasovtype ���� Xt = Bt + (R t0 j RCT b(Xs; y)us(dy)jp ds)1=p;Xt=0 = Xo: (4.13)Considered in Theorem 4.3 with B d= W (1). Let b satisfy the Lipschitz condition(4.6).Theorem 4.4 Suppose thatZ b( �X1s ; y)p us(dy) <1 a.s.; (4.14)then for any i � 1; T > 0supN pN (E supt�T jX i;Nt � �X it jp)1=p <1 for p � 2 and (4.15)N (1=p)�1(E supt�T jX i;Nt � �X it jp)1=p = o(1) for 1 � p < 2:15



Proof: Drop the superscript N . ThenX it � �X it = (Z t0 j 1N NXj=1 b(X is;Xjs )jp ds)1=p�(Z t0 jZ b( �X is; y)us(dy)jp ds)1=p= [(Z t0 j 1N NXj=1 b(X is;Xjs )jp ds)1=p�(Z t0 j 1N NXj=1 b( �X is;Xjs )jp ds)1=p]+[(Z t0 j 1N NXj=1 b( �X is;Xjs )jp ds)1=p�(Z t0 j 1N NXj=1 b( �X is; �Xjs )jp ds)1=p]+[(Z t0 j 1N NXj=1 b( �X is; �Xjs )jp ds)1=p�(Z t0 jZ b( �X is; y)us(dy)jp ds)1=p]:By the Minkowski inequality, with kXkT = sups�T jXsj,kX i � �X ikpT;p = EkX i � �X ikpT� 4p�1[E Z t0 dsj 1N NXj=1 [b(X is;Xjs )� b( �X is;Xjs )]jp+E Z T0 dsj 1N NXj=1 [b( �X is;Xjs )� b( �X is; �Xjs )]jp+E Z T0 dsj 1N NXj=1 b( �X is; �Xjs )� Z b( �X is; y)us(dy)jp]� 4p�1 Z T0 dsfcpEjX is � �X isjp + cpE[ 1N NXj=1 jXjs � �Xjs j]p+E Z T0 dsj 1N NXj=1 b( �X is; �Xjs )� Z b( �X is; y)us(dy)jpg:Summing up over i and using the symmetry, we �ndNkX i � �X ikpT;p = NXi=1 kX i � �X ikpT;p16



� 4p�1 Z T0 dsfcp NXi=1 EkX is � �X iskpp+cpN E[ 1N ( NXj=1 jXjs � �Xjs jp)1=p]p+cp NXi=1 Ej 1N NXj=1 b( �X is; �Xjs )� Z b( �X is; y)us(dy)jpg:Therefore,kX i � �X ikpT;p � 4p�1cp Z T0 dsfkX i � �X ikps;p + cpkX i � �X ikps;p+ 1N NXi=1 Ej 1N NXj=1 b( �X is; �Xjs )� Z b( �X is; y)us(dy)jpg:Consequently, by the Gronwall lemma, Cp = 2 � 4p�1cpkX i � �X ikpT;p � Cp eCpT Z T0 ds[ 1N NXi=1 Ej 1N NXj=1 b( �X is; �Xjs )� Z b( �X is; y)us(dy)jp]� Cp eCpT Z T0 dsEj 1N NXj=1 b( �X is; �Xjs )� Z b( �X is; y)us(dy)jp= Cp eCpTT � E[0( 1pN )]pby the Marcinkiewicz-Zygmund inequality (cf. Chow-Teicher, p. 357) for p � 2respectively the Pyke and Root (1968) inequality for 1 � p < 2. 2Corollary 4.5 Let m denote the law of �X satisfying (4.13), and let mN denote thelaw of (X1;N ; : : : ;XN;N ), then under the assumptions of Theorems 4.3 and 4.4 mNis m-chaotic.We next consider the limiting case p =1 (cf. (4.3)). In contrast to the limitingcase in Section 4 of p-th norm interaction, we obtain the propagation of chaosproperty for p-th mean interaction in time under a stronger Lipschitz condition.Consider for m 2M1(CT )Xt = Bt + ess sups�t jZCT b(Xs; y)m(dy)j; (4.16)where Xt; Bt and b are real-valued, Bt is a process on CT , and withE ess sups�T jBsjp <1 andjb(x1; y)� b(x2; y)j � cjx1 � x2j; with 0 < c < 1: (4.17)17



