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Abstract

Some classical results on risk bounds as the Fréchet bounds, the Hoeffding–Fréchet bounds
and the extremal risk property of the comonotonicity dependence structure are used to describe
worst case dependence structures for portfolios of real risks. An extension of the worst case
dependence structure to portfolios of risk vectors is given. The bounds are used to (re-)derive
and extend some results on optimal contingent claims and an optimal (re-)insurance contracts.

1. Risk bounds and comonotonicity

For a risk vector X = (X1, . . . , Xn) of risks Xi with distributions Pi resp. distribution functions
Fi it is a classical problem to determine (sharp) bounds for a risk functional of the form EΨ(X)
induced by dependence between the components Xi of X . The class of all possible dependence
structures is given by the Fréchet classM(P1, . . . , Pn) of joint distributions with marginals Pi. For
the case of real risks one can consider equivalently the class F(F1, . . . , Fn) of joint distribution
functions with marginal distribution functions Fi ∼ Pi.

The sharp upper and lower dependence bounds for the risk function Ψ are given by

M(Ψ) = sup

{∫
ΨdP ;P ∈M(P1, . . . , Pn)

}
and m(Ψ) = inf

{∫
ΨdP ;P ∈M(P1, . . . , Pn)

}
.

(1)

They are called (generalized) upper resp. lower Fréchet bounds. Typical risk functionals of
interest are in the case of real risks Xi risk functionals of the joint portfolio like (

∑n
i=1Xi −K)+,

1[t,∞)(
∑n

i=1 Xi) or maxiXi leading to bounds for the excess of loss, for the value at risk and for
the maximal risk of the joint portfolio.
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The following three examples of sharp risk bounds are classical examples of generalized Fré-
chet bounds.

B1) Sharpness of Fréchet bounds
If Xi are real random variables with distribution functions Fi, 1 ≤ i ≤ n, then for the distribution
function F = FX of X = (X1, . . . , Xn) the following bounds are sharp:

Fc(x) :=
( n∑
i=1

Fi(xi)− (n− 1)
)

+
≤ F (x) ≤ F c(x) := minFi(xi). (2)

The upper bound F c(x) is the distribution function of the comonotonic vectorXc := (F−1
1 (U),

. . . , F−1
n (U)) = (Xc

1, . . . , X
c
n) whereU ∼ U(0, 1). In consequence the upper bound in (2) is sharp.

The lower bound Fc(x) is a distribution function if n = 2 and then corresponds to the antithetic
(countermonotonic) vector

Xcm := (F−1
1 (U), F−1

2 (1− U)) = (Xcm
1 , Xcm

2 ).

The bounds in (2) go back to Fréchet (1951) and Hoeffding (1940) for n = 2. The upper and
lower bounds were described in Dall’Aglio (1972). Sharpness of the lower bound in (2) was first
given in Rü1 (1981).

B2) Hoeffding–Fréchet bounds
For real random variables X1, X2 Hoeffding (1940) found the following representation of the
covariance:

Cov(X1, X2) =

∫ ∫
(F (x, y)− F1(x)F2(y))dxdy. (3)

Together with the Fréchet bounds in (2) this representation implies the sharp upper and lower
Hoeffding–Fréchet bounds:

Cov(F−1
1 (U), F−1

2 (1− U)) ≤ Cov(X1, X2) ≤ Cov(F−1
1 (U), F−1

2 (U)), (4)

or, equivalently,

EF−1
1 (U)F−1

2 (1− U)) ≤ EX1X2 ≤ EF−1
1 (U), F−1

2 (U)). (5)

The comonotonic resp. countermonotonic vectors are the unique (in distribution) vectors which
attain the upper resp. lower risk bounds in (4), (5).

If V ∼ U(0, 1) is a random variable uniformly distributed on (0, 1) and independent of X1, X2

then defining the distributional transform

Ui := Fi(Xi, V ) = τXi
, i = 1, 2, (6)

where Fi(x, λ) := P (Xi < x) + λP (Xi = x) are the modified distribution functions. Then

Ui ∼ U(0, 1) and Xi = F−1
i (Ui) a.s. (7)

1Rüschendorf is abbreviated with Rü in this paper.
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In fact the pair (U1, U2) is a copula vector of X (see Rü (1981, 2009)). Further the pairs

(X1, F
−1
2 (F1(X1, V ))) = (X1, F

−1
2 (τX1))

and (X1, F
−1
2 (1− F1(X1, V ))) = (X1, F

−1
2 (1− τX1))

(8)

are comonotonic resp. countermonotonic pairs with marginal distribution functions F1, F2 and
thus attain the upper resp. lower Hoeffding–Fréchet bounds in (5). The interesting point in (8) is
that the solution can be written as pair (X1, F

−1
2 (τX1)) resp. (X1, F

−1
2 (1−τX1)) with distributional

transform τX1 = F1(X1, V ) which is increasing in (X1, V ).

