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Summary: In this paper comparison results of convex type are established for several path-
dependent options in some classes of semimartingale models. The options considered are some
classes of lookback options, Asian and American options and barrier options. Comparison of
the path-dependent options is based on ordering properties of the local characteristics of the
underlying processes as well as on suitable propagation of convexity property. These properties
allow a stochastic analysis of the basic linking process which establishes a link between the value
processes in the underlying models. The linking process gives a unified tool to obtain comparison
results for these path-dependent options. This paper extends and unifies several results in the
literature.

1 Introduction
The problem of deriving ordering results for option prices has been addressed in several re-
cent papers. For processes of diffusion type, for diffusions with jumps, for Lévy processes
and PII processes, for exponential Lévy models and semimartingales several interesting
comparison results in particular for European options have been obtained by various
methods (see El Karoui et al. (1998), Hobson (1998), Bellamy and Jeanblanc (2000),
Henderson (2000), Gushchin and Mordecki (2002), Bergenthum and Rüschendorf (2006,
2007a)). A main motivation for these results comes from the comparison of European
options with respect to different pricing measures and from the problem of determining
nontrivial price bounds. But similar comparison results are also of interest in various
other areas as in complex networks or in insurance models.

In this paper we consider ordering results with respect to the (increasing) convex
order for several classes of path-dependent options. The applications include examples
of lookback options, Asian options, American options, and barrier options. Our results
are of the type that certain ordering and convexity conditions on the underlying processes
imply ordering results for path-dependent options of convex type. For (exponential)
semimartingales it has been established in the papers mentioned above that comparison
of the local characteristics and a propagation of convexity property imply convex ordering
results for European options. In the case of (exponential) Lévy processes one obtains even
ordering of the finite dimensional distributions. We remark that in the case of exponential

AMS 2000 subject classification: Primary: 62P05, 60E15; Secondary: 65C30
Key words and phrases: Path dependent options, lookback option, convex order, Lévy process, semimartingale
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54 Bergenthum -- Rüschendorf

Lévy processes Yt = exp(Xt) increasing convex ordering results for the Lévy process X
imply increasing convex ordering results for the exponential Lévy process Y . It is typically
more simple to give ordering conditions for X. By the previous remark however these
imply ordering results for the exponential Lévy models which are the more relevant
models for the financial applications (see [6]).

In Section 2 we combine finite dimensional ordering results as mentioned above
with some closedness properties of orderings under weak convergence to obtain ordering
results for path-dependent options like lookback options or options of Asian type for
Lévy resp. exponential Lévy models. In Section 3 we extend these results for options
of Asian type to the more general class of PII-models. Here instead of finite dimensional
ordering of the underlyings we use Kolmogorov’s backward equation for the gain function
of the Asian option to derive the comparison results. We then generalize this approach
to some classes of semimartingales by introducing a two dimensional Markov structure
for the Asian options. In Section 4 we extend the approach introduced in El Karoui et al.
(1998) and Bellamy and Jeanblanc (2000) for the comparison of American options in
diffusion type models to more general classes of semimartingales. This approach is based
on a characterization of American options by variational inequalities. Finally, in Section 5
we consider barrier options and give extensions of some results of Eriksson (2004, 2006)
to more general models.

In our paper we consider the convex or increasing convex orders defined for r.v.s X,
Y by

X ≤icx Y resp. X ≤cx Y (1.1)

if E f(X) ≤ E f(Y ) for all increasing convex resp. convex functions f such that the
integrals exist. Definition (1.1) can be stated in the same form for random vectors X,
Y . For processes S(1), S(2), S(i ) = (

S(i )
t

)
0≤t≤T we consider the corresponding product

ordering of the finite dimensional distributions and define(
S(1)

) ≤icx
(
S(2)

)
resp.

(
S(1)

) ≤cx
(
S(2)

)
(1.2)

if for all 0 ≤ t1 < t2 < · · · < tm ≤ T holds

E f
(
S(1)

t1 , . . . , S(1)
tm

) ≤ E f
(
S(2)

t1 , . . . , S(2)
tm

)
, (1.3)

for all functions f which are increasing convex (resp. convex) in the m components and
such that the integrals exist. Similar product orderings ≤F can be introduced for general
function classes F , replacing the class of convex functions (see [23, 25]). The product
ordering in (1.3) is also called componentwise (increasing) convex ordering and denoted
by S(1) ≤ccx S(2) resp. S(1) ≤iccx S(2). Since we would like to consider this product
ordering also for other classes F we stick to the notation as above. The product odering in
(1.2) is stronger than the multivariate (increasing) convex ordering defined via the class
Fcx = Fcx

m of all convex functions f : Rm → R.
For time homogeneous Markov processes S(1), S(2) with transition kernels Q(1), Q(2)

there is a simple sufficient condition for finite dimensional ordering:(
S(1)

) ≤F
(
S(2)

)
(1.4)
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holds if S(1)
0 ≤F S(2)

0 and if a ≤F -monotone transition kernel (Qt) exists which separates
Q(1) and Q(2), i.e. for all x and t > 0 holds

Q(1)
t (x, ·) ≤F Qt(x, ·) ≤F Q(2)

t (x, ·), (1.5)

(see [5, Proposition 3.1]). Q is ≤F -monotone if f ∈ F implies that Qt f(x) = ∫
f(y)

Qt(x, dy) ∈ F for all t ≥ 0. This separation lemma applies in particular to Lévy pro-
cesses and yields for them finite dimensional ordering results (see [5, 6]). For a general
introduction to stochastic orderings and its applications we refer to Müller and Stoyan
(2002).

2 Lookback options
In this section we consider lookback options that have path-dependent payoffs of the form

g(sup
t≤T

St) (2.1)

for an increasing convex function g. Throughout this section we consider càdlàg pro-
cesses S on [0, T ].

There are few results on orderings of lookback options in the literature. By a classical
result of Blackwell and Dubins on stochastic ordering the supremum LT = supt≤T St

of any martingale with final distribution µ of ST is bounded above in stochastic order
by the Hardy–Littlewood transform of the law of ST . This leads to a model independent
upper bound for the lookback options in terms of a transform of the European option
g(ST ). A universal lower bound is given by the European option. Hobson (1998) gives
trading strategies under which these bounds are attained. Henderson (2000) establishes
stochastic comparison of the supremum of a stochastic volatility model and the supremum
of a time-homogeneous diffusion model, making use of a comparison result for diffusions
in Hajek (1985). Večeř and Xu (2004) give a counterexample to show that the result of
Hajek (1985) does in general not apply to Poisson models.

