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Abstract

In this paper, we survey, extend and improve several bounds for the distri-
bution function and the tail probabilities of portfolios, where the dependence
structure within the portfolio is completely unknown or only partially known.
We present various methods for obtaining bounds based on rearrangements,
duality theory, conditional moments and reduction techniques. In particular,
we consider the case where only the simple marginal distributions are known,
the general overlapping marginals case where certain joint distributions are
known and the case of additional restrictions on the dependence structure, as,
for example, the restriction to positive dependence. Some of the bounds pose
a considerable numerical challenge. We discuss the quality of the bounds and
numerical aspects in some examples.

1 Introduction

For a risk vector X = (X1, . . . , Xd ), we consider the problem to find good (best pos-
sible) bounds for the distribution function and tail probability of the joint portfolio
S = ∑d

i=1 Xi , when the marginal distribution functions Fi of Xi are known but the
dependence structure between the components of X is either completely or par-
tially unknown. The problem of obtaining bounds for the distribution of the sum
of dependent risks has received considerable attention in the literature, since it has
relevant applications. In quantitative risk management within banking and insur-
ance, bounds for the distribution function or for the tail risk are needed to compute
bounds on quantile-based risk measures for regulatory issues. Bounds for the dis-
tribution functions directly imply corresponding bounds for the Value-at-Risk of S,
defined as

VaRα(S) = inf{x ∈R : P (S ≤ x) ≥α}, for α ∈ [0,1].

For more details on this, we refer to the introduction in [EP]1 (2010a) and to [EP]
(2010b).

AMS 2010 subject classification: Primary: 60E15, 60E05
Key words and phrases: Fréchet bounds, overlapping marginals, dependent risks, mass transportation
theory, joint portfolio.

1 Embrechts and Puccetti is abbreviated within this paper with [EP], Puccetti and Rüschendorf with [PR],
Rüschendorf with [Rü].
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The problem of deriving risk bounds has a long history and various techniques
have been developed to solve these problems. Let

M(s) = sup{P (X1 +·· ·+Xd ≥ s) : FX ∈F(F1, . . . ,Fd )} , (1.1a)

m(s) = inf{P (X1 +·· ·+Xd ≥ s) : FX ∈F(F1, . . . ,Fd )} , (1.1b)

denote the sharp upper and lower Fréchet bounds over all possible dependence struc-
tures, that is over the Fréchet class F(F1, . . . ,Fd ) of all joint distributions on Rd with
given marginals F1, . . . ,Fd . Knowledge of the sharp bounds M and m implies directly
knowledge of sharp bounds for the Value-at-Risk, as

VaRα(S) ≤ M−1(1−α).

Equivalently to (1.1), we can also consider the modified problems

M+(s) = sup{P (X1 +·· ·+Xd > s) : FX ∈F(F1, . . . ,Fd )} ,

m+(s) = inf{P (X1 +·· ·+Xd > s) : FX ∈F(F1, . . . ,Fd )} .

Using that P (S > s) = 1 − P (S ≤ s), we can also consider sharp upper and lower
bounds for the distribution function of the joint portfolio, that is

1−M+(s) ≤ P (S ≤ s) ≤ 1−m+(s).

In the following, we will derive bounds for any of the equivalent forms above.
Explicit results for the sharp Fréchet bounds (1.1) were derived independently

for the case d = 2 in Makarov (1981) and [Rü] (1982):

sup{P (X1 +X2 ≤ s) : Xi ∼ Fi } = inf
x∈R

F1(x−)+F2(t −x), (1.2a)

inf{P (X1 +X2 < s) : Xi ∼ Fi } = sup
x∈R

F1(x−)+F2(t −x)−1. (1.2b)

In the above expressions, F1(x−) denotes the left-hand limit of F1 in x. In some
examples like discrete and continuous uniform distributions and Binomial distri-
butions exact bounds were given, for the general case d ≥ 3, in [Rü] (1982,1983a).
The bounds in (1.2) have been extended to d ≥ 3 (see Frank et al. (1987); Denuit
et al. (1999); Embrechts et al. (2003); [Rü] (2005)) and yield the so called standard
bounds. In contrast to the case d = 2, the standard bounds are no longer sharp. Es-
sential improvements of the standard bounds were developed in a series of papers
in [EP] (2006a,b,2010a). In these papers dual bounds are given for M and m which
are based on a general dual representation derived from mass transportation theory.
For d ≥ 3 only in the recent paper Wang and Wang (2011) exact bounds were found
in the homogeneous case that F1 = ·· · = Fd = F where F is a distribution on [0,1]
with monotonically non increasing (nondecreasing) density f .

In Section 2, we review and extend several results for the case of simple marginals
i.e. for the case where the dependence structure of the portfolio X is completely un-
known. Based on the relation to rearrangement problems, we describe the structure
of couplings which yield the worst case dependence structure, that is which attains
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the Fréchet bounds for the distribution function, respectively for the tail risk. Then,
we extend a recent simple way to calculate sharp bounds given in Wang and Wang
(2011) for the homogeneous case with monotone densities to the case of general in-
homogeneous marginals. We also give a derivation of the standard bounds based
on duality arguments and sketch the proof for the general dual bounds. Apart from
the homogeneous case, the dual bounds are not easy to calculate. We make some
remarks and comments on the numerics and algorithms. In the monotone and ho-
mogeneous case, the dual bounds coincide with the sharp bounds given in Wang
and Wang (2011) indicating that they are more generally of good quality.

Under the restriction of the dependence structure to positive dependence, es-
sential improvements of the bounds are given in Section 3.1. In Section 3.2, we
consider the general case of higher dimensional marginals (overlapping marginals),
where for some system E ⊂ 2d the joint distribution F J of (X j ) j∈J are known for any
J ∈ E . This is a different kind of restriction on the dependence structure. In par-
ticular, this class of dependence models includes the series case where one knows
the distribution functions of (Xi , Xi+1),1 ≤ i ≤ d − 1, the star-like case where E =
{{1, j },2 ≤ j ≤ d} or the case E = {{i , j },1 ≤ i < j ≤ d}, where all the two-dimensional
marginals are known. Under this extended knowledge of the joint dependence struc-
ture, one gets sharper bounds compared to the simple marginal case F(F1, . . . ,Fd ) of
general possible dependence. In the case of star-like systems, one can give an exact
reduction of the problem to the simple marginal case by the conditioning method
described in [Rü] (1991). [EP] (2010a) used this reduction in combination with the
standard bounds to describe improved bounds for the star-like case.

Furthermore, in [EP] (2010a), for the series case a reduction method to the sim-
ple marginal case was introduced and applied in examples. This reduction allows
us to give reasonable (good) bounds for general (overlapping) marginal structures.
In this paper, we extend this reduction technique to the case of general overlapping
marginal systems. In a second step, we introduce an improved class of bounds by
using an additional parameter describing different weights to the marginal compo-
nents. In the final section of the paper, we describe several applications and numer-
ical results on the comparison of the various bounds.