We use the metric (for p � 1)~L�p;t(X;Y ) := (E ess sups�t jXs � Ysjp)1=p in X (CT ): (4.18)Let ~̀�p;t(m1;m2) = ~̂L�p;t(m1;m2) (4.19)be the corresponding minimal metric and let~Mp(CT ;mo) = fm1 2M1(CT ); ~̀�p;T (m1;mo) <1g; (4.20)~Xp(CT ;mo) denotes the corresponding class of processes. For mo 2 M1(CT ) andm 2 ~Mp(CT ;mo) consider the Liouville equationXt = Bt + ess sups�t jZCT b(Xs; ys)dm(y)j: (4.21)Lemma 4.6 Assume (4.17) and letess sups�T jZCT b(0; ys)m(dy)j <1:Then(a) Equation (4.21) has a unique solution X.(b) If �(m) is the law of X, then �(m) 2Mp(CT ;mo), that is� : ~Mp(CT ;mo)! ~Mp(CT ;mo).Proof: Let X 2 ~Xp(CT ;mo) and de�ne(SX)t := Bt + ess sups�t jZCT b(Xs; ys)m(dy)j:j(SX)t � (SY )tjp = j ess sup0�s<t jZCT b(Xs; ys)m(dy)j� ess sup0�s�t jZCT b(Ys; ys)m(dy)jjp� ess sup0�s�t cpjXs � Ysjp;by the Lipschitz condition (4.17).This implies ess sups�t j(SX)s � (SY )sjp � cp ess sup0�s�t jXs � Ysjp;and ~L�p;t(SX;SY ) � c ~L�p;t(X;Y ):De�ne, inductively, X0 = B; Xn = SXn�1, then~L�p;t(Xn;Xn�1) � cn ~L�p;t(X1;X0):18



Furthermore,~L�p;T (X1;X0) = (E ess sups�T jZ b(Bs; ys)m(dy)jp)1=p� (E ess sups�T [jZ b(0; ys)m(dy)j+ cZ jBsjm(dy)]p)1=p� c0(ess sups�T jZ b(0; ys)m(dy)j+ (E ess sups�t jBsjp)1=p <1:This implies Xn�1 ~L�p;T (Xn;Xn�1) �Xn�1 cn ~L�pp;T (X1;X0) <1:Therefore, Xn a:s:�! X, uniformly on bounded intervals, andE ess sups�t jXsjp <1. 2In addition, suppose that b is Lipschitz in both argumentsjb(x1; y1)� b(x2; y2)j � c[jx1 � x2j+ jy1 � y2j] (4.22)with 0 < c < 12 , and consider the map� : ~Mp(CT ;mo)! ~Mp(CT ;mo):Lemma 4.7 (Contraction of � w.r.t. ~̀�p;t)Under (4.22) and the assumptions of Lemma 4.1, for t < T and m1;m2 2 ~Mp(CT ;mo),it holds: ~̀�p;t(�(m1);�(m2)) � c1� c ~̀�p;t(m1;m2): (4.23)Proof: Let for i = 1; 2, and t � T ,X(i)t = Bt + ess sup0<s<t jZCT b(X(i)s ; ys)dmi(y)j;and let m 2M1(m1;m2). ThenE ess sups�t jX(1)s �X(2)s jp= Ej ess sups�t jZCT b(X(1)s ; y(1)s )dm1(y(1))j � ess sups�t jZCT b(X(1)s ; y(2)s )dm2(y(2))jjp� Ej ess sups�t c[jX(1)s �X(2)s j+ ZCT�CT jy(1)s � y(2)s jdm(y(1); y(2))]jp:Therefore, passing to minimal metrics on the RHS,(E ess sups�t jX(1)s �X(2)s jp)1=p � c(E ess sups�t jX(1)s �X(2)s jp)1=p+c[( infm2M1(m1;m2)ZCT�CT ess sups�t jy(1)s � y(2)s jdm(y1; y2))p]1=p; i.e.(1� c)(E ess sups�t jX(1)s �X(2)s jp)1=p � c ~̀�1;s(m1;m2) � c ~̀�p;s(m1;m2):19