B3) Comonotonic vector as worst case dependence structure
The third classical result concerns sharp upper bounds on the excess of loss. It states that the
comonotonic vector Xc = (F−1

1 (U), . . . , F−1
n (U)) is the worst case dependence structure w.r.t.

excess of loss. Formulated in terms of convex ordering ≤cx it says:

If Xi ∼ Fi, 1 ≤ i ≤ n, then
n∑
i=1

Xi ≤cx

n∑
i=1

F−1
i (U). (9)

This result was first established in Meilijson and Nadas (1979) together with the following
equivalent representation: For all d∗ ∈ R1 holds

sup
Xi∼Fi

E
( n∑
i=1

Xi − d∗
)

+
= E

( n∑
i=1

F−1
i (U)− d∗

)
+

= Ψ+(d) := inf∑n
i=1 di=d

∗

n∑
i=1

E(Xi − di)+.

(10)

For continuous distribution functions one can choose a solution (d∗i ) of (10) as

d∗i = F−1
i

(
F∑n

i=1X
c
i
(d∗)

)
. (11)

In general, if d∗ is a u0-quantile of L(
∑n

i=1X
c
i ), then d∗i can be chosen as u0-quantiles of Fi.

As consequence of (9) one obtains that

Ψ
( n∑
i=1

Xi

)
≤ Ψ

( n∑
i=1

Xc
i

)
(12)

for all law invariant convex risk measures Ψ (see Föllmer and Schied (2004), Burgert and Rü
(2006)). Thus the comonotonic risk vector is in this sense a universal worst case dependence
structure for the joint portfolio.

2. Worst case dependence for risk vectors

In the case that the components Xi of the risk vector X are d-dimensional, 1 ≤ d, there does
not exist a universal worst case dependence structure corresponding to the comonotonic vector in
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d = 1. Several aspects of this problem have been described in Rü (2004) and Puccetti and Scarsini
(2010). Corresponding to each law invariant risk measure Ψ there corresponds one worst case
dependence structure which is described in Rü (2006, 2010).

Let for a density vector Y = (Y1, . . . , Yd) with Yi ≥ 0, EYi = 1, 1 ≤ i ≤ d, with distribution
µ

Ψµ(X) := sup{EX̃ · Y ; X̃
d
= X} (13)

denote the max-correlation risk measure in direction Y (resp. µ) as introduced in Rü (2006).
Then Ψµ(X) defines a law invariant convex risk measure defined for risk vectors X ∈ Rd. Any
lsc convex law invariant risk measure Ψ on Lpd(P ), the class of risk vectors with components
Xi ∈ Lp(P ), has a representation as

Ψ(X) = sup
µ∈A

(Ψµ(X)− α(µ)), (14)

whereA is a weakly closed class of scenario measures and α(µ) is a law invariant penalty function.
Thus the max-correlation risk measures play in the multivariate case a similar role as the spectral
risk measures in d = 1 and are the building blocks of the class of convex, law invariant risk
measures.

The worst case dependence structure of a joint portfolio
∑n

i=1Xi with Xi ∈ Rd, Xi ∼ Fi w.r.t.
a law invariant convex risk measure Ψ as in (14) is defined as X∗i ∼ Fi, 1 ≤ i ≤ n, such that

Ψ
( n∑
i=1

X∗i

)
= sup

Xi∼Fi

Ψ
( n∑
i=1

Xi

)
. (15)

Its determination involves two steps:

Step 1) Determine a worst case scenario measure µ∗ ∈ A solving an optimization problem of the
form

Fa(µ
∗) = sup

µ∈A
Fa(µ), (16)

where Fa(µ) =
∑n

i=1 Ψ(Xi)−α(µ) is the sum of the marginal risks. Fa(µ) depends only
on the marginals Fi.