2 Bounds in the case of simple marginals

In this section, we consider the case when the risk vector X = (X1, . . . , Xd ) has given
marginal distribution functions F1, . . . ,Fd while its dependence structure is com-
pletely unknown. The aim is to obtain good bounds on the tail risk P (S ≥ s), resp. on
the distribution function P (S ≤ s), under the assumption that FX , the joint distribu-
tion of X , lies in the Fréchet class F(F1, . . . ,Fd ). In risk management, it is typically of
interest to have good upper bounds for the upper tail risk P (S ≥ s) of the portfolio for
large values of s (as in insurance), or to have good lower bounds for the lower tail risk
P (S ≤ s) for s small, that is for tail losses of the portfolio (as in finance). In general,
it will be difficult to evaluate M(s) and m(s) (or the corresponding bounds on the
distributions) in explicit form. Thus, it is of interest to derive good upper bounds
for M(s) and lower bounds for m(s). In the following, we review and extend sev-
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eral methods to obtain (good) bounds for the Fréchet problems for simple marginal
systems. These methods include the rearrangement method, conditional moment
bounds, the classical standard bounds and the dual bounds. Throughout the pa-
per, for the sake of notational simplicity, we identify probability measures with the
corresponding distribution functions.

2.1 The rearrangement method

The sharp Fréchet bounds M and m, defined in (1.1) describe sharp upper and lower
bounds for the tail risk. The structure of the worst case dependence distributions,
that is of the coupling which leads to the upper and lower bounds in (1.1) can be
described with an account to rearrangement theory.

Let F−1
i (α) = inf{x : Fi (x) ≥ α} denote the generalized right-continuous inverse

of the distribution Fi and let, for A ⊂ [0,1], F−1
i |A be the restriction of F−1

i to the set
A. We write fi ∼r F−1

i |A to indicate that the function fi : A →R is a rearrangement of
F−1

i |A. We refer to [Rü] (1983b) for a basic introduction to the theory of rearrange-
ments.

The optimal Fréchet bounds, then, can be equivalently formulated in terms of
rearrangements (see Theorem 2 in [Rü] (1983b)):

M(s) = sup

{
P

(
d∑

i=1
fi (U ) ≥ s

)
: fi ∼r F−1

i ,1 ≤ i ≤ d

}
, (2.1a)

m(s) = inf

{
P

(
d∑

i=1
fi (U ) ≥ s

)
: fi ∼r F−1

i ,1 ≤ i ≤ d

}
, (2.1b)

where U is a random variable uniformly distributed on (0,1), that is PU = λ is the
Lebesgue measure on (0,1). Based on (2.1), the structure of optimal couplings (i.e.
worst dependence structure) for (1.1) is described in the following theorem; see also
Proposition 3 in [Rü] (1982) and Theorem 4.1 in [PR] (2011).

Theorem 2.1 (Characterization of the worst case dependence structure) For any
marginal distributions F1, . . . ,Fd , we have that:

a) M(s) = 1− inf

{
α ∈ [0,1] : there exist f αi ∼r F−1

i |[α,1],1 ≤ i ≤ d s.t .
d∑

i=1
f αi ≥ s

}
,

m(s) = 1− sup

{
α ∈ [0,1] : there exist f αi ∼r F−1

i |[0,α],1 ≤ i ≤ d s.t .
d∑

i=1
f αi ≤ s

}
.

b) There exist optimal couplings Yi ∼ Fi ,1 ≤ i ≤ d such that P
(∑d

i=1 Yi ≥ s
)= M(s)

and {
Yi > F−1

i (to)
}⊂{

d∑
i=1

Yi ≥ s

}
⊂ {

Yi ≥ F−1
i (to)

}
a.s.,

where t0 = M(s).
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Remark 2.2 (i) Part a) of Theorem 2.1 says that optimal couplings can be deter-
mined by finding the largest possible interval [α,1] such that on [α,1] there ex-
ist rearrangements of F−1

i |[α,1] which sum up to a value larger than s. Sim-
ilarly for the lower bound. This connection to rearrangements has been used
in [PR] (2011) to develop a new and useful algorithm based on discrete rear-
rangements to approximate numerically the sharp Fréchet bounds (1.1). The
algorithm is shown to work well for general inhomogeneous portfolios up to di-
mension about d = 30. We refer to [PR] (2011) for more details on the accuracy
and speed of the rearrangement algorithm. In the case of Uniform and Bino-
mial distributions, the rearrangement technique has been applied in [Rü] (1982;
1983a). It has also been used in Wang and Wang (2011) in the homogeneous
case with monotone densities in [0,1].

(ii) In the case of continuous distributions one gets, in part b) of Theorem 2.1, that{
d∑

i=1
Yi ≥ s

}
= {

Yi ≥ F−1
i (to)

}
a.s., (2.3)

for all 1 ≤ i ≤ d. In the general case, one needs to use a randomization of the
boundary

{
Yi = F−1

i (to)
}
. Equation (2.3) is intuitively obvious: one should use

in each component only the largest part of the distribution.

(iii) Also the lower bound for m(s) is attained in general. If we consider the slightly
modified problem

m+(s) = inf{P (X1 +·· ·+Xd > s) : FX ∈F(F1, . . . ,Fd )} , (2.4)

then inf{P (
∑d

i=1 Yi ) > s} = 1− sup{P (
∑d

i=1 Yi ) ≤ s} and an analogue to part b)
holds. A simple compactness argument shows that the probability in (2.4) has
to be defined differently than in (1.1b) in order to guarantee that the infimum
is attained. For example, note that the problem

inf
{
P (X1 +X2 ≥ 1) : Xi ∼U[0,1],1 ≤ i ≤ 2

}= 0

and does not have a solution.

While the rearrangement method is connected with the construction of (opti-
mal) couplings, we will discuss in the following section a method to calculate bounds
using only simple information on the marginal distributions.

2.2 The conditional moment method

A simple way to obtain bounds for the tail risk of an homogeneous portfolio Fi =
F,1 ≤ i ≤ d , was found recently in Wang and Wang (2011). In that paper, it was shown
that the resulting bound is even sharp if the distribution F has a monotone density
on [0,1] satisfying a moderate moment condition. Moreover, this bound depends
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only on the first conditional moments of F and it is easy to calculate. In the follow-
ing, we extend this conditional moment bound to general marginal distributions
F1, . . . ,Fd .

Let Xi ∼ Fi , Gi = F−1
i be the generalized inverse of Fi , G = ∑d

i=1 Gi and assume
that µi = E[Xi ] exists. For a ∈ [0,1], define Ψ(a) as the sum of the conditional first
moments, that is

Ψ(a) = 1

1−a

∫ 1

a
G(t )d t =

d∑
i=1

E[Xi |Xi ≥Gi (a)] .

The function Ψ is determined by the conditional first moments of the marginal dis-
tributions Fi . Obviously, Ψ is monotonically nondecreasing and Ψ(0) =µ=∑d

i=1µi .

Theorem 2.3 (Method of conditional moments) Let Xi ∼ Fi have first moments µi ,
1 ≤ i ≤ d. Then, for s ≥µ, we have

M(s) ≤ 1−Ψ−(s), (2.5)

where Ψ−(s) = sup{t ∈ [0,1] :Ψ(t ) ≤ s} is the left-continuous generalized inverse of Ψ.