Passing to the minimal metrics in the LHS, we obtain~̀�pp;T (�(m1);�(m2)) � c1� c ~̀�p;T (m1;m2): 2Next we conclude the existence of a unique solution of the McKean-Vlasov typeequation Xt = Bt + ess sups�t jZ b(Xs; ys)us(dys)j; Xt=0 = X0: (4.24)Theorem 4.8 Under (4.22) andess sups�T jZCT b(0; ys)dmo(y)j <1;equation (4.24) has for m 2 ~Mp(CT ;mo) a unique weak and strong solution in~Xp(CT ;mo).Proof: From Lemma 4.7 with C := c1�c ; m 2 ~Mp(CT ;mo)~̀�pp;T (�k+1(m);�k(m)) � Ck ~̀�pp;T (�(m);m) <1;which implies the theorem. 2Consider the system of N interacting particles driven by equation (4.3) i.e.X i;Nt = W it + ess sups�t j 1N NXj=1 b(X i;Ns ;Xj;Ns )j (4.25)X i;No = X io; 1 � i � N:We show that X i;N has a natural limit �X i, where �X i are iid copies of the solutionof (4.25).Theorem 4.9 Suppose that (4.22) holds and that the r.v. Ys;j := b( �X1s ; �Xjs ) onC[0; T ] are in the domain of normal attraction (dna) or satisfy the bounded law ofthe iterated logarithm (BLIL) and satisfy Ekb( �X1s ; �Xjsk21 <1, then for any i � 1supN aN E kX i;Nt � �X itk1 <1; (4.26)where aN = pN or aN = pN log logN .Proof: Similar to the proof of Theorem 4.4, we obtain from the condition 2c < 1,for � � 1~L��;T (X i; �X i) � 11� 2c 1N NXi=1 E ess sups�T j 1N NXj=1 b( �X is; �Xjs )� Z b( �X is; y)us(dy)j�:20



If (Ys;j are in dna (cf. Ho�mann-J�orgensen (1977)) then (4.26) follows with aN =pN . If (Ys;j) satisfy the BLIL, then for the corresponding centered sum SNlimEkSNaN k1 � limkSNk1aN <1 a.s. (cf. Kuelbs (1977)) and (4.26) is a consequence.2We remark that by Corollary 5.7 of Ho�mann-J�orgensen (1977) a su�cient con-dition for the dna of SN =PNj=1Xj is given bxEkX1k2bL <1; (4.27)k kbL the bounded Lipschitz-norm w.r.t. any Gaussian metric �.Corollary 4.10 Under the assumptions of Theorems 4.8 and 4.9 let m denote thelaw of �X; mN the law of (X1;N ; : : : ;XN;N), then mN is m-chaotic.Remark 3. In the case 0 < p < 1 we see by similar methods that there exists nounique solution of the Liouville equation and also there is no propagation of chaos.5 Minimal Mean Interaction in TimeConsider the analogue of equation (4.3) with minimal mean interaction in timeX i;Nt = W it + ess infs�t j 1N NXj=1 b(X i;Ns ;Xj;Ns )j (5.1)X i;No = X io; 1 � i � N:The corresponding Boltzmann type equation isXt = Bt + ess infs�t jZ b(Xs; y)us(dy)j (5.2)Xt=0 = Xo:We obtain the following results. As the proofs are similar to those in Section 4, weomit them.Theorem 5.1 If mo 2M1(CT ) andjb(x1; y1)� b(x2; y2)j � c[jx1 � x2j+ jy1 � y2j]; 0 < c < 12 (5.3)and ess sups�T jZCT b(0; ys)dmo(y)j <1; (5.4)then (5.2) has a unique strong solution in Xp(CT ;mo).The system (X i;N ) in (5.1) has a natural limiting process ( �X i), which are iidcopies of the solution X of (5.2). 21