The ordering of lookback options (and other path-dependent options) for processes
S(1), S(2) is particularly simple, when ordering of the finite dimensional distributions
is available like in the case of homogeneous Markov processes (see (1.5)). A general
principle in stochastic ordering allows to infer from finite dimensional ordering results
for processes S(1), S(2) and some integrability conditions the ordering of continuous
functionals of the processes. This leads in the case of the lookback options to the following
result.

Proposition 2.1 Let
(
S(i )

t
)

t∈[0,T ], i = 1, 2, be one-dimensional processes with S(i )
0 ≥ 0

and E supt≤T

(
S(i )

t
)

< ∞.

If
(
S(1)

) ≤icx
(
S(2)

)
, then sup

t≤T
S(1)

t ≤icx sup
t≤T

S(2)
t . (2.2)
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56 Bergenthum -- Rüschendorf

Proof: For m ∈ N and 0 ≤ t1 < · · · < tm ≤ T the ordering
(
S(1)

) ≤icx
(
S(2)

)
implies that(

S(1)
t1 , . . . , S(1)

tm

) ≤icx
(
S(2)

t1 , . . . , S(2)
tm

)
. We introduce approximations S(i )

n of S(i ) defined
as step functions for partitions 0 = tn,0 < tn,1 < · · · < tn,kn = T

S(i )
n,t =

{
S(i)

tn, j
, if tn, j ≤ t < tn, j+1,

S(i)
n,T , if t = T.

Assuming that max(tn, j+1 − tn, j ) → 0 we obtain convergence in D[0, T ]

S(i)
n

L−→ S(i). (2.3)

As consequence also sup0≤t≤T S(i)
n,t

L−→ sup0≤t≤T S(i)
t , since sup is a continuous func-

tional on D[0, T ]. In order to obtain the comparison result in (2.2) w.r.t. increasing convex
ordering ≤icx it is enough to establish

E sup
0≤t≤T

S(i)
n,t −→ E sup

0≤t≤T
S(i)

t , (2.4)

(see [13, Satz 3.1]). As supt≤T S(i)
n,t ≤ supt≤T S(i)

t for all n ∈ N, we obtain by assumption

that the sequences
(

supt≤T S(i)
n,t

)
are uniformly integrable and thus (2.4) follows. �

Various criteria that yield finite dimensional ordering of Lévy processes X(1), X(2)

w.r.t. the increasing convex order have been established in [6]. Basically ordering of the
Lévy measures and of the initial distributions implies ordering of the finite dimensional
distributions of the Lévy processes w.r.t. the product ordering. By Proposition 2.1 this
implies ordering of the lookback option of the Lévy processes. This ordering results for
Lévy processes X(i) however also implies the corresponding ordering for exponential
Lévy models S(i) = exp

(
X(i)

)
.

Corollary 2.2 (Ordering of lookback options in exponential models) Let S(i) =
exp

(
X(i)

)
, i = 1, 2 be exponential models with X(i)

0 = 0 and E supt≤T exp
(
X(i)

t
)

< ∞.
If finite dimensional ordering

(
X(1)

) ≤icx
(
X(2)

)
holds for the basic processes X(i), then

it also holds for the lookback options of the exponential models S(i) ,

sup
t≤T

S(i)
t ≤icx sup

t≤T
S(2)

t . (2.5)

Proof: Since exp is a increasing convex function we have that also the exponential pro-
cesses are ordered

(
S(1)

) ≤icx
(
S(2)

)
. Using that exp

(
supt≤T X(i)

t
) = supt≤T exp

(
X(i)

t
)
,

we obtain (2.5) as consequence of Proposition 2.1. �

Remark 2.3 The ordering results in Proposition 2.1, Corollary 2.2 are not specific for the
lookback option. Consider processes S(i) = (

S(i)
t

)
and the corresponding approximations
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S(i)
n = (

S(i)
n,t

)
as in Proposition 2.1 and in its proof. Let H : D[0, T ] → R be a continuous

increasing, convex functional such that

H
(
S(i)

n

) = Hn

((
S(i)

n,tn, j

))
. (2.6)

for some increasing convex function Hn on Rkn , Hn ∈ Ficx, i = 1, 2 and where (tn, j )

is a partition of [0, T ] as in the definition of S(i)
n . Assume that, for some Y ∈ L1,

Y ≤ H
(
S(i)

n
)

and H(S(i)) ∈ L1, i = 1, 2, n ∈ N. Then(
S(1)

) ≤icx
(
S(2)

)
implies H

(
S(1)

) ≤icx H
(
S(2)

)
. (2.7)

A representation as in (2.6) holds for several options as for lookback options H(S) =
g(sup0≤t≤T St), for Asian options H(S) = g

( 1
T

∫ T
0 Stdt

)
, g ∈ Ficx, for barrier options

H(S) = g(ST )1{sup0≤t≤T St≥β} and several others. By Corollary 2.2 the ordering as-

sumption on the exponential model S(i) = exp
(
X(i)

)
is implied by corresponding finite

dimensional ordering of X(i). As consequence we obtain in particular for (exponential)
Lévy models easy to verify sufficient conditions for the (increasing) convex ordering
of lookback options, of Asian options and of barrier options with constant barrier. This
applies in particular to several relevant exponential Lévy models in mathematical finance
(see [4, 6]).

3 Asian options
In this section we consider Asian options for some classes of univariate or multivariate
underlyings S(i) . Our aim is to obtain ordering results for the comparison of Asian options
of processes S(1), S(2) as in (2.7) but without posing the assumption of finite dimensional
ordering for S(1), S(2), which may be difficult to verify except in homogeneous Markov
processes or their exponential versions. We also consider the comparison of two Asian
options with the same underlying S but with respect to different averaging time intervals,
i.e. to compare

1

ϑ1

∫ T

T−ϑ1

Stdt and
1

ϑ2

∫ T

T−ϑ2

Stdt for ϑ1 < ϑ2. (3.1)

Thus we consider the dependence on ϑ for terminal payoffs of the form

g
( 1

ϑ

∫ T

T−ϑ

Stdt
)
, g ∈ Fcx, (3.2)

where S is the (discounted) value of an underlying, w.r.t. a martingale measure.
There are some ordering results for prices of Asian options with continuous averaging

in the literature. El Karoui et al. (1998) establish by stochastic analysis that Asian option
prices in a univariate diffusion model are bounded above by the corresponding European
option prices. This comparison result can be obtained alternatively in a simple way for any
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model S in which St ≤cx ST for all t ≤ T . Under this comparison assumption Jensen’s
inequality implies for g ∈ Fcx

Eg
( 1

ϑ

∫ T

T−ϑ

Sudu
)

≤ 1

ϑ

∫ T

T−ϑ

Eg(Su)du ≤ Eg(ST ). (3.3)

Bellamy and Jeanblanc (2000) establish that the lower bound of an Asian option price
in a univariate diffusion with jumps model is given by the Asian option price under the
corresponding Black–Scholes model with the same diffusion coefficient.