Proof. With Xi ∼ Fi and S =∑d
i=1 Xi , we have

µ=
d∑

i=1
µi = E[S] ≥ E

[
S1{S<s}

]+ sP (S ≥ s) (2.6)

=
∫ P (S<s)

0
G(t )d t + sP (S ≥ s) =µ−

∫ 1

P (S<s)
G(t )d t + sP (S ≥ s).

If P (S ≥ s) > 0, this implies that Ψ(P (S < s)) ≥ s and thus P (S < s) ≥Ψ−(s). As a
consequence, we obtain

P (S ≥ s) ≤ 1−Ψ−(s). (2.7)

Remark 2.4 (i) The conditional bound in (2.5) is sharp if and only if the estimate
in (2.6) is an equality, that is if for the optimal coupling it holds true that {S ≥
s} = {S = s} a.s.. This means, by Theorem 2.1, that the corresponding optimal
rearrangements f αi on [α,1] satisfy

d∑
i=1

f αi (u) = s for all u ∈ [α,1],

with 1−α= M(s). In Wang and Wang (2011), this property is called mixing on
the interval [α,1]. In that paper, it is established that mixing holds true in the
homogeneous case of monotone densities on [0,1] under a moderate moment
condition.
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(ii) In a recent preprint, and independently of our paper, Wang et al. (2011) have
established the conditional bound in (2.5) in the case of continuous marginal
distributions. They used the equivalent form as lower bound for P (S < s) ≥
Ψ−(s) in (2.7). In their paper, there is also an extension of the sharpness result
in Wang and Wang (2011) to the case of distributions with decreasing densities
on an unbounded domain. For unbounded domains, the bound (2.5) typically
fails to be sharp. To be a good bound it is indeed necessary that

d∑
i=1

E
[

Xi |Xi ≥G−1
i (α)

]≈ s.

The construction of the optimal coupling in Wang et al. (2011) leading to the
worst case dependence in the monotone case is therefore different from the con-
struction in the case of bounded domains.

(iii) The method to get upper bounds for M(s) implies directly also a lower bound
for P (S > s). Denoted by H the conditional moment function associated to the
random variable −Xi , we obtain

P (S > s) = 1−P ((−S) ≥ (−s)) ≥ H−1(−s).

Next, we give an extension of the method of conditional moments in Theorem 2.3
which gives good bounds also in the case of unbounded domains. For s ≥ µ and
t ∈ [0,1], define the function Ht as

Ht (t1) = 1

t1 − t

∫ t1

t
G(u)du = E[G(U[t ,t1])], for t1 ≥ t ,

where U[t ,t1] denotes a random variable uniformly distributed on the interval [t , t1].
The function Ht is monotonically nondecreasing in t1 and monotonically non in-
creasing in t . Let Ht (1) ≥ s and G(t ) ≤ s. This allows to define t1(t ) = H−1

t (s). If we
assume continuity of the Fi , then we get

Ht (t1(t )) = s.

Instead of continuity it is enough in the following to postulate existence of t1(t ) such
that the sum of the conditional expectations of the rearrangements on [t , t1(t )] is
equal to s. Next, we define the optimal choice of such t ’s as

t0 = t0(s) = inf
{

t : (Gi |[t , t1(t )]) ,1 ≤ i ≤ d , are mixing
}

,

that is t0 is infimum of all the t ’s such that there exist rearrangements f t
i ∼r Gi |[t , t1(t )]

which satisfy
d∑

i=1
f t

i = E

[
d∑

i=1
Gi |[t , t1(t )]

]
= s. (2.8)

7



Under the mixing assumption (2.8), there exist some t ∈ [0,1] such that t1(t ) > t and
the random variables (Gi |[t , t1(t )]) are mixing. Therefore, as indicated above, we get
random variables Ṽi ∼U[t ,t1(t )] such that

∑d
i=1 Gi (Ṽi ) = s. As a consequence, we also

get some random variables ˜̃Vi ∼ U[t1(t ),1] with
∑d

i=1 Gi ( ˜̃Vi ) ≥ s. Finally, this implies

the existence of random variables Vi ∼ U[t ,1] such that
∑d

i=1 Gi (Vi ) ≥ s. As a result,
we can state the following theorem.

Theorem 2.5 (Extended conditional moment method) Let Xi ∼ Fi ,1 ≤ i ≤ d be
continuous and assume that the mixing condition (2.8) holds. Then, for s ≥ µ we
obtain the lower bound

inf

{
P

(
d∑

i=1
Xi < s

)
: Xi ∼ Fi

}
≥ t0(s).

Remark 2.6 The conditional mixing condition (2.8) is satisfied in the homogeneous
case Fi = F,1 ≤ i ≤ d with density f , if f is decreasing on [t , t1(t )] and if, furthermore,
the moderate moment condition

s/n ≥G(t )(1−1/n)+1/nG(t1(t ))

holds; see Corollary 2.9 in Wang and Wang (2011). In the particular case where F is
concentrated on [0,1] (or on a bounded domain) and t1(t0) = 1 our Theorem 2.3 im-
plies that t0(s) is in fact a sharp bound under the moderate moment condition. This
interesting sharp result for the monotone case is due to Wang and Wang (2011). An
alternative case is obtained when the density of f is unimodal on some admissible in-
terval [t , t1(t )]. In this case, the mixing condition is satisfied, as described in Rüschen-
dorf and Uckelmann (2002). Theorem 2.5 should give very good bounds also in the
unbounded case which is confirmed by the results in Wang and Wang (2011). It also
shows that the problem of establishing further mixing criteria is of interest.

2.3 Standard Bounds

Standard bounds are a natural generalization to arbitrary dimension d of the sharp
bounds in (1.2) in the case d = 2. These bounds were derived in several ways in the
literature, see Frank et al. (1987); Denuit et al. (1999); Embrechts et al. (2003); [Rü]
(2005); and [EP] (2006b).

Theorem 2.7 (Standard Bounds) Let Xi ∼ Fi ,1 ≤ i ≤ d. Then, for any s ∈ R, we have
that

max

{
sup

u∈U (s)

{
F1(x1−)+

d∑
i=2

Fi (ui )

}
− (d −1),0

}

≤ P

(
d∑

i=1
Xi < s

)
≤ min

{
inf

u∈U (s)

{
d∑

i=1
Fi (ui−)

}
,1

}
, (2.9)

where U (s) = {
u = (u1, . . . ,ud ) ∈Rd :

∑d
i=1 ui = s

}
.
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Proofs of (2.9), based on elementary probability, are given in the literature above.
We will derive these bounds as a consequence of the following dual representation
of M(t ) and m(t ); see Theorem 5 in [Rü] (1981).

Theorem 2.8 The problems (1.1a) and (1.1b) have the following dual counterparts:

M(s) = inf

{ d∑
i=1

∫
gi dFi : gi bounded ,1 ≤ i ≤ d with

d∑
i=1

gi (xi ) ≥ 1[s,+∞)

(
d∑

i=1
Xi

)}
,

(2.10a)

m(s) = sup

{ d∑
i=1

∫
fi dFi : fi bounded ,1 ≤ i ≤ d with

d∑
i=1

fi (xi ) ≤ 1[s,+∞)

(
d∑

i=1
Xi

)}
.