Theorem 5.2 Under the assumptions of Theorem 5.1 and Theorem 4.9 holds forany i � 1 supN aN E supt�T jX i;Nt � �X i;Nt j <1: (5.5)As corollary we obtain:Corollary 5.3 Under the conditions of Theorems 5.1 and 5.2, the system (5.1) hasthe propagation of chaos property.6 Interaction with the Normalized Variation ofthe Neighbours; Relaxed Lipschitz-ConditionsConsider the following systemX i;Nt = W it + Z t0 ( 1N NXj=1 b(X i;Ns ; �Xj;Ns ))ds (6.1)X i;No = X io; 1 � i � N;where �X is:= X is � EX isEjX is �EX isj (6.2)is the normalized variation of particle i, ((W it );X io) are independent identically dis-tributed processes on CT � IR. The drift is given by the mean of the interactionswith the normalized variation of all particles. We assume thatb(x; 0) = 0; 8 x; (6.3)i.e. the interaction is zero, if the relative variation is zero.The McKean-Vlasov type equation corresponding to (6.1) is given byXt = Bt + Z t0 (Z b(Xs; y)dP �Xs(y))ds (6.4)Xt=0 = Xo;where B d= W i. Note that B in this section is not necessarily a Brownian motion.We study these equations under a relaxed Lipschitz condition. Assume that b has apartial derivative b02 := @b@y (6.5)w.r.t. the second coordinate and consider(L1) jb02(x1; y)� b02(x2; y)j � cjx1 � x2jand(L2) jb02(x1; y1)� b02(x2; y2)j � c[jx1 � x2j+ jy1 � y2j].(L2) allows a quadratic growth of b w.r.t. the second component. To obtaincontraction properties in this case, we have to switch to a suitable probability metric22



with regularity conditions of higher order. This makes necessary an essential changein the method of the proofs given so far.For m 2M1(CT ) the distribution of a process (�s) let �m denote the distributionof the normalized process (��s) assuming an absolute �rst moment of ms. De�neNs := �ms ��o = Nms and (6.6)F (�1)Ns (y) := Z y�1 FNs(u)du: (6.7)In concordance with the usual notation of derivates of a function f by f (s); s � 1,we de�ne the s-fold integrated function by f (�s) since this is the inverse operationand (f (�1))(1) = f , etc.Note that by (6.3) we can replace the integration w.r.t. �ms in (6.4) by integrationw.r.t. Ns. Consider the Liouville equationXt = Bt + Z t0 (Z b(Xs; y)dNs(ys))ds: (6.8)By integration by parts (6.7) is equivalent toXt = Bt + Z t0 (Z b02(Xs; y)dF (�1)Ns (y))ds: (6.9)Theorem 6.1 Suppose that m 2 M1(CT ) has a �nite �rst moment andE sups�T jBsj <1. Furthermore, let (L1) be satis�ed and suppose thatZ T0 Z jb02(0; y)j jFNs(y)jdy = Z T0 E Z ��s0 jb02(0; t)jdt <1: (6.10)Then (6.8) has a unique strong solution X and, moreover, E sups�T jXsj <1.Proof: Let (SX)t : = Bt + Z t0 ds(ZIR b(Xs; ys)dNs(ys));= Bt + Z t0 ds(ZIR b02(Xs; ys)dF (�1)Ns (ys)):Then by the Lipschitz condition (L1),j(SX)t � (SY )tj � Z t0 dsjZIR(b02(Xs; ys)� b02(Ys; ys))dF (�1)Ns (ys)j� Z t0 dsZIR cjXs � Ysj jFNs(ys)jdys:Observe that the total variation norm of the measure F (�1)Ns (dy) is 1;Var (F (�1)Ns ) = ZIR jFNs(y)jdy = Z 0�1 F��s(y)dy + Z 10 (1 � F��s(y))dy = Ej ��s j = 1:23