We derive two different kinds of ordering results for Asian options with respect to
continuous averaging. At first we establish that for PII models Asian option prices are
decreasing in the length of the averaging interval [T −ϑ, T ]. The highest price is obtained
for ϑ → 0 (cp. (3.3)). For the proof of this result we make use of the value process of the
average process with averaging interval [T − ϑ, T ] given by

Aϑ
t := E

(
1

ϑ

∫ T

T−ϑ

Sudu|At

)
, 0 ≤ t ≤ T, (3.4)

where (�,A, (At)) denotes the underlying stochastic basis. Then, we establish for PII
models and for some semimartingale models that Asian option prices are ordered, if
the local characteristics of the underlyings S(i) are ordered in an appropriate sense.
For a semimartingale S we denote by S ∼ (b, c, K )id, that S has (differential) drift,
diffusion and jump characteristics b, c, K w.r.t. the truncation function h = id. We
assume throughout this paper that differential characteristics exist and that the identity
can be chosen as truncation function.

In general the drift, diffusion, and jump characteristics are time-dependent and we
use the notation b = bu = b(u), c = cu = c(u), K = Ku = K(u). For Markovian
semimartingales we also use the functional form b = b(u, s), c = c(u, s), K = Ku(s, dx).
For general reference to (differential) characteristics we refer to Jacod and Shiryaev
(2003).

At first, we compute the (differential) characteristics of the value process Aϑ .

Lemma 3.1 (Characteristics of the value process Aϑ
t ) Let St ∼ (0, cS

t , K S
t ) be a mar-

tingale. Then the value process Aϑ ∼ (bAϑ

t , cAϑ

t , K Aϑ

t )id in (3.4) has characteristics

bAϑ

t = 0,

cAϑ

t = cS
t

(
1[0,T−ϑ)(t) +

(
T − t

ϑ

)2

1[T−ϑ,T ](t)
)

, (3.5)

K Aϑ

t (G) =
∫
Rd

1G(α(t)y)K S
t (dy), G ∈ Bd,

where α(t) = 1[0,T−ϑ)(t) + T−t
ϑ

1[T−ϑ,T ](t).
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Proof: The value process Aϑ is a martingale by definition, thus bAϑ

t = 0. From Fubini’s
theorem and the martingale property of S it follows that Aϑ

t has a representation

Aϑ
t = 1

ϑ

∫ T

T−ϑ

E(Su |At)du

= St1[0,T−ϑ)(t) + 1

ϑ

(∫ t

T−ϑ

Sudu + (T − t)St

)
1[T−ϑ,T ](t). (3.6)

As
∫ t

T−ϑ
Sudu is continuous and of finite variation it follows that the quadratic charac-

teristic of Aϑ
t is given by 〈Aϑ〉t = 〈S〉t1[0,T−ϑ)(t) + ( T−t

ϑ

)2 〈S〉t 1[T−ϑ,T ](t), hence the

differential quadratic characteristic cAϑ

t is of the stated form. As the jumps of Aϑ are of

the form �Aϑ
t = α(t)�St = �(α · S)t , it follows that the jump compensator νAϑ

of Aϑ
t is

given by νAϑ
(ω; [0, t] × G) = ∫

[0,t]×Rd 1G(α(u)y)νS(ω; du, dy), hence the differential

jump characteristic K Aϑ

t is as stated in (3.5). �

From Lemma 3.1 it is seen that for a Markovian underlying process S with dependent
increments, the value process Aϑ is not Markovian, as in this case cAϑ

and K Aϑ
depend

on St−. For the approach used in this paper it is however essential that one of the processes
to be compared is Markovian. There are two possibilities to circumvent this problem. If
S is assumed to be a process with independent increments (PII), i.e. its characteristics are
deterministic functions of time, then also Aϑ is a PII. An alternative way is to enlarge the
space of underlyings by Aϑ , as the two dimensional process (S, Aϑ) is Markovian.

For the following comparison result we assume that S ∼ (
0, cS(t), K S(t, ·)) is

a d-dimensional PII martingale, hence the value process Aϑ ∼ (
0, cAϑ

(t), K Aϑ
(t, ·))

of the Asian option with averaging interval [T − ϑ, T ] and convex payoff function g also
is a PII martingale. The corresponding backward function for the Asian option

GAϑ

(t, a) = E
(
g(Aϑ

T ) | Aϑ
t = a

)
satisfies under some regularity conditions the Kolmogorov-backward equation (see [5])

DtG
Aϑ

(t, a) + 1

2

∑
i, j≤d

D2
i jG

Aϑ

(t, a)cAϑ

(t) +
∫

(�GAϑ

)(t, a, y)K Aϑ

(t, dy) = 0, (3.7)

where (�GAϑ
)(t, a, y) = GAϑ

(t, a + y) − GAϑ
(t, a) − ∑

i≤d DiG
Aϑ

(t, a)yi .
In the following theorem we establish that Asian option prices for PII processes

are decreasing in the length of the averaging intervals. Thus the prices are lowest for
the largest averaging interval [0, T ]. The highest price is attained for ϑ → 0, i.e., for
European options (cp. (3.3)).