(2.10b)

Proof of Theorem 2.7. First, we prove the ≥ in (2.9). Arbitrarily choose a vector
(u1, . . . ,ud ) ∈Rd , such that

∑d
i=1 ui = s. Then, define the functions gi :R→R, ≤ i ≤ d ,

as

g1(x1) =
{

1, if x1 ≥ u1,

0, otherwise,
gi (xi ) =

{
1, if xi > ui ,

0, otherwise,
for 2 ≤ i ≤ d .

We prove that the gi ’s are an admissible choice in (2.10a). Since the gi ’s are non-
negative, it is sufficient to prove that, for any vector (x1, . . . , xd ) ∈Rd with

∑d
i=1 xi ≥ s,

we have that
∑d

i=1 gi (xi ) ≥ 1. Suppose, instead, that
∑d

i=1 gi (xi ) < 1. By definition of
the gi ’s, this implies that gi (xi ) = 0 and, consequently, that xi ≤ ui , 1 ≤ i ≤ d , with
the first inequality (i = 1) being strict. Summing up all the latter inequalities, we
obtain

d∑
i=1

xi <
d∑

i=1
ui = s,

which proves admissibility of the gi ’s. Observing that∫
{x1≥u1}

dF1 = 1−F1(u1−),
∫

{xi>ui }
dFi = 1−Fi (ui ),

and taking the infimum over all (u1, . . . ,ud ) ∈U (s), we obtain

P (S ≥ s) ≤ min

{
inf

u∈U (s)

{
1−F1(u1−)+

d∑
i=2

(1−Fi (ui ))

}
,1

}
,

which is equivalent to the left-hand side of (2.9), considering the trivial bound P (S <
s) ≥ 0.

The proof for the ≤ in (2.9) is similar. Note that, analogously to (2.10b), we can
write:

sup{P (X1 +·· ·+Xd < s) : Xi ∼ Fi ,1 ≤ i ≤ d}

= inf

{ d∑
i=1

∫
fi dFi : fi bounded ,1 ≤ i ≤ d with

d∑
i=1

fi (xi ) ≥ 1(−∞,s)

(
d∑

i=1
Xi

)}
. (2.11)
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Now choose a vector (u1, . . . ,ud ) ∈U (s), and define the functions fi : Bi →R,1 ≤ i ≤
d , as

fi =
{

1, if xi < ui ,

0, otherwise.

Then, it is sufficient to prove that the fi ’s are an admissible choice in (2.11), and
produce the bound

P (S < s) ≤ min

{
inf

u∈U (s)

{
d∑

i=1
Fi (ui−)

}
,1

}
.

ä

As mentioned in Section 1, in general the standard bounds are sharp only when
d = 2. For the fast computation of standard bounds, a numerical method is de-
scribed in Embrechts et al. (2003), while an analytical method is described in [EP]
(2006a). We will not enter into the details of these methods, as standard bounds can
be improved by using dual bounds. Note that the upper and lower standard bounds
in Theorem 2.7 as well as in (1.2) are defined by slight modifications of the infimal
and supremal convolution of the Fi .

2.4 Dual bounds

Dual bounds are a way to improve the standard bounds. This method was intro-
duced in [EP] (2006a,b) and is based on the dual representation of the sharp Fréchet
bounds (1.1) given in Theorem 2.8. In the homogeneous case Fi = F,1 ≤ i ≤ d , this
dual representation for M(s) simplifies to

M(s) = inf

{
n

∫
g dF : g bounded with

d∑
i=1

g (xi ) ≥ 1[s,+∞)

(
d∑

i=1
Xi

)}
. (2.12)

Similarly, for m(s); see Gaffke and Rüschendorf (1981) and [EP] (2006b, eq.(4.2)).
While the dual representations in (2.10) are difficult to evaluate in general, they al-
low to establish good bounds obtained by choosing admissible piecewise linear dual
functions in (2.10). The resulting bounds are called dual bounds.

Theorem 2.9 (Dual Bounds) Let Xi ∼ Fi and F i = 1−Fi be the survival function of
Fi . Then, for any s ∈R, we have

M(s) ≤ D(s) = inf
u∈U (s)

min


∑d

i=1

∫ s−∑
j 6=i u j

ui
F i (t )d t

s −∑d
i=1 ui

,1

 , (2.13a)

m(s) ≥ d(s) = sup
u∈U (s)

max


∑d

i=1

∫ s−∑
j 6=i u j

ui
F i (t )d t

s −∑d
i=1 ui

−d +1,0

 , (2.13b)

where U (s) = {
u ∈Rd :

∑d
i=1 ui < s

}
and U (s) = {

u ∈Rd :
∑d

i=1 ui > s
}
.
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Proof. We give a sketch of the proof of (2.13a). A similar proof has been given in
Theorem 3.2 in [EP] (2006a) for the case of bounds on P (S < s). The bound (2.13a) is
directly obtained by substituting in (2.10a) the admissible functions gi : R→ R,1 ≤
i ≤ d , defined as

gi (xi ) =


0, if xi ≤ ui ,

xi−ui

s−∑d
i=1 ui

, if ui < xi ≤ s −∑
j 6=i u j ,

1, otherwise,

and taking the infimum over all u ∈ U (s). The proof for (2.13b) is analogous and
based on (2.11). In order to obtain (2.13b), it is sufficient to prove that the functions
fi ,1 ≤ i ≤ d , defined as

fi (xi ) =


1, if xi ≤ s −∑

j 6=i u j ,
ui−xi∑d
i=1 ui−s

, if s −∑
j 6=i u j < xi ≤ ui ,

0, otherwise.

are an admissible choice in (2.11), and to take the infimum over all u ∈U (s). ä

In the above proof, if we choose a vector u ∈U (s), that is
∑d

i=1 ui = s, the piece-
wise-linear dual admissible choices becomes piecewise-constant and thus yields
a standard bound. As a consequence, the dual bounds always improve the corre-
sponding standard bounds. In the homogeneous case Fi = F,1 ≤ i ≤ d , the dual
bounds (2.13) have a much simplified expression which we give in (5.3) below for
the case of general overlapping marginals systems.

3 Restrictions on the dependence structure

In this section, we consider some types of restrictions on the dependence structure
which reduce the Fréchet class of all possible dependence structure in Section 2 and
thus leads to better bounds on the distribution function and on the tail probability
of the aggregate risk when this additional information is available.

3.1 Restriction to positive dependent risk vectors

A natural condition which is available in several applications is the condition that
the components of the risk vector X have some positive dependence structure. This
positive dependence structure can be combined with the knowledge of the marginal
distributions F1, . . . ,Fd and leads to improved bounds for the distribution function,
resp. the tail risk. A simple way to describe positive dependence is by the notion of
positive upper orthant dependence (PUOD), resp. positive lower orthant dependence
(PLOD). A random vector X is said to be PUOD if

F X (x) = P (X ≥ x) ≥
d∏

i=1
P (Xi ≥ xi ) =

d∏
i=1

F i (xi ), for all x ∈Rd . (3.1)
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X is said to be PLOD if

FX (x) = P (X ≤ x) ≥
d∏

i=1
P (Xi ≤ xi ) =

d∏
i=1

Fi (xi ), for all x ∈Rd . (3.2)

Moreover, X is called positive quadrant dependent (PQD) if X is both PUOD and
PLOD. These notions belong to the earliest notions of positive dependence in prob-
ability. They were introduced in Lehmann (1966) and supplement and substitute
the more classical notion of positive linear correlation.