Therefore, j(SX)t � (SY )tj � cZ t0 jXs � Ysjds (6.11)implying L�1;t(SX;SY ) � cZ t0 L�1;s(X;Y )ds:De�ne inductively, Xo = B; Xn = SXn�1, thenL�1;T (Xn;Xn�1) � cnT nn! L�1;T (X1;X0): (6.12)Note thatL�1;T (X1;X0) = E sups�T jZ s0 ds(ZIR b02(Bs; ys)dF (�1)Ns (ys)j (6.13)� E Z T0 dsZIR jb02(Bs; ys)j jFNs(ys)jdys� E Z T0 dsZIR(cjBsj+ jb02(0; ys)j)jFNs(ys)jdys� E Z T0 ds cjBsj+ Z T0 dsZIR jb02(0; ys)j jFNs(ys)jdys <1:The equality in (6.10) results fromZIR jb02(0; y)jjFNs(y)jdy= ZIR jb02(0; y)jjF��s(y)� F0(y)jdy= Z 0�1 jb02(0; y)jF��s(y)dy + Z 10 jb02(0; y)j(1� F��s(y))dy= Z +1�1 (Z y0 jb02(0; t)jdt)dF��s(y) = E Z ��s0 jb02(0; t)jdt <1:Consequently, L�1;T (X1;X0) < 1. (6.12), (6.13) imply the existence and the uni-queness of a strong solution X. Moreover,L�1;T (X;B) � 1Xn�1 L�1;T (Xn;Xn�1) � ecTL�1;T (X1; B) <1;that is, E sups�T jBsj <1 implies E sups�T jXsj <1. 2We next extend the result of Theorem 6.1 to the case where p-th momentsexist, p � 1. Denote kXk�T;p = (E supt�T jX(t)jp)1=p; 1 � p < 1, and kXk�T;1 =E ess sup0<t�T jX(t)j. 24



Theorem 6.2 Suppose that kBk�T;p < 1 for some 1 � p � 1. Suppose that (L1)holds and suppose thatZ T0 ds(ZIR jb02(0; ys)FNs(ys)jpdys)1=p <1 (1 � p <1) resp. (6.14)Z T0 ds(ess supys jb02(0; ys)jjFNs(ys)j) <1 (p =1): (6.15)Then (6.8) has a unique solution X and kXk�T;p <1. In particular, if �(m) is thedistribution of the solution of (6.8), then �(m) maps Mp(CT ; �o) into Mp(CT ; �o).Proof: As in Theorem 6.1j(SX)t � (SX)tj � cZ t0 jXs � Ysjds;implying for any 1 < p � 1L�p;T (SX;SY ) � Z t0 L�p;T (X;Y )ds:Further, for 1 � p <1 (the case p =1 is similar)L�p;T (X;B) = (E sups�T jZ s0 ds(ZIR b02(Bs; ys)dF (�1)Ns (ys)jp)1=p� (E(Z T0 dsZIR jb02(Bs; ys)jjFNs(ys)jdys)p)1=p� Z T0 ds[E(ZIR jb02(Bs; ys)jjFNs(ys)jdys)p]1=p� Z T0 ds[E(ZIR(cjBsj+ jb02(0; ys)j)jFNs(ys)jdys)p]1=p� cZ T0 ds(EjBsjp)1=p + Z T0 ds(ZIR jb02(0; ys)FNs(ys)jp dys)1=p <1:Then continue as in Theorem 6.1, to complete the argument. 2Denote by M�2 (CT ; �o) the space of all m 2M2(CT ; �o) such thatinf0<s�T Ej�s � E�sj =: A�T > 0; � d= m: (6.16)Condition (6.16) postulates that the L1-variation does not converges to zero for0 < s < T . For a Brownian motion this means that we do not start deterministicallyat one �xed point at s = 0.Let �(m) be the solution of (6.8)Xt = Bt + Z t0 ds(ZIR b(Xs; ys)d �ms (ys))under the assumptions of Theorem 6.2 with p = 2. Then by Theorem 6.2, � mapsM2(CT ; �o) into Mo(CT ; �o). 25