Theorem 3.2 (Ordering of Asian option prices in the length of the averaging in-
terval) Let g : Rd → R, g ∈ Fcx, and assume that S ∼ (

0, cS(t), K S(t, ·))id is
a positive martingale with independent increments and Lévy kernels K S(t, ·) that sat-
isfy

∫
yK S(t, dy) = 0, for all t ∈ [0, T ]. Assume that GAϑ ∈ C1,2([0, T ] × Rd ) and
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that GAϑ
(t, a) satisfies the Kolmogorov backward equation (3.7). Let the linking process

GAϑ
(t, Aϑ1) be lower bounded and integrable. Then for 0 < ϑ1 < ϑ it holds true that

Eg

(
1

ϑ

∫ T

T−ϑ

Sudu

)
≤ Eg

(
1

ϑ1

∫ T

T−ϑ1

Sudu

)
. (3.8)

Proof: The basic idea of the proof is similar to that in the proofs of the comparison
theorems for European options in [5]. We establish that the linking process between
Aϑ and Aϑ1 defined as GAϑ

(t, Aϑ1
t ) is a supermartingale. From Itô’s formula and the

Kolmogorov backward equation it follows that GAϑ
(t, Aϑ1

t ) = GAϑ
(t, Aϑ1

0 ) + Mt + V Aϑ

t ,
where Mt is a local martingale and

V Aϑ

t =
∫ t

0

{1

2

∑
i, j≤d

D2
i jG

Aϑ

(u, Aϑ1
u )

(
cAϑ1

(u) − cAϑ

(u)
)

+
∫
Rd

(�GAϑ

)(u, Aϑ1
u−, y)

(
K Aϑ1

(u, dy) − K Aϑ

(u, dy)
)}

du.

(3.9)

As Aϑ1 and Aϑ are PII, convexity of g is propagated to GAϑ
(t, ·) (see [4]). Hence it remains

to establish suitable ordering of the characteristics of Aϑ1 and Aϑ . From Lemma 3.1 it
follows that

cAϑ

(t) = cS(t)1[0,T−ϑ](t) +
(

T − t

ϑ

)2

cS(t)1[T−ϑ,T ](t)

≤psd cS(t)1[0,T−ϑ1](t) +
(

T − t

ϑ1

)2

cS(t)1[T−ϑ1,T ](t)

= cAϑ1
(t),

here ≤psd denotes positive semidefinite ordering. Lemma 3.1 also implies∫
f(t, y)K Aϑ

(t, dy) =
{∫

f(t, y)K S(t, dy), t < T − ϑ∫
f(t, T−t

ϑ
y)K S(t, dy), t ≥ T − ϑ

and

∫
f(t, y)K Aϑ1

(t, dy) =
{∫

f(t, y)K S(t, dy), t < T − ϑ1,∫
f(t, T−t

ϑ
y)K S(t, dy), t ≥ T − ϑ1.

As for a random vector X with EX = 0 and for α ∈ [0, 1] it holds true that αX ≤cx X, it
follows from the assumption

∫
yK S(t, dy) = 0 that∫

f(t, y)K Aϑ

(t, dy) ≤
∫

f(t, y)K Aϑ1
(t, dy), ∀t ∈ [0, T ],

for all f : [0, T ] × Rd → R such that f(t, ·) ∈ Fcx. As consequence we obtain that the
linking process GAϑ

(t, Aϑ1
t ) is a supermartingale.
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This implies the comparison result using the crucial role of the linking process.

Eg(Aϑ1
T ) = EG Aϑ

(T, Aϑ1
T ) ≤ EG Aϑ

(0, Aϑ1
0 ) = Eg(Aϑ

T ). (3.10)
�

Based on the linking process and Lemma 3.1 we also obtain ordering properties of
Asian option prices on two multivariate PII underlyings S(i), i = 1, 2, in dependence on
the local characteristics of S(i) . The value processes of the Asian options are denoted by

A(i)
t := 1

T
E

(∫ T

0
S(i)

u du | At

)
. (3.11)

The Kolmogorov backward equation for the value function G(2)(t, a) = E
(
g(A(2)

T ) | A(2)
t

= a
)

is of the form

DtG
(2)(t, a) + 1

2

∑
i, j≤d

D2
i jG

(2)(t, a)cA(2)

(t) +
∫

(�G(2))(t, a, y)K A(2)

(t, dy) = 0.

(3.12)

Theorem 3.3 (Comparison of Asian option prices in the characteristics of the un-
derlying) Let S(i) ∼ (

0, cS(i )
(t), K S(i )

(t, ·))id, i = 1, 2, be d-dimensional PII martingales
and g : Rd → R, g ∈ Fcx. Assume that G(2) ∈ C1,2([0, T ] × Rd ) and the value function
G(2) satisfies the Kolmogorov backward equation (3.12). If

cS(1)

(t) ≤psd cS(2)

(t) and∫
f(t, y)K S(1)

(t, dy) ≤
∫

f(t, y)K S(2)

(t, dy),

for all t and all f : [0, T ] × Rd → R, such that f(t, ·) ∈ Fcx, then

Eg
( 1

T

∫ T

0
S(1)

u du
)

≤ Eg
( 1

T

∫ T

0
S(2)

u du
)
. (3.13)

Proof: The proof is similar to that of Theorem 3.2. We consider the linking process
G(2)(t, A(1)

t ) and derive from Itô’s formula and the Kolmogorov backward equation an
expansion similar to (3.9). (3.13) then follows from the supermartingale property of the
linking process G(2)(t, A(1)

t ) similarly as in (3.10) using the following ordering properties

of the characteristics. By Lemma 3.1 it follows from cS(1)
(t) ≤psd cS(2)

(t) that

cA(1)

(t) = cS(1)

(t)

(
T − t

T

)2

≤psd cS(2)

(t)

(
T − t

T

)2

= cA(2)

(t).

Further, for the Lévy kernels K A(i )
, Lemma 3.1 implies∫

f(t, y)K A(i )
(t, dy) =

∫
f

(
t, y

T − t

T

)
K S(i )

(t, dy).
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For g(t, y) := f
(
t, y T−t

T

)
it follows that g(t, ·) ∈ Fcx and thus by the ordering assumptions

on K S(i )
the ordering conditions for K A(i )

are fulfilled. �

We next extend the ordering result in Theorem 3.3 in the one-dimensional case to
more general martingales and compare the Asian options in the case of martingales S,
S∗, where S∗ is is assumed to be Markovian. To indicate the Markovian property of the
second process we use the notation S, S∗ instead of S(1), S(2) from here on. This needs
a different approach which is directly based on the averaging processes A, A∗ (instead of
the value processes A(i)) defined by

At := 1

t

∫ t

0
Sudu and A∗

t = 1

t

∫ t

0
S∗

udu. (3.14)