Conditions (3.1) and (3.2) can be interpreted by saying that the distribution func-
tion FX , resp. the survival function F X , is dominated by the corresponding distribu-
tion, resp. the corresponding tail function, of the product measure. We can consider
them as partial ordering relations ≤PUOD,≤PLOD,≤PQD on the class of probability
measures on Rd . In this sense, we can consider more general positive dependence
bounds by assuming that FX ≤G where ≤ is any of the above dependence orderings
and G is any other distribution on Rd . The following typically strong improvements
of the risk bounds of the joint portfolio under the additional positive dependence re-
strictions have been given in several similar forms in the literature; see Williamson
and Downs (1990); Embrechts et al. (2003); [Rü] (2005); [EP] (2006b).

Recall that U (s) = {
u = (u1, . . . ,ud ) ∈Rd :

∑d
i=1 ui = s

}
. For a d-dimensional dis-

tribution function G , we define the generalized G-infimal and G-supremal convolu-
tions as ∧

G(s) = inf
u∈U (s)

G(u) and
∨

G(s) = sup
u∈U (s)

G(u).

In case G(u) =∏d
i=1 Fi (ui ) is the distribution of the product measure, we obtain the

usual infimal and supremal convolutions

∧
G(s) =∧(

d∏
i=1

Fi

)
(s),

∨
G(s) =∨(

d∏
i=1

Fi

)
(s).

Theorem 3.1 (Positive dependence restriction) Let X be a d-dimensional risk vec-
tor having marginals Fi ,1 ≤ i ≤ d and let G be a d-dimensional distribution function.

a) If G ≤PLOD FX , then

P

(
d∑

i=1
Xi ≤ s

)
≥∨

G(s); (3.3)

b) If G ≤PUOD FX , then

P

(
d∑

i=1
Xi < s

)
≤ 1−∨

G(s); (3.4)

c) If X is PQD then

∨(
d∏

i=1
Fi

)
(s) ≤ P

(
d∑

i=1
Xi ≤ s

)
, P

(
d∑

i=1
Xi < s

)
≤ 1−∨(

d∏
i=1

F i

)
(s). (3.5)

Proof.
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a) If G ≤PLOD FX , that is G(x) ≤ FX (x) for all x ∈Rd , then, for all u ∈U (s), we have

P

(
d∑

i=1
Xi ≤ s

)
≥ P (X1 ≤ u1, . . . , Xn ≤ un) = FX (u) ≥G(u),

which implies (3.3).

b) If G ≤PUOD FX , that is F X (x) ≥ G(x) for all x ∈ Rd , then, for all u ∈ U (s), we
have

P

(
d∑

i=1
Xi < s

)
= 1−P

(
d∑

i=1
Xi ≥ s

)
≤ 1−P (X1 ≥ u1, . . . , Xn ≥ un) = 1−F X (u) ≤ 1−G(u),

which implies (3.4).

c) is a consequence of a) and b) when G =∏
Fi is the product measure. ä

Remark 3.2 1. Similarly to the standard bounds (2.9), the bounds in Theorem 3.1
are in general sharp only when d = 2. However, they substantially improve the
corresponding standard bounds (2.9) in the case of restriction to the positive
dependence scenarios a), b) and c). It will be of considerable interest in the ap-
plications to exploit these substantially sharpened bounds, when positive de-
pendence is present in the risk model.

2. As it is clear from the proof of Theorem 3.1, the functions G and G bounding the
distribution F and, resp. the survival function F , do not need in general to be
distribution functions. It is enough to assume that G and G are nondecreasing
functions. Using the Hoeffding-Fréchet bounds, we can generally assume that

max

{
d∑

i=1
Fi (xi )− (d −1),0

}
≤G(x) and G(x) ≥ max

{
d∑

i=1
F i (xi )− (d −1),0

}
.

3. In the case of trivial upper and lower bounds G ,G the bounds in (3.3), (3.4),
(3.5) reduce to the standard bounds in Theorem 2.7. In comparison to (2.9), for
the lower bound we consider here the ≤ case instead of the < case there.

3.2 General systems of marginals

In this section, we consider the case that not only the one dimensional marginal dis-
tributions of the risk vector are known, but also that for a class E of sets J ⊂ {1, . . . ,d},
we know the joint marginal distributions F J , J ∈ E . In this case, we get the general-
ized Fréchet class

FE =F(F J , J ∈ E )
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of all probability measures on Rd having marginals F J on RJ , for all J ∈ E . W.l.o.g. we
assume that

⋃
J∈E J = {1, . . . ,d}. Thus, we have

FE ⊂F(F1, . . . ,Fd ),

that is FE is a subclass of the class of all possible dependence structures. The knowl-
edge of joint distributions restricts the class of possible dependence structures and
thus leads to improved bounds for the distribution function or for the tail risk of the
joint portfolio.

In order that the notion FE makes sense we have to assume consistency of the
marginal system FE , that is J1, J2 ∈ E , J1 ∩ J2 6= ; implies that

πJ1∩J2 F J1 =πJ1∩J2 F J2 ,

where πJ are the projections on the components in J .
Consistency of F J , J ∈ E , is a necessary condition to guarantee that the Fréchet

class FE is non-empty. It has been shown by Vorob’ev (1962) and Kellerer (1964)
that, when E is regular (it does not have cycles), consistency is enough to imply
non emptiness. When E is non-regular as, for instance, E = {{1,2}, {2,3}, {1,3}}, the
Fréchet class FE may be empty even with consistent marginals. Some relevant par-
ticular classes of marginal systems are:

• the simple system E = {{1}, . . . , {d}},defining the regular Fréchet class

F(F1, . . . ,Fd ),

• the star-like system E? = {{1, j }, j = 2, . . . ,d}, defining the regular Fréchet class

F(F12,F13, . . . ,F1d ),

• the series system E s = {{ j , j + 1}, j = 1, . . . ,d − 1}, defining the regular Fréchet
class

F(F12,F23, . . . ,Fd−1d ),

• the pairwise system E p = {{i , j },1 ≤ i < j ≤ d}, defining the non-regular Fréchet
class

F(Fi j ,1 ≤ i < j ≤ d).

Our aim is to find good bounds for the tail risks

ME (s) = sup{P (X1 +·· ·+Xd ≥ s) : FX ∈FE } , (3.6a)

mE (s) = inf{P (X1 +·· ·+Xd ≥ s) : FX ∈FE } , (3.6b)

which improve the corresponding bounds M(s) and m(s) defined for the simple
marginal system in (1.1).

A simple case is obtained when the marginals are multivariate but non-over-
lapping, that is E = {J1, . . . , Jn} with ∪n

r=1 Jr = {1, . . . ,d} and Jr ∩ Ji = ; for r 6= i .
Then, for a risk vector X with FX ∈FE , we define the random variables Yr =∑

i∈Jr Xi

14



and denote by Hr their distribution functions, for 1 ≤ r ≤ n. Considering the corre-
sponding Fréchet class H=F(H1, . . . , Hn), we get a complete reduction to the simple
marginal case. Define the Fréchet problems

MH(s) = sup{P (Y1 +·· ·+Yn ≥ s) : FY ∈F(H1, . . . , Hn)} ,

mH(s) = inf{P (Y1 +·· ·+Yn ≥ s) : FY ∈F(H1, . . . , Hn)} .