Theorem 6.3 (Contraction to �)Suppose that the Lipschitz condition (L2) holds, and m1;m2 2 M�2 (CT ; �o). Then acontraction of � w.r.t. `�2;t holds:`�2;t(�(m1);�(m2)) � ct Z t0 `�2;u(m1;m2)du: (6.17)Proof: For m1;m2 2M�2 (CT ; �o) letX(i)t = Bt + Z t0 (ZIR b(X(i)s ; y(i)s )dFN (i)s (y(i)s ))ds= Bt + Z t0 (ZIR b02(X(i)s ; y(i)s )dF (�1)N (i)s (y(i)s ))ds:Then X(1)t �X(2)t = Z t0 [ZIR b02(X(1)s ; y(1)s )dF (�1)N (1)s (y(1)s )�ZIR b02(X(2)s ; y(2)s )dF (�1)N (2)s (y(2)s )]ds:Since the total variation norm of F (�1)Ns is 1 and the total mass is 0, by the Jordandecomposition F (�1)Ns (dx) = �+s (dx)� ��s (dx);where �+s (IR) + ��s (IR) = 1; �+s (IR)� ��s (IR) = 0, in other words,�+s (IR) = ��s (IR) = 12 :We write F (�1)N (i)s (ds) = �(i)+s (dx)� �(i)�s (dx)and so, X(1)t �X(2)t = Z t0 ds[ZIR b02(X(1)s ; y(1)s )(�(1)+s � �(1)�s )(dy(1)s )�ZIR b02(X(2)s ; y(2)s )(�(2)+s � �(2)�s )(dy(2)s )):Let dm+s (y(1)s ; y(2)s ) be a coupling for �(1)+s and �(2)+s , that is,m+s is a positive measurewith total mass 12 and such that �im+s = �(i)+s ; i = 1; 2; �i the i-th component.Similarly, let dm�s (y(1)s ; y(2)s ) be a coupling for �(1)�s and �(2)�s . ThenX(1)t �X(2)t = Z t0 ds[ZIR(b02(X(1)s ; y(1)s )� b02(X(2)s ; y(2)s ))dm+s (y(1)s ; y(2)s )�ZIR(b02(X(1)s ; y(1)s )� b02(X(2)s ; y(2)s ))dm�s (y(1)s ; y(2)s )]:26



Consequently, by the Lipschitz conditionjX(1)t �X(2)t j (6.18)� Z t0 ds(ZIR2 jb02(X(1)s ; y(1)s )� b02(X(2)s ; y(2)s )jd(m+s +m�s )(y(1)s ; y(2)s ))� Z t0 dsZIR2(cjX(1)s �X(2)s j+ cjy(1)s � y(2)s j)d(m+s +m�s )(y(1)s ; y(2)s )):Observe that the total mass of m+s + m�s is 1, and for i = 1; 2; �im+s + �im�s =�(i)+s +�(i)�s is the variation of F (�1)N (i)s . Minimizing w.r.t. all couplings m+s +m�s withmarginals �(i)+s + �(i)�s ; i = 1; 2, we getjX(1)t �X(2)t j � Z t0 c dsjX(1)s �X(2)s j+ ZIR jF�(1)+s +�(1)�s (x)� F�(2)+s +�(2)�s (x)jdx:As F�(1)+s +�(1)�s (x) = FVar(F (�1)N(1)s )(x), we have that the integral on the right hand sideequals, using R jF�1(x)� F�2(x)jdx � R jxjVar(�1 � �2)(dx)ZIR jFVar(F (�1)N(1)s )(x)� FVar(F (�1)N(2)s )(x)jdx (6.19)� ZIR jxjVar(Var(F (�1)N (1)s )�Var(F (�1)N (2)s ))(dx)� ZIR jxjVar(F (�1)N (1)s � F (�1)N (2)s )(dx)= ZIR jxjj ddx(F (�1)N (1)s (x)� F (�1)N (2)s (x))jdx= ZIR jxjjFN (1)s (x)� FN (2)s (x)jdx (as Ns := P ��s � �o)= ZIR jxjjF��(1)s (x)� F��(2)s (x)jdx= : �2(��(1)s ; ��(2)s );where ��(i)s are r.v.'s with laws P ��(i)s = P (�(i)s �E�(i)s )=Ej�(i)s �E�(i)s j, and P �(i)s = m(i)s .By the minimality of �2,�2(�(1)s ; �(2)s ) = inffEjj�(1)s j�(1)s � j�(2)s j�2s j; �(i)s d= �(i)s g: (6.20)By means of (6.20) we estimate �2(��(1)s ; ��(2)s ) by �2(�(1)s ; �(2)s ) making use of the as-sumption that sups�T Ej�(i)s j2 � ATinfs�T Ej�(i)s �E�(i)s j =: A�T > 0:27