A, A∗ are continuous processes, have paths of finite variation and satisfy

dAt = 1

t

(
St − At

)
dt, dA∗

t = 1

t

(
S∗

t − A∗
t

)
dt. (3.15)

Hence A, A∗ are not Markovian, even if S∗ is Markovian. To obtain a Markovian upper
bound candidate, we augment A and A∗ by the underlyings S and S∗, respectively. Then
the augmented process

(
S∗, A∗) is Markovian as S∗ is assumed to be Markovian. The

value process for the Asian option with payoff g(A∗
T ) then takes the form

GA∗
(t, s, a) = E∗(g(A∗

T ) | S∗
t = s, A∗

t = a
)

(3.16)

and satisfies the Kolmogorov-backward equation

0 = DtG
A∗

(t, s, a) + DaG
A∗

(t, s, a)
1

t
(s − a) + 1

2
D2

ssG
A∗

(t, s, a)cS∗
(t, s)

+
∫
R

(
GA∗

(t, s + y, a) − GA∗
(t, s, a) − DsG

A∗
(t, s, a)y

)
K S∗

(t, s, dy),
(3.17)

cp. Barraquand and Pudet (1996) for the continuous case. For the general case see [5,
Lemma 2.1]. Now we can apply a similar expansion technique as in the proofs of The-
orems 3.2, 3.3 to the extended linking process GA∗

(t, St , At) and obtain the following
version of a comparison result of Asian option prices.

Theorem 3.4 (Comparison of Asian option prices in the characteristics of the un-
derlying) Let S ∼ (0, cS, K S)id, S∗ ∼ (

0, cS∗
(t, s), K S∗

(t, s, ·))id be one-dimensional
martingales, and additionally assume that S∗ is Markovian. Let g : R → R, g ∈ Fcx
assume that the value process GA∗

(t, s, a) ∈ C1,2,1([0, T ] × R× R) and that the linking
process GA∗

(t, St , At) is lower bounded and integrable. Further assume the propagation
of convexity condition GA∗

(t, ·, a) ∈ Fcx for all 0 ≤ t ≤ T and a ∈ R (see (3.16)). If

cS
t (ω) ≤ cS∗

(t, St−(ω)) and∫
f(t, St−(ω), z)K S

ω,t (dz) ≤
∫

f(t, St−(ω), z)K S∗
t (St−(ω), dz),
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λ\ × Q-a.e., for all f : [0, T ] ×R×R→ R+ with f(t, s, ·) ∈ Fcx such that the integrals
exist, then

Eg
( 1

T

∫ T

0
Sudu

)
≤ Eg

( 1

T

∫ T

0
S∗

udu
)
. (3.18)

Proof: The main part of the proof is to establish that GA∗
(t, St , At) is a supermartingale.

Due to Itô’s formula and the form of the Kolmogorov-backward equation in (3.17) the
crucial equation is

GA∗
(t, St , At)

= GA∗
(0, S0, A0) + Mt +

∫ t

0

1

2
D2

ssG
A∗

(t, Su−, Au−)
(
cS

u − cS∗
(u, Su−)

)
du

+
∫ t

0

∫
R

(
GA∗

(u, Su− + y, Au−) − GA∗
(u, Su−, Au−)

− DsG
A∗

(u, Su−, Au−)y
)(

K S
u − K S∗

(u, Su−, dy)
)

du.

Hence convexity of GA∗
(t, ·, a) and the orderings of the characteristics of S and S∗ imply

the result. �

Remark 3.5 a) The assumption of lower boundedness and integrability of the linking
value processes in the theorems above ensures that the local supermartingale property
can be improved to the supermartingale property. An alternative sufficient condition
for this conclusion is to assume uniform integrability of the linking process. This
remark concerns also related results in the following part of this paper.

b) Reversing the ordering assumptions on the local characteristics we obtain in a similar
way a lower bound for Asian option prices by those in a Markovian model. Here we
need to establish the local submartingale property of the linking process and then have
to use the corresponding integrability conditions.

4 American options
In this section we derive some ordering results for American option prices in semimartin-
gale models. Parallel to the European case, the orderings are formulated in terms of the
differential characteristics of the underlyings. We assume that interest rates exist, and
also that stocks may pay dividend yields. In an equity model, in which interest rates
are assumed to be higher than dividends and in a foreign exchange model, in which the
domestic interest rate is assumed to be higher than the foreign interest rate, the prices
of American and European call options coincide, whereas American put options yield
higher prices than their European counterparts. Similarly, if the dividend yield in an equity
model majorizes the interest rates or if in a foreign exchange model the domestic interest



T
h
is
 a
rtic

le
 is
 p
ro
te
c
te
d
 b
y
 G
e
rm

a
n
 c
o
p
y
rig

h
t la

w
. Y

o
u
 m

a
y
 c
o
p
y
 a
n
d
 d
is
trib

u
te
 th

is
 a
rtic

le
 fo

r y
o
u
r p

e
rs
o
n
a
l u

s
e
 o
n
ly
. O

th
e
r u

s
e
 is
 o
n
ly
 a
llo

w
e
d
 w
ith

 w
ritte

n
 p
e
rm

is
s
io
n
 b
y
 th

e
 c
o
p
y
rig

h
t h

o
ld
e
r. 

64 Bergenthum -- Rüschendorf

rate is lower than the foreign interest rate, then American and European put option prices
are identical, whereas American call options yield higher prices than their European
counterparts.

There are several comparison results for American options in the literature, most of
which are derived as extensions of ordering results for European option prices. Pham
(1997) derives properties of American option prices in a jump diffusion model, where
the jump part is driven by a homogeneous Poisson random measure with finite inten-
sity λ. Pham characterizes American option prices by a parabolic integro-differential
free-boundary problem, and then obtains monotonicity of American put option prices in
λ and in the Girsanov jump parameter. El Karoui et al. (1998) establish upper and lower
bounds for American put option prices in univariate stochastic volatility models. They use
a variational inequality approach that is parallel to the stochastic calculus approach that
is used to establish orderings for European type options. Hobson (1998) also considers
continuous models. For a univariate diffusion he derives convexity of American put option
prices in the underlying, and also obtains option price monotonicity in the diffusion co-
efficient. Parallel to the approach for European type options, he uses coupling arguments
to derive the orderings. Bellamy and Jeanblanc (2000) establish that a lower bound of
an American option price w.r.t. to a diffusion with jumps model is given by the price of
an American option w.r.t. the corresponding generalized Black–Scholes model. As in the
case of European options, the result is obtained by the stochastic calculus approach. Hen-
derson and Hobson (2003) obtain ordering of American option prices in a diffusion with
jumps model in the Girsanov parameter and then establish ordering of American option
prices w.r.t. well established martingale measures by coupling techniques. In a univariate
diffusion model, Ekström (2004) considers American options with payoff functions that
satisfy certain growth conditions, which are especially satisfied by decreasing functions.
To establish convexity of American option prices in the underlying, Ekström uses the
notion of volatility time, a time change introduced in Janson and Tysk (2003), and also
obtains monotonicity and continuity of the prices in the volatility.