Proposition 3.3 (Non-overlappingmultivariate marginals) In the case of a non-
overlapping, multivariate marginals class E , we have that, for all s ∈R,

ME (s) = MH(s),mE (s) = mH(s).

Proof. For the proof note that for FX ∈ FE we have FYr = Hr and thus FY ∈ H
where Y = (Y1, . . . ,Yr ). This implies that ME (s) ≤ MH(s). Conversely, if Y = (Y1, . . . ,Yr )
is any vector with d.f. Fy ∈H, then by a classical result on stochastic equations there
exist X Ji with X Ji ∼ F Ji and

∑
j∈Jr X j = Yi a.s. 1 ≤ i ≤ r . This implies the converse

inequality MH(s) ≤ ME (s). The case of mE (s) is similar. ä

For some classes of marginal systems E , the conditioning method was intro-
duced in [Rü] (1991); see also Joe (1997). This method is useful to obtain improved
(sharp) bounds in the case of the basic series system E s

3 and in the case of the star-
like system E?.

Let Fi |x1 denote the conditional distribution of Xi given X1 = x1 and define

M2,...,d |x1 (s) = sup{P (X2 +·· ·+Xd ≥ s) : Xi ∼ Fi |x1 ,2 ≤ i ≤ d},

m2,...,d |x1 (s) = inf{P (X2 +·· ·+Xd ≥ s) : Xi ∼ Fi |x1 ,2 ≤ i ≤ d}

the Fréchet bounds for the (d −1)- dimensional simple marginal system where the
marginals are given by the conditional distributions Fi |x1 ,2 ≤ i ≤ d . The following
result in [Rü] (1991) states that a complete reduction of the star-like system to the
simple marginal system is justified.

Theorem 3.4 (Star-like system) Let X a risk vector with distribution FX ∈FE? . Then,
for any s ∈R, we have that

ME? (s) =
∫

M2,...,d |x1 (s −x1)dF1(x1), (3.7a)

mE? (s) =
∫

m2,...,d |x1 (s −x1)dF1(x1). (3.7b)

The above conditional bounds have been combined with the standard bounds
defined in (2.9) for the simple marginal system F(F2|x1 , . . . ,Fd |x1 ) in [EP] (2010a) and
applied to some examples. Based on the fact that the standard bounds are sharp
for two-dimensional vectors, it has been shown in [Rü] (1991) that the conditional
bounds (3.7) imply explicit sharp bounds for d = 3.

For the series system E s = E s
3 of marginals a reduction of the generalized Fréchet

problems ME s and mE s to a Fréchet problem with simple marginals was given in [EP]
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(2010a). In contrast to the conditioning method for the star-like case, this reduction
does not lead to sharp bounds but to reasonable good bounds. In the following, we
extend this reduction method to general (regular or non-regular) marginal systems.
In consequence, we get reasonable good bounds for any system of marginal infor-
mation whether overlapping or non-overlapping.

Let E = {J1, . . . , Jn} be any marginal system with corresponding Fréchet classFE =
F(F J , J ∈ E ). Let ηi = #{Jr ∈ E : i ∈ Jr } denote the number of the sets J ∈ E in which
the index i appears. We associate to the risk vector X with FX ∈ FE the random
variables Yr defined by

Yr =
∑

i∈Jr

Xi

ηi
, r = 1, . . . ,n. (3.8)

Let Hr be the distribution of Yr , and let H denote the simple Fréchet class H =
F(H1, . . . , Hn). Recall that

MH(s) = sup{P (Y1 +·· ·+Yn ≥ s) : FY ∈F(H1, . . . , Hn)} ,

mH(s) = inf{P (Y1 +·· ·+Yn ≥ s) : FY ∈F(H1, . . . , Hn)} .

Then, we obtain the following reduction result by reducing the Fréchet problems
ME ,mE to the simple Fréchet class problems MH,mH.

Theorem 3.5 (Reduction to simple Fréchet classes) Let E = {J1, . . . , Jn} be an arbi-
trary consistent marginal system with corresponding Fréchet class FE = F(F J , J ∈ E ).
Then, for any s ∈R, we have that

ME (s) ≤ MH(s), and mE (s) ≥ mH(s). (3.9)

Proof. Since the distribution FX of the vector X belongs to FE = F(F J , J ∈ E ), the
distribution HY of Y belongs to the simple Fréchet class F(H1, . . . , Hn). Using that

d∑
i=1

Xi =
n∑

r=1

∑
i∈Jr

Xi

ηi
=

n∑
r=1

Yr , (3.10)

we obtain

ME (s) = sup{P (X1 +·· ·+Xd ≥ s) : FX ∈FE }

= sup{P (Y1 +·· ·+Yn ≥ s) : FX ∈FE } .

≤ sup{P (Y1 +·· ·+Yn ≥ s) : FY ∈H} = MH(s),

mE (s) = inf{P (X1 +·· ·+Xd ≥ s) : FX ∈FE }

= inf{P (Y1 +·· ·+Yn ≥ s) : FX ∈FE } ,

≥ inf{P (Y1 +·· ·+Yn ≥ s) : FY ∈H} = mH(s).

ä
As a consequence of the standard and dual bounds given in Section 2 , we now

obtain the following standard and dual bounds for general marginal systems.
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Theorem 3.6 (Reduced standard bounds) Let F J , J ∈ E , with E = {J1, . . . , Jn}, be a
consistent system of marginals generating a nonempty Fréchet class FE . Let X =
(X1, . . . , Xd ) be a random vector having distribution function FX in FE . For a given
threshold s ∈R, define the set U (s) ⊂Rn as

U (s) =
{

u = (u1, . . . ,un) ∈Rn :
n∑

r=1
ur = s

}
.

Then, we have

ME (s) ≤ MH(s) ≤ SH(s) = inf
u∈U (s)

{
min

{
H 1(u−

1 )+
n∑

r=2
H r (ur ),1

}}
, (3.11a)

mE (s) ≥ mH(s) ≥ sH(s) = sup
u∈U (s)

{
max

{ n∑
r=1

H r (u−
r )−n +1,0

}}
. (3.11b)

Theorem 3.7 (Reduced dual bounds) Under the same assumptions of Theorem 3.6,
we have

ME (s) ≤ MH(s) ≤ DH(s) = inf
u∈U (s)

min


∑n

r=1

∫ s−∑
j 6=r u j

ur
H r (t )d t

s −∑n
r=1 ur

,1

 , (3.12a)

mE (s) ≥ mH(s) ≥ dH(s) = sup
u∈U (s)

max


∑n

r=1

∫ s−∑
j 6=r u j

ur
H r (t )d t

s −∑n
r=1 ur

−n +1,0

 ,

(3.12b)

where U (s) = {
u ∈Rn :

∑n
r=1 ur < s

}
and U (s) = {

u ∈Rn :
∑n

r=1 ur > s
}
.