Step 2) Let X∗i ∼ Fi, 1 ≤ i ≤ n be µ∗-comonotone, i.e. for some Y ∗ ∼ µ∗

X∗i ∼oc Y
∗, 1 ≤ i ≤ n. (17)

All X∗i are optimally coupled to the same vector Y ∗, 1 ≤ i ≤ n, in the L2-sense, i.e. they
solve the classical mass transportation problem

E‖X∗i − Y ∗‖2 = inf{E‖Xi − Y ‖2;Xi ∼ Fi, Y ∼ µ}. (18)

Step 1) and Step 2) imply that

(X∗1 , . . . , X
∗
n) is a worst case dependence structure w.r.t. Ψ. (19)

One could call the vector X∗ = (X∗1 , . . . , X
∗
n) in analogy to the case d = 1 a Ψ-comonotonic vec-

tor. Some examples like elliptical distributions, Archimedian copulas and location-scale families
are discussed in Rü (2006, 2010). In general both steps needed to determine worst case dependent
vectors can be done only numerically.
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3. Applications of dependence bounds

Our aim in this section is to use the classical dependence bounds for risk functionals to derive in a
simple and unified way some results on the optimization of financial products and of (re-)insurance
contracts.

3.1. Optimal contingent claims

As a step to derive optimal portfolio results as in the classical paper of Merton (1971), He and
Pearson (1991a,b) formulated the static problem of optimal claims. This also fitted with economic
theory on optimal investments following the Markowitz theory. As reference we mention Merton
(1971) and for more recent formulation Dybvig (1988), Dana (2005), Schied (2004), and Föllmer
and Schied (2004). The problem of cost efficient options was formulated in Dybvig (1988) and
discussed in detail in Bernard and Boyle (2010) and Bernard et al. (2011a,b).

3.1.1. OPTIMAL INVESTMENT PROBLEM

Given an investment (claim) X and a price measure Q = ϕ · P with price density ϕ w.r.t. P the
optimal investment problem is formulated as follows:

Find an optimal investment C∗ such that

EQC
∗ =

∫
ϕC∗dP = inf

C≤cxX
. (20)

C∗ has the lowest price under all investments C, which are less risky thanX in the sense of convex
order ≤cx. The minimal price

e(X,ϕ) := EQC
∗ (21)

is called reservation price in Jouini and Kallal (2001). The following result is stated in Dybvig
(1988), Dana (2005), and Föllmer and Schied (2004) in various generality.

Theorem 3.1 (Optimal investment) Let X be an investment with FX = F and let ϕ be a price
density. Then the reservation price is given by

e(X,ϕ) =

∫ 1

0

F−1
ϕ (1− t)F−1(t)dt. (22)

An optimal investment is given by

C∗ = F−1(1− τϕ(ϕ;V )), (23)

where τϕ is the distributional transform of ϕ (see (8)).

Proof. By the Hoeffding–Fréchet bounds in (5) for any investment C

Aϕ(C) := inf
C̃∼C

∫
ϕC̃dP =

∫ 1

0

F−1
ϕ (1− t)F−1

C (t)dt. (24)
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Also by a well-known stochastic ordering result

C1 ≤cx C2 implies
∫ 1

0

h(t)F−1
C1

(t)dt ≥
∫ 1

0

h(t)F−1
C2

(t)dt

for decreasing functions h. This implies that

inf
C≤cxX

Aϕ(C) = Aϕ(X) = e(X,ϕ) =

∫ 1

0

F−1
ϕ (1− t)F−1(t)dt.

The representation of the optimal claim in (23) by the distributional transform follows from the
fact that the pair (ϕ,C∗) attains the lower Fréchet bound (see (8)).

Remark 3.1 a) (C∗, ϕ) is a pair of antithetic variables. The distribution of the optimal pair is
unique and is given by the anticomonotone distribution. Defining

C̃ := E(C∗ | ϕ) =

∫ 1

0

F−1(1− τϕ(ϕ, v))dv, (25)

then C̃ = g(ϕ) where g ↓ is a decreasing function of the price density ϕ alone. Further,
C̃ ≤cx C and EQC̃ = EQC

∗. Thus there exists an optimal investment C∗ = g∗(ϕ), g∗ ↓ which
is a decreasing function of the price density ϕ.

b) Transformed measure. Defining the transformed measure

Q∗ := ϕ∗P with ϕ∗ := F−1(1− τF (X, V )), (26)

then ϕ∗ is decreasing in X and

e(X,ϕ) = EQC
∗ = EQ∗X. (27)

Thus the reservation price is identical to the expectation of X w.r.t. the transformed price
measure Q∗. Q∗ describes a worst case price density for the claim X .

c) Path dependent options. Let S = (St)0≤t≤T be a price process and assume that the price
density ϕ is a function of ST , ϕ = ϕ(ST ), then

C∗ = g(ST ). (28)

Thus any path dependent option C = f(S) can be improved by a European option

C∗ = g(ST ).