In the following we establish a comparison result for American options where the
underlyings are semimartingales one of them being Markovian. We state the comparison
result for semimartingales in the basic case with interest rate r > 0 and without dividend
yield. In order to extend the variational approach in Bellamy and Jeanblanc (2000) to
this more general situation it is useful to put the stopping problem for two processes
in a frame, where we have one process S but two probability measures P and P∗.
We assume that (S, P) is a nonnegative semimartingale and (S, P∗) is a nonnegative
Markovian semimartingale. This framework is not very restrictive. If we want to compare
two càdlàg semimartingales then we can equivalently consider the canonical process S on
D[0, T ] with respect to the two distributions P, P∗ of the processes on D[0, T ]. We assume
that P, P∗ are martingale measures for the discounted process e−rt St . Denote by X the
stochastic logarithm of S, X = Log(S). Then X is a semimartingale with characteristics
X ∼ (bu, cu, Ku) w.r.t. P and X ∼ (b∗(u, s), c∗(u, s), K∗(u, s, ds)) w.r.t. P∗.

Let for a nonnegative convex function g ∈ Fcx

GAm(t) := ess sup
τ∈T (t,T )

Ee−r(τ−t)(g(Sτ) | At) (4.1)
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denote the value process of the American option w.r.t. P with filtration (At) generated by
S and with the set of stopping times T (t, T ), t ≤ τ ≤ T . Similarly

G∗
Am(t, s) = ess sup

τ∈T (t,T )

E∗e−r(τ−t)(g(Sτ ) | St = s) (4.2)

denotes the value process w.r.t. the Markovian model. Under general conditions it has
been established in the literature that G∗

Am is characterized by the variational inequalities
of Hamilton–Jacobi–Bellman type:

(V) G∗
Am ∈ C1,2([0, T ] × R1),

max

{
DtG

∗
Am(t, s) + rsDsGAm(t, s) − rG∗

Am(t, s) + 1

2
c∗(t, s)s2D2

ssG
∗
Am(t, s)

+
∫ {
G∗

Am(t, s(1 + x)) − G∗
Am(t, s) − sxDsG

∗
Am(t, s)

}
K∗(u, s, dx),

g(s) − G∗
Am(t, s)

}
= 0, (4.3)

and G∗
Am(T, s) = g(s).

While the characterization of G∗
Am by the variational inequalities in (4.3) is quite

general if derivatives are interpreted in a weak sense we need in the following the
stronger assumption that G∗

Am ∈ C1,2 in order to apply Itô’s formula. This assumption is
not satisfied in general for jump diffusions. The variational inequality and characterization
of the value process has been studied for jump diffusions in Zhang (1994, Proposition 3.5).

We also need the propagation of convexity property:

(PC) For all t ≤ T it holds that G∗
Am(t, ·) ∈ Fcx. (4.4)

For jump diffusions this is established by Pham (1997). We denote by τ∗ the optimal
stopping time of the stopping problem w.r.t. P∗

τ∗ = inf{0 ≤ t ≤ T ; g(St) = G∗
Am(t, St )}. (4.5)

For quasi-left-continuous processes S w.r.t. P∗ it is known that an optimal stopping time
exists and that τ∗ as in (4.5) is optimal; in fact it coincides with the corresponding Snell-
stopping time (see Jamshidian (2006, Corollary 2.8)). Thus from now on we assume S to
be quasi-left-continuous. Then

G∗
Am(τ∗, Sτ∗) = e−rτ∗

g(Sτ∗)[P∗] and E∗e−rτ∗
g(Sτ∗) = G∗

Am(0, s) (4.6)

For the following comparison result between semimartingales S = E(X) w.r.t. P and
w.r.t. P∗ we assume that e−rt St is a local martingale w.r.t. P and a Markovian martingale
w.r.t. P∗. From Yor’s product formula

E(X)E(Y ) = E(X + Y + [X, Y ]) (4.7)

follows that

e−rt St = E(X̃) (4.8)
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with X̃ ∼ (bu − r, cu , Ku) w.r.t. P and X̃ ∼ (b∗
u − r, c∗

u, K∗
u ) w.r.t. P∗. Thus the local

martingale property of e−rt St is equivalent to the conditions

bu − r + 1

2
cu + (ex − 1 − h(x)) ∗ Ku = 0 (4.9)

and

b∗
u − r + 1

2
c∗

u + (ex − 1 − h(x)) ∗ K∗
u = 0, (4.10)

where h is the truncation function and ∗ denotes the integral operation. We need the
following convex ordering conditions on the differential characteristics of X:

(CO) ct(ω) ≥ c∗(t, St−(ω)) (4.11)∫
f(t, St−(ω), x)Kω,t(dx) ≥

∫
f(t, St−(ω), x)K∗

t (St−(ω), dx) (4.12)

λ\ × P a.s. for all functions f such that f(t, s, ·) ∈ Fcx and this integral exist.

Theorem 4.1 (Comparison of American option prices) Let S = E(X) be a semimar-
tingale w.r.t. P with X ∼ (bu, cu , Ku) and a Markovian semimartingale w.r.t. P∗ with
X ∼ (0, c∗(u, s), K∗

u (s, dx)). Assume that e−rt St is a local martingale w.r.t. P and P∗
and S0 = s P + P∗ almost surely. Let g ∈ Fcx be a convex functional and assume that
G∗

Am(t, St) is bounded above and integrable. If the assumptions (V), (PC), and (CO) hold
true, then

GAm(0, s) ≥ G∗
Am(0, s). (4.13)

Proof: The basic role in the proof is played by the corresponding linking process
G∗

Am(t, St). Using that by assumption (V) G∗
Am ∈ C1,2, it follows from Itô’s formula that

w.r.t. P the linking process G∗
Am(t, St ) connecting the American option prices in both

models has the expansion

e−rtG∗
Am(t, St ) = G∗

Am(0, s) + Mt

+
∫ t

0
e−ru

{
DuG

∗
Am(u, Su−) + rSu−DsG

∗
Am(u, Su−)

− rG∗
Am(u, Su−) + 1

2
D2

ssG
∗
Am(u, Su−)cu S2

u−

+
∫

�G∗
Am(u, Su− x)Ku(dx)

}
du (4.14)

= G∗
Am(0, s) + Mt + At . (4.15)

Here � f(u, s, x) = f(u, s(1 + x))− f(u, s)− Ds f(u, s)xs, Mt is a local martingale w.r.t.
P, Mt = ∫ t

0 e−ruDsG
∗
Am(u, Su−)dSu and At is a process of locally finite variation.