In case E = {{1}, . . . , {d}} is the simple system of marginals, in the above theorems
we have n = d and Hi = Fi ,1 ≤ i ≤ d . Thus, the reduced bounds (3.11) and (3.11) are
equivalent forms of the standard, resp. dual bounds given in Section 2. Moreover,
since the standard bounds are particular cases of the dual ones, we have that

DH(s) ≤ SH(s) and dH(s) ≥ sH(s), for all s ∈R.

4 Improving the reduced bounds by generalized weight-
ing schemes

In this section, we improve the bounds introduced in Section 3.2 for an overlapping
system of marginals. It is possible that the two inequalities in (3.9) are strict, imply-
ing that

sH(s) ≤ dH(s) ≤ mH(s) <mE (s), (4.1)

ME (s) < MH(s) ≤ DH(s) ≤ SH(s). (4.2)

In order to reduce the gap between the sharp bounds mE (s) and ME (s) and their re-
duced standard and dual counterparts, one can parameterize the Fréchet class H as
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follows. Let α= {αr
i ∈ [0,1], i = 1, . . . ,d ,r = 1, . . . ,n} be a set of weighting parameters

such that

αr
i > 0 if and only if i ∈ Jr , and

n∑
r=1

αr
i = 1. (4.3)

The main idea is to choose for the reduction to simple marginal classes an optimal
system of weights putting different weights on the components within their groups
Ji . Then, for 1 ≤ r ≤ n, define the random variables Y α

r as

Y α
r =

d∑
i=1

αr
i Xi .

Hence, we have:

n∑
r=1

Y α
r =

n∑
r=1

d∑
i=1

αr
i Xi =

d∑
i=1

n∑
r=1

αr
i Xi =

d∑
i=1

Xi

n∑
r=1

αr
i =

d∑
i=1

Xi . (4.4)

We denote by Hα
r the distribution of the random variable Y α

r . Since αr
i > 0 if and

only if i ∈ Jr , the random variable Y α
r depends only on the Xi whose index i appears

within the same Jr . Considering also that FX ∈F(F J , J ∈ E ), the marginals of the ran-
dom vector Y α = (Y α

1 , . . . ,Y α
n ) turn out to be fixed. Therefore, the joint distribution

Hα
Y of Y α belongs to the simple Fréchet class Hα = F(Hα

1 , . . . , Hα
n ) and we obtain a

reduction result analogous to Theorem 3.5.

Theorem 4.1 (Weighting scheme bounds) Let E = {J1, . . . , Jn} be an arbitrary con-
sistent marginal system with corresponding Fréchet class FE = F(F J , J ∈ E ). For α
satisfying conditions (4.3), define the simple Fréchet bounds

Mα
H(s) = sup

{
P (Y α

1 +·· ·+Y α
n ≥ s) : FY ∈Hα}

,

mα
H(s) = inf

{
P (Y α

1 +·· ·+Y α
n ≥ s) : FY ∈Hα}

.

Then, for any s ∈R, we have

ME (s) ≤ Mα
H(s) and mE (s) ≥ mα

En
(s). (4.5)

By applying Theorems 3.6 and 3.7 to the Fréchet class Hα, we define the reduced
standard bounds Sα

H
(s), sα

H
(s), and the reduced dual bounds Dα

H
(s), dαH(s). These

bounds are obtained by replacing, in equations (3.11) and (3.12), the marginals Hr ’s
by the parameterized marginals Hα

r . Note that, choosing αr
i = 1/ηi , i ∈ Jr ,1 ≤ r ≤

n, these parameterized reduced standard and dual bounds coincide with the ones
given in (3.11) and (3.12).

To summarize, for any fixed set of parameters αr
i ∈ [0,1] satisfying (4.3), the fol-

lowing inequalities hold:

sαH(s) ≤ dαH(s) ≤mE (s),

ME (s) ≤ DαH(s) ≤ SαH(s).
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At this point, one can look for the α yielding the best-possible parameterized dual
bound d∗(s) and D∗(s), defined as

d∗(s) = sup
α∈A

dαH(s) and D∗(s) = inf
α∈A

DαH(s). (4.6)

where A⊂ Rn ×Rd denotes the set of admissible choice of the parameters α. In the
following section, we give some examples where we evaluate the bounds in (4.6).

5 Applications and numerical results

In this section, we compute numerically the standard bounds (3.11) and the dual
bounds (3.12) for systems of homogeneous and inhomogeneous marginals. First, we
give some remarks concerning the optimization problems which define the bounds.

In the following, we assume that each random component Xi of the vector X is
a.s. bounded from below by some constant L′, that is Fi (L′) = 0, for all i = 1, . . . ,d .
In quantitative risk management, for example, the vector X typically represents a
portfolio of non-negative random losses, that is L = 0. As a result, we can reduce the
feasible set in the calculation of the standard bounds (3.11).

Lemma 5.1 Under the assumption of Theorem 3.6, assume that each random com-
ponent Xi of the vector X is a.s. bounded from below by L′, for some real L′ < s. Hence,
the random variables Yr , as defined in (3.8), are bounded from below by L and, in the
computation of the standard bounds (3.11), we can reduce to considering the feasible
set

U (s) =
{

u = (u1, . . . ,un) ∈ [L, s − (n −1)L]n :
n∑

r=1
ur = s

}
. (5.1)

Proof. It is sufficient to notice that the argument of the inf in (3.11a) is always
equal to 1 when ur < L, for some r = 1, . . . ,n. Then, we can restrict to considering
ur ≥ L and, from

∑n
r=1 ur = s, ur ≤ s − (n − 1)L,r = 1, . . . ,n. Analogous restrictions

follow for (3.11b) by observing that the argument of the sup in (3.11b) is decreasing
when ur < L, for some r = 1, . . . ,n. ä

As standard bounds are particular cases of dual bounds, the solutions to (3.12)
are to be searched in the interior of the domains U (s) and U (s). As a consequence,
the dual bounds are attained at a stationary point in the interior of these domains.

5.1 A first application: homogeneous marginals

When the random variables Yr ∼ Hr defined in (3.8) are all identically distributed
and non-negative, it is possible to reduce the d-dimensional optimization prob-
lem (3.11) and (3.12) to one-dimensional problems. Assume, then, that Hr = H ,1 ≤
r ≤ n and that L = 0. Substituting L = 0 in the simplified expression of U (s) ob-
tained in Lemma 5.1, using the homogeneity of the marginals and the symmetry of
the problem, a list of candidates to be solutions of (3.11a) is given by the n vectors
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uk = (uk
1 , . . . ,uk

n) ∈Rn ,k = 1, . . . ,n where

uk
r = s/k, for 1 ≤ r ≤ k,

uk
r = 0, for k +1 ≤ r ≤ n.

For instance, we have u1 = (s,0, . . . ,0),u2 = (s/2, s/2, . . . ,0), un = (s/n, s/n, . . . , s/n). If
we restrict to considering only the vectors uk , the inequalities (3.11) are maintained,
that is we have

SH(s) ≤ S′
H(s) = min

k=1,...,n

{
min

{ n∑
r=1

H(uk
r ),1

}}
= min

{
nH(s/n),1

}
, (5.2a)

sH(s) ≥ s′H(s) = max
k=1,...,n

{
max

{ n∑
r=1

H(uk
r )−n +1,0

}}
= max

k=1,...,n

{
kH(s/k)−n +1,0

}
.