If ϕ is increasing (decreasing), then g can be chosen decreasing (increasing). For this obser-
vation see Bernard et al. (2011b).

d) Cost efficient options. Given an option X with distribution function F we consider the class
C = C(F ) of all options which have the same payoff distribution as X ,

C = {C;FC = F} = C(X). (29)
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As corollary Theorem 3.1 implies

Theorem 3.2 (Cost efficient claims) For a given claim X and price density ϕ the claim

C∗ := F−1(1− τϕ(ϕ, V )) ∈ C(X) (30)

is a cost efficient claim, i.e.
EQC

∗ = inf
C∈C(X)

EQC.

Proof. For the proof note that any C ∈ C(X) satisfies that C ≤cx X . Thus Theorem 3.2 follows
from Theorem 3.1.

The notion of cost efficient claims was introduced in Dybvig (1988) and studied in the discrete
case. It was extended in recent papers in Bernard and Boyle (2010) and Bernard et al. (2011b) to
the case of continuous distributions. Several explicit results on lookback options, Asian options or
related path dependent options in Black–Scholes type models are given in these papers.

3.1.2. MINIMAL DEMAND PROBLEM

Closely related to the optimal investment problem is the minimal demand problem. Given a law
invariant convex risk measure Ψ, a price measure Q = ϕP and a budget set

B = {C;C claim, EQC ≤ c}. (31)

The minimal demand problem aims to find a claim C∗ in the budget set with minimal risk

C∗ ∈ B; Ψ(C∗) = inf{Ψ(C);C ∈ B}. (32)

This problem has been discussed in Dana (2005), Schied (2004), and Föllmer and Schied
(2004). An existence result is obtained in these papers for lsc convex risk measures. For law
invariant convex risk measures the Hoeffding–Fréchet bounds imply similarly as in Theorem 3.1.

Theorem 3.3 (Minimal demand problem) There exists a solution C∗ of the minimal demand
problem (32) such that

C∗ = g(ϕ) for some g ↓ .
Remark 3.2 For the corresponding utility maximization problem w.r.t. an expected utility function
U

U(C∗) = Eu(C∗) = sup
C∈B

U(C),

where u is a utility function explicit solutions are derived in He and Pearson (1991a,b) and many
related papers for the standard utility functions. The solutions are obtained in the form

C∗ = I(λQ(c))ϕ, I(x) := (u′)−1(x), (33)

where λQ(x) is a constant chosen such that

EQC
∗ = c.

The main methods applied to solve this problem are a duality approach closely connected to a
martingale approach (see Merton (1971), He and Pearson (1991a,b), and Kramkov and Schacher-
mayer (1999) and a projection approach based on ϕ-divergence distances (see Goll and Rü (2001)
and Biagini and Frittelli (2005, 2008)).
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3.2. Optimal (re-)insurance contracts

Optimal (re-)insurance contracts can be seen as particular instances of the optimal risk allocation
problem. In this section we discuss some variations on the optimality of the classical stop-loss con-
tracts which are obtained from the risk bound results for the comonotonic risk vector in Section 1,
B1)–B3).

A (re-)insurance contract I(X) for a risk X ≥ 0 is defined by a function I = R+ → R+,
0 ≤ I(x) ≤ x, I(0) = 0. Let I denote the class of all reinsurance contracts (see Kaas et al.
(2001)). The premium to be paid for the contract I(X) is given by

πI(X) = (1 + ϑ)EI(X). (34)

The stop-loss contract Id(X) – with retention limit d – is defined by

Id(X) = (X − d)+. (35)

By a classical result going back to Arrow (1963, 1974) the stop-loss contract minimizes the re-
tained risk X − I(X) given a fixed premium π0. The strongest version of this result is given in
(Kaas et al. 2001, Example 10.4.4, p. 238).