Then �2(��(1)s ; ��(2)s ) (6.21)� `2(��(1)s ; ��(2)s )(Ej ��(1)s j2 + Ej ��(2)s j2)� 2AT `2( �(1)s � E�(1)sEj�(1)s � E�(1)s j ; �(2)s �E�(2)sEj�(2)s � E�(2)s j)� 2AT `2( �(1)s � E�(1)sEj�(1)s � E�(1)s j ; �(2)s �E�(2)sEj�(1)s � E�(1)s j)+ 2AT `2( �(2)s � E�(2)sEj�(1)s � E�(1)s j ; �(2)s � E�(2)sEj�(2)s � E�(2)s )� 2ATEj�(1)s � E�(1)s j � `2(�(1)s � E�(1)s ; �(2)s � E�(2)s )+ 2AT (Ej�(2)s � E�(2)s j2)1=2 jEj�(1)s � E�(1)s j � Ej�(2)s � E�(2)s jj(Ej�(1)s � E�(1)s j)(Ej�(2)s � E�(2)s j)� cT `2(�(1)2 ; �(2)s );using the fact that jE�(1)s � E�(2)s j � `1(�(1)s ; �(2)s ) � `2(�(1)s ; �(2)s );and 1jE�(i)s �E�(i)s j � 1A�T . Combining our estimates we writejX(1)t �X(2)t j � Z t0 c dsjX(1)s �X(2)s j+ cT `2(m(1)s ;m(2)s ); (6.22)using the assumptions E(�(i)s )2 <1; i = 1; 2, and Ej�(i)s �E�(i)s j � A�T > 0 uniformlyon s 2 (0; T ]. Then, by the Gronwall inequality, with c�T = c _ ct,sups�t jX(1)t �X(2)t j � c�TeC�TT Z t0 `�2;s(m(1)s ;m(2)s )ds:The above implies by passing to minimal metrics that`�2;t(�(m1);�(m2)) � c ecT R t0 `�2;s(m1;m2)ds. 2Theorem 6.4 Suppose that kBk�T;2 <1, (L2) and for some mo 2M2(CT ; �o) withNs = Nmos holds Z T0 ds(Z jb02(0; y)FNs(y)j2 dy)1=2 <1 (6.23)and �n(mo) 2M�2 (CT ; �o); 8 n 2 IN; (6.24)then the Boltzmann type equation (6.4) has a unique weak and strong solution inM2(CT ; �o). 28



Proof: From Theorem 6.3, for m 2 M2(CT ; �o)`�2;T (�(k+1)(m);�(k)(m)) � CkT T kk! (`�2;T (�(m); �o) + `�2;T (m; �o)) <1:Therefore, (�k(m)) is a Cauchy sequence in (CT ; `�2;T ) and converges to a �xed point.If X(k+1);X(k) are the optimal couplings of �(k+1)(m); �(k)(m) we get that (X(k)) isa L2�;T -Cauchy sequence, leading to a (unique) L�2;T -�x point X. 2Remark 4. Condition (6.24) postulates that the solutions of the Liouvilleequations corresponding to �m(mo) have strict positive variation. A simple suf-�cient condition for this to hold in the case that b is bounded, jbj � M is thatinfs�T jBs � EBsj � TM + ". This condition is useful only for �xed T but not forT ! 1. But it might be possible in examples (as in the construction of solutionsof SDE's is typically done) to construct a solution piecewise on small time intervallsand to join the pieces to a solution on the whole real line. For special choices ofb it is possible to obtain weaker su�cient conditions for (6.24). Condition (6.16)is needed in order to reconstruct the process. Without this condition we only canreconstruct the normalized process (cf. (6.21)).We now turn to equation (6.1). The next theorem asserts that as N !1 eachX i;N has a limit �X i. ( �X i) are independent copies of the solution of (6.4) consideredin Theorem 6.4.Theorem 6.5 Suppose that (L2) holds and moreover, kbk1 = supx;y jb(x; y)j <1.Suppose also that uniformly on i,jW ijT;1 := ess sup sup0<s<T jW is j � X <1:Then for any i � 1; T > 0,supN pNE sup0<t�T jX i;Nt � �X it j <1:Corollary 6.6 (Propagation of Chaos)Let m denote the law of �X i satisfying (6.4) and let WN denote the law of(X1;N ; : : : ;XN;N). Then under the assumptions of Theorems 6.4 and 6.5 WN ism-chaotic.Proof of Theorem 6.5. Omitting the index N , we getX it � �X it = Z t0 ds 1N NXj=1 b(X is; �Xjs)� Z t0 dsZCT b( �Xs; ys)P ��Xs(dy)= : I1(t) + I2(t) + I3(t); whereI1(t) : = [Z t0 ds 1N NXj=1 b(X is; �X js)� Z t0 ds 1N NXj=1 b( �X is; �X js)]29