Now we obtain by definition of GAm and (4.6) that

GAm(0, s) = sup
τ∈T

Ee−rτ g(Sτ ) ≥ Ee−rτ∗
g(Sτ∗) = Ee−rτ∗

G∗
Am(τ∗, Sτ∗).
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Applying the variational condition (V) this implies that on the interval [0, τ∗] the left-hand
side of (4.3) is zero and thus on [0, τ∗]

e−rtG∗
Am(t, St)

= G∗
Am(0, s) + Mt +

∫ t

0
e−ru

{1

2
D2

ssG
∗
Am(u, Su−)S2

u−
(
cu − c∗(u, Su−)

)
+

∫
�G∗

Am(u, Su−, x)
{

Ku(dx) − K∗
u (Su−, dx)

}}
du. (4.16)

By the propagation of convexity assumption (PC) and the ordering assumption (CO)
e−rtG∗

Am(t, St) is a local submartingale on [0, τ∗] and thus by upper boundedness and
integrability a submartingale w.r.t. P. As consequence we obtain

GAm(0, s) ≥ Ee−rτ∗
G∗

Am(τ∗, S∗
τ ) (4.17)

≥ G∗
Am(0, s). �

Remark 4.2 a) As remarked above the propagation of convexity condition and the vari-
ational inequality have been studied in the case of jump diffusion processes.

b) In a similar way also lower bounds of American option prices by those in Markovian
models can be derived.

c) An alternative way to prove of comparison results for American options in the undis-
counted case is to consider in the first step comparison results for any stopping time τ

Eg(Sτ) ≥ E∗g(Sτ ). (4.18)

These are obtained as consequence of the comparison result for semimartingales
in [5] since the stopped process Sτ is a semimartingale with characteristics given by
the stopped versions of the characteristics of S. Several comparison results of this
type are known also for nonconvex functions g. The new problems to consider are
the smoothness condition and the propagation of ordering condition for the stopped
processes. For the optimal stopping time τ = τ∗ of the P∗ stopping problem this is
equivalent to the smoothness and propagation of ordering for G∗

Am used above in the
formulation of Theorem 4.1.

Statement (4.18) for τ = τ∗ implies

GAm(0, s) = sup
τ

Eg(Sτ ) ≥ Eg(Sτ∗) ≥ E∗g(Sτ∗) = G∗
Am(0, s). (4.19)

As a special case of application of Theorem 4.1 we consider two equity models S(i) ,
i = 1, 2 with zero dividends and with positive constant interest rate r > 0 (or more
generally in the case that the interest rate r is greater than the dividend rate d ). We
assume that the underlyings S(i) under the respective martingale measures are solutions
of

dS(i)
t

S(i)
t−

= rdt + σ(i)dWt +
∫

(−1,∞)

x
(

p(i)(dt, dx) − F(i)(dx)
)

dt, (4.20)
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where σ(i) > 0, Wt is a univariate Brownian motion, and p(i) is a homogeneous Pois-
son random measure with finite compensator F(i)(dx)dt. Hence the stochastic logarithm

X(i) = Log(S(i)) is a Lévy process with characteristics X(i) ∼ (r, σ(i)2
, F(i))id; equiv-

alently S(i) is the stochastic exponential of X(i), S(i) = E(X(i)
)
. The American option

prices with payoff g are given by

G
(i)
Am(t, s) = sup

τ∈Tt,T

E
(
e−(τ−t)rg(S(i)

τ ) | S(i)
t = s

)
. (4.21)

The Hamilton–Jacobi–Bellman equation for G(2)
Am now takes the form

(V′) G(2)
Am ∈ C1,2 and

max
{ ∫ (

G(2)
Am(t, s(1 + x)) − G(2)

Am(t, s) − sxDsG
(2)
Am(t, s)

)
F(2)(dx)

+ DtG
(2)
Am(t, s) + rsDsG

(2)
Am(t, s) + σ(2)2

s2

2
D2

ssG
(2)
Am(t, s)

− rG(2)
Am(t, s), g(s) − G(2)

Am(t, s)
}

= 0.

(4.22)

Zhang (1994, Proposition 3.5) establishes that (4.22)holds (in terms of the logarithm log S(2))
but in general the derivatives have to be taken in weak sense. The propagation of convexity
property (PC) is established in Pham (1997). As consequence Theorem 4.1 implies:

Corollary 4.3 Let g : R+ → R+ be convex and S(i) = E(X(i)
)
, i = 1, 2, with X(i) ∼

(r, σ(i)2
, F(i))id, S(i)

0 = s. Assume that the value function G(2)
Am satisfies Assumption

(V′) and that the linking process G(2)
Am(t, S(1)

t ) is bounded above and integrable. If the
differential characteristics of X(i) satisfy the ordering conditions

σ(1) ≥ σ(2),∫
f(x)F(1)(dx) ≥

∫
f(x)F(2)(dx), (4.23)

for all non-negative f ∈ Fcx, then

G(1)
Am(0, s) ≥ G(2)

Am(0, s). (4.24)

5 Barrier options
In this section we consider comparison of single-barrier options of European type without
rebate in univariate models. The terminal payoff of a knock-out type barrier option on an
underlying S∗ with barrier β : [0, T ] → R+ and payoff function g is given by

g(S∗
T )1{ηS∗

t >ηβ(t),∀t∈[0,T ]}, η ∈ {−1, 1}. (5.1)
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For η = 1, (5.1) is the terminal payoff of a down-and-out barrier option, for η = −1 it
is the terminal payoff of an up-and-out barrier option. We denote the value function of
a down-and-out barrier option with barrier β(t) by