(5.2b)

Within this section, we will compute the simplified reduced standard bounds S′
H(s)

and s′H(s). In some specific cases of non-negative homogeneous marginals, we have
that S′

H(s) = SH(s) and s′H(s) = sH(s); see Theorem 3.1 and Lemma 3.1 in [EP]
(2006a).

With respect to the computation of dual bounds in the case of homogeneous
marginals, using (2.12) we can reduce the list of candidates to be solutions of (3.12a)
to all the vectors u = (u, . . . ,u) with u < s/n. Analogously, for (3.12b). Similarly to
the case of standard bounds, we obtain the much simplified bounds, given by an
optimization problem in one real parameter u instead of d parameters in the inho-
mogeneous case

DH(s) ≤ D′
H(s) = inf

u<s/n
min

{
n

∫ s−(n−1)u
u H(t )d t

s −nu
,1

}
, (5.3a)

dH(s) ≥ d′
H(s) = sup

u>s/n
max

{
n

∫ s−(n−1)u
u H(t )d t

s −nu
−n +1,0

}
. (5.3b)

In the following applications, we compute the reduced dual bounds D′
H(s) and

d′
H(s).

As a first applications, we choose the star-like system E? = {{1,2}, . . . , {1,d}}, for
which n = d − 1. This system has been studied in [EP] (2010a), where the stan-
dard bounds (3.7) are computed based on the conditional representation of mE?

and ME? . We will show that, for the same system of marginals, the upper dual
bounds (5.3a) are better than these standard bounds. We choose the same marginals
as in [EP] (2010a), that is we assume the bivariate distributions F1r ,r = 2, . . . ,d to
be identical and generated by coupling two Pareto marginals having tail parameter
θ > 0 by a Frank copula with parameter δ 6= 0. Under these assumptions, the (d −1)
random variables Yr have all distribution

H(x) = P (Yr ≤ x) = P

(
X1

n
+Xi ≤ x

)
, i = 2, . . . ,d .
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Here, we have that

H(x) =
∫ nx

0
P (Xi ≤ x −x1/n|X1 = x1)dF1(x1) =

∫ nx

0
Fi |x1 (x −x1/n)dF1(x1),

where we denote by Fi |x1 (u) = Fi (u − x1/n) the distribution of the random variable
(Xi |X1 = x1), for 2 ≤ i ≤ d . Within this framework, the conditional distribution func-
tion Fi |x1 is available in closed form and it is identical to the function Gx1 (x) given
in [EP] (2010a, p. 181).

In Figure 1, we plot the reduced upper standard bounds S′
H (see (5.2a)), the

standard bounds deriving from (3.7) and the reduced dual bounds D′
H (see (5.3a))

on ME? for a random vector of d = 4 Pareto(2)-distributed risks under the star-like
marginal system described above. The parameter of the Frank copula is set to δ= 2.
The dual bounds improve any standard bounds at any real threshold s, coherently
with the fact that, for any threshold s, we have

ME? (s) ≤ MH(s) ≤ D′
H(s) ≤ S′

H(s).

In Figure 1, we also provide numerical ranges for the bounds MH(s), at some
thresholds s of interest. These ranges have been calculated by applying the rear-
rangement algorithm introduced in [PR] (2011) for the simple Fréchet class H. This
algorithm is more accurate than the linear program algorithms in Section 5 of [EP]
(2010a). The numerical ranges show that the reduced dual bounds (5.3) are accu-
rate. The calculation of dual bounds in a homogeneous setting is independent from
the dimension d of the risk vector, and computationally much easier than the rear-
rangement algorithm. These results suggest to use (reduced) dual bounds for ho-
mogeneous settings.

5.2 A second application: inhomogeneous star-like system

In this section, we compute numerically the parameterized upper dual bounds (4.6)
in a computationally manageable example, where the distributions Hr of the ran-
dom variables Yr are different. We keep the assumption that the random vector X is
a.s. bounded from below.

Having different marginals, we can not reduce the dimensionality of the opti-
mization problems (3.11) and (3.12)and multiple local optima can occur. Both (3.11)
and (3.12) become Global Optimization (GO) problems. This, of course, calls for
more advanced optimization techniques. For the application to follow, we restrict
to using the GO routines present in MATLAB, but we are aware that several further
search algorithms are available. For an introductory review, we refer to Section 4.3
in [EP] (2006a).

As an example, we take again the star-like system E? = {{1,2}, . . . , {1,d}}, and
use the parameterization of the corresponding Fréchet class, as described in Sec-
tion 4. This parameterization introduces inhomogeneous marginals. For a vector
α= (α2, . . . ,αd ) such that

αr ≥ 0,r = 2, . . . ,d and
d∑

r=2
αr = 1, (5.4)
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Figure 1: Reduced standard bounds S′
H (see (5.2a)), EP10 bound (3.7) and reduced

dual bounds D′
H (see (5.3a)) for the sum of d = 4 Pareto(2)-distributed risks, coupled

by a Frank copula with parameter δ= 2. Numerical ranges for the bounds MH(s) are
also provided.

we define the weighted random variables Y α
r as

Y α
r =αr X1 +Xr ,r = 2, . . . ,d .

The distribution Hα
r of Yr is given by

Hα
r =

∫ x/αr

0
P (Xr ≤ x −αr x1|X1 = x1)dF1(x1) =

∫ x/αr

0
Fr |x1 (x −αr x1)dF1(x1).

For the fixed bivariate marginal distributions F1r ,r = 2, . . . ,d , we keep the Frank-
Pareto model described in Section 5.1, but we let the tail parameters of the Pareto
marginals vary.

In order to obtain the reduced upper dual bound (4.6), one should minimize the
dual bound Dα

H
over all vectors α satisfying (5.4). If possible at all, this is a rather

onerous task from a computational viewpoint. Instead, we perform the minimiza-
tion over the lattice A, defined as

A=
{

(α2, . . . ,αd ) ∈ [0,1]n :αr ∈ {0,1/N , . . . , (N −1)/N ,1},
d∑

r=2
αr = 1

}
,
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for some fixed integer N . Increasing N increases the accuracy of the bound (4.6),
but also, and exponentially, the computational time used to calculate it. In the ap-
plication to follow, we choose N = 9.

In Figure 2, we plot the reduced upper standard bounds SH (see (3.11a)), the re-
duced dual bounds DH (see (3.12a)) and parameterized dual bounds D∗

H (see (4.6))
on ME? for a random vector of d = 4 Pareto-distributed risks under the star-like
marginal system described above. The parameter of the Frank copula is set to δ= 2,
while the tail parameters of the Pareto are θ1 = 1.5,θ2 = 2,θ3 = 2.5. Recall that the
standard (3.11a) and dual (3.12a) bounds can be seen as obtained within a param-
eterized Fréchet class in which α2 = α3 = α4 = 1/3. It is interesting to see that the
parameterized dual bound (4.6) improves the corresponding reduced dual bound
(3.12a) at all thresholds, coherently with the fact that

ME? (s) ≤ D∗
H(s) ≤