I2(t) : = [Z t0 ds 1N NXj=1 b( �X is; �X js)� Z t0 ds 1N NXj=1 b( �X is; ��Xjs)]I3(t) : = [Z t0 ds 1N NXj=1 b( �X is; ��Xjs)� Z t0 dsZCT b( �Xs; ys)P ��Xs(dy)]EjI1jT : = E sup0<t<T EjI1(t)j= E Z T0 dsj 1N NXj=1 [b(X is; �Xjs)� b( �X is; �Xjs)]j:From (L2) jb(x; y)� b(�x; y)j = jb(x; y)� b(x; 0)� (b(�x; y)� b(�x; 0))j= jZ y0 b02(x; t)dt� Z t0 b02(�x; t)dtj� Z jyj0 jb02(x; t)� b02(�x; t)jdt� cjx� �xjjyj:Therefore, EjI1jT � cE Z T0 1N NXj=1 jX is � �X isjj �Xjs j:Assuming that kbk1 = supx;y jb(x; y)j <1 andjW i;N jT;1 := ess sup sup0<s�T jW i;Ns j � K;then supi;N jX i;Nt j � K + T � kbk1:Therefore, EjI1jT;1 � C Z T0 dsEjX is � �X isjEjI2jT;1 � Z T0 ds 1N NXj=1 jb( �X is; �Xjs)� b( �X is; ��X is)j:For 0 < y < �y, jb(x; y)� b(x; �y)j = Z �yy jb02(x; t)jdt� cZ �yy jb02(x; t)� b02(0; t)jdt+ cZ �yy jb02(0; t)� b02(0; 0)jdt30



� cjxjj�y� yj+ 12 j�y2 � y2j� cj�y � yj(jxj+ �y + y2 ):In general, jb(x; y)� b(x; �y)j � cjy � �yj(jxj+ jyj+ j�yj2 ):Assuming that Xj;Ns are bounded a.s., jXj;N jT;1 := ess sup sup0<s<T jXj;Ns j <1, weobtainkI2kT;1 := EjI2jT � Z T0 ds 1N NXj=1 jb( �X is; �Xjs)� b( �X is; ��X js)j� cZ T0 ds 1N NXj=1 Ej �Xjs � ��Xjs j � (j �X isj+ 12(j �Xjs j+ j ��X js j))� cabs Z T0 ds 1N NXj=1 Ej �Xjs � ��X js j:Using the estimates for jI1jT and jI2jT , we haveNkX i � �X ikT;1 = NXi=1 kX i � �X ikT;1� cabs Z T0 dsf NXi=1 EjX i � �X ijs;1 + NXj=1 EjXj � �Xjjs;1g+ NXi=1 Z T0 dsj 1N NXj=1 b( �X is; ��X js)� ZCT b( �Xs; ys)P ��Xs(dy)j:By the Gronwall lemmakX i� �X ikT;1 � cabs R T0 ds[ 1N PNi=1 R T0 dsj 1N PNj=1 b( �X is; ��X js)�RCT b( �Xs; ys)P ��Xs(dys)j �cabs � (O( 1pN )) by the Pyke and Root (1968) inequality. 2Acknowledgement. The authors would like to thank the reviewer for manyhelpful remarks and suggestions.
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