Gout(t, s) = E
(
g(S∗

T )1{S∗
u>β(u),∀u∈[t,T ]}|S∗

t = s
) = GS∗

out(t, s), (5.2)

and the value function of a up-and-out barrier option with barrier β(t) by

Gout(t, s) = E
(
g(S∗

T )1{S∗
u<β(u),∀u∈[t,T ]}|S∗

t = s
)
. (5.3)

Similarly, a knock-in type barrier option has terminal payoff

g(S∗
T )1{ηS∗

t <ηβ(t),∃t∈[0,T ]}, η ∈ {−1, 1}, (5.4)

where η = 1 corresponds to a down-and-in barrier option, and η = −1 to an up-and-in
barrier option, and corresponding value functions Gin(t, s) and Gin(t, s). A barrier option
is said to be regular, if g(β(T )) = 0. For down-type barrier options we assume S0 > β(0)

and for up-type barrier options we assume S0 < β(0).
It is of interest to distinguish the case with pure barrier β(t) > 0 for all t ∈ [0, T ], and

with discounted barrier β(t)e−b(T−t), β > 0, where b is the drift of the underlying S under
an equivalent martingale measure. In an equity model, if S is a stock with continuously
compounded annual dividend yield d, the drift is b = r − d, where r is the risk-free rate
of interest. In foreign exchange markets, where S is an exchange rate between a domestic
and a foreign currency, b = rdom − rfor, where rdom and rfor denote the domestic and the
foreign interest rate, respectively.

For a one-dimensional diffusion model, Eriksson (2004, 2006) establishes monotonic-
ity in the diffusion coefficient for the various types of barrier options that are given above.
These ordering results depend on the drift coefficient of the underlying S. For b = 0 it
is shown that for regular down-and-out and up-and-out contracts and down-and-in and
up-and-in contracts this monotonicity result holds true.

We assume that the value functions of the barrier options with underlying S∗ satisfy
a PIDE that is of the form of the Kolmogorov-backward equation. Additionally to the
terminal boundary condition, in the case of barrier option a boundary condition in the
space variable occurs. In the sequel we discuss the case b = 0, the cases b �= 0 are treated
similarly. Explicitly we consider comparison of down-and-out barrier options on one-
dimensional underlyings S, S∗ in a market model with zero interest rate. We assume that
S, S∗ are positive martingales, S ∼ (0, cS, K S)id, S∗ ∼ (

0, cS∗
(t, S∗

t ), K S∗
(t, S∗

t , ·))id.
The case r > 0 can be dealt with similarly. We also assume that S∗ is Markovian. The
value function Gout(t, s) satisfies the Kolmogorov backward equation

Dt Gout(t, s) + 1

2
D2

ssGout(t, s)cS∗
(t, s) +

∫
(�Gout)(t, s, y)K S∗

(t, s, dy) = 0, (5.5)

on (β,∞), subject to boundary conditions

Gout(t, s) = 0, s ≤ β for all t ∈ [0, T ],
Gout(T, s) = g(s), s > β,

cp. Cont et al. (2004). We obtain the following ordering result for down-and-out barrier
options.
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Theorem 5.1 (Convex ordering of barrier options, upper bound) Let S ∼ (
0, cS,

K S
)

id, S∗ ∼ (0, cS∗
(t, s), K S∗

(t, s, ·))id be one-dimensional positive martingales, S∗
Markovian. Let β = β(t) ≥ 0 be a barrier and g be a payoff function g : R+ → R+, such
that g is convex on (inf β(t),∞). Assume that Gout(t, St ) is lower bounded and integrable,
and that Gout(t, s) ∈ C1,2([0, T ]×R+). Futher assume that that propagation of convexity
holds i.e. Gout(t, ·) ∈ Fcx, and that the differential characteristics of S, S∗ are ordered

cS
t (ω) ≤ cS∗

(t, St−(ω)),∫
(−1,∞)d

f(t, St−(ω), x)K S
ω,t(dx) ≤

∫
(−1,∞)d

f(t, St−(ω), x)K S∗
t (St−(ω), dx), (5.6)

λ\ × Q-a.e., for all f : [0, T ] × Rd+ × (−1,∞)d → R with f(t, s, ·) ∈ Fcx such that the
integrals exist. Then the down-and-out barrier option prices are ordered

E
(
g(ST )1{St>β(t),∀t∈[0,T ]}

) ≤ E
(
g(S∗

T )1{S∗
t >β(t),∀t∈[0,T ]}

)
. (5.7)

Proof: We sketch the proof, which is based on the same approach as in the proofs of the
comparison results of Section 3. Let τβ(t) := inf{t > 0 : St ≤ β} denote the time at
which S first crosses the barrier β. Then it follows from Itô’s formula and the Kolmogorov
backward equation in (5.5) that

Gout(t ∧ τβ, St∧τβ )

= Gout(0, S0) + Mt∧τβ

+
∫ t∧τβ

0

{
D2

ssGout(u, Su−)
(
cS

u − cS∗
(u, Su−)

)
+

∫ t∧τβ

0
(�Gout)(u, Su−y)

(
K S

u (dy) − K S∗
(u, Su−, dy)

)}
du

(5.8)

For t = T holds Gout(T ∧ τβ, ST∧τβ ) = 0 on {T > τβ}. Therefore we obtain from (5.8)
using the ordering assumptions in (5.6)

EGout(T ∧ τβ, ST∧τβ ) = EGout(T ∧ τβ, ST∧τβ )1{T≤τβ}
= Eg(ST )1{T≤τβ}
≤ Gout(0, S0) = Eg(S∗

T )1{T≤τ∗
β }

(5.9)

where τ∗
β = inf{t > 0 : S∗

t ≤ β(t)}. This implies the inequality in (5.7). �

Remark 5.2 Eriksson (2004, 2006) establishes the propagation of convexity condition
Gout(t, ·) ∈ Fcx for diffusion models for several types of single barrier options. He uses
this property to derive upper and lower bounds for barrier options prices for stochastic
volatility models S ∼ (0, cS, 0)id compared to diffusion models S∗ ∼ (0, cS∗

(t, s), 0)id.
For this case also the differentiability condition Gout(t, s) ∈ C1,2 is satisfied and thus
Theorem 5.1 can be seen as an extension of Eriksson’s results. Is remains however to
investigate the propagation of convexity property for further types of barriers and in
further models.
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