Theorem 3.4 (Optimality of stop-loss contracts) For any I ∈ I with EI(X) = EId(X) = π0
1+ϑ

with retained risks RI(X) := X − I(X) and Rd(X) := X − Id(X) holds

Rd(X) ≤cx RI(X). (36)

Remark 3.3 The proof in Kaas et al. (2001) is based on stochastic ordering and in particular on
the Karlin–Novikov criterion for convex ordering. As consequence of (36) it holds for any law
invariant convex risk measure Ψ that

Ψ(Rd(X)) ≤ Ψ(RI(X)).

This result is reproved in Cheung et al. (2010a).

As in classical Markowitz theory we can formulate a corresponding efficient boundary result.
Let Ψ be a law invariant convex risk measure and define for I ∈ I

µI := E(X − I(X)), σ2
Ψ(I) := Ψ(X − I(X)),

µ(d) := µId , σ2
Ψ(d) := σ2

Ψ(Id).

Corollary 3.5 Consider the risk sets RΨ := {(µI , σ2
Ψ(I)); I ∈ I} of all reinsurance contracts

and the risk set TΨ := {(µ(d)), σ2
Ψ(d)); d ≥ 0} of all stop-loss contracts. Then the risk set TΨ of

the stop-loss contracts is the lower boundary of the risk setRΨ.

Proof. The proof is similar as in the classical variance case.

An interesting risk minimizing insurance protection problem for risks of joint portfolios was
introduced in a recent paper of Cheung et al. (2010b). For a portfolio X =

∑n
i=1 Xi with Xi ∼ Fi

the risk is strongly influenced by the dependence of the components Xi of the joint portfolio. Let



Risk bounds, worst case dependence, and optimal claims and contracts 9

In = {I = (I1, . . . , In); Ij reinsurance contracts} denote the set of reinsurance contracts of the
joint portfolio. Let π(I) = (1 − ϑ)

∑n
k=1EIk(Xk) denote the premium of contract I and π0 be a

given level of premium. I∗ ∈ In is called optimal worst case reinsurance contract if it solves the
following problem:

RΨ(π0) := inf
I∈In

π(I)=π0

sup
Xi∼Fi

Ψ
( n∑
k=1

(Xk − Ik(Xk))
)
, (37)

where Ψ is a law invariant convex risk measure. Thus with problem (37) one aims to find ro-
bust versions of reinsurance contracts which take into account the possible worst case dependence
structure in the portfolio.

Cheung et al. (2010b) show in a recent paper that certain stop-loss contracts solve problem
(37). This result can be obtained in a simplified way from the risk bound results in Section 1,
which also allow to extend the result to general distributions not assuming continuity and strictly
increasing distribution functions.

Theorem 3.6 (Optimal worst case reinsurance contracts) The stop-loss contracts

I∗k(x) = Id∗k(x) = (x− d∗k)+, 1 ≤ k ≤ n

as defined in (40) are optimal worst case reinsurance contracts at premium π(I) = π0 for any
choice of law invariant convex risk measure Ψ.

Proof. The proof follows from the risk bounds in Section 1 by the following two steps.

1) Since for I ∈ In : Xk − Ik(Xk) = (id − Ik)(Xn) is an increasing function of Xk. It follows
from B1) and B3) that for any Xk ∼ Fk and I ∈ In

n∑
k=1

(Xk − Ik(Xk)) ≤cx

n∑
n=2

(Xc
k − Ik(Xc

k)), (38)

where Xc = (Xc
k) is the comonotonic vector.

The comonotonic vector Xc is by (9) the worst case dependence structure. As consequence of
(38) we obtain

Ψ
( n∑
k=1

(Ik − Ik(Xk))
)
≤ Ψ

( n∑
k=1

(Xc
k − Ik(Xc

k))
)

(39)

for any law invariant convex risk measure Ψ (see (12)).

2) Let d∗ ≥ 0 satisfy E(
∑n

k=1X
c
k − d∗)+ = π0

1+ϑ
, then there exist d∗k ≥ 0 such that

∑n
k=1 d

∗
k = d∗

and ( n∑
k=1

Xc
k − d∗

)
+

=
n∑
k=1

(Xc
k − d∗k)+ (40)

(see (11) for the choice of d∗k.).

As a result these two points together with the classical optimality result for stop-loss contracts
in Theorem 3.4 imply optimality of (I∗k).

Remark 3.4 Theorem 3.6 can be extended to the worst case risk problem with upper bounds on
the premiums π(I) ≤ π0. This follows from the fact, that d∗i = d∗i (π0) are increasing in π0 (see
(11) for the continuous case). For this result and examples see Cheung et al. (2010b).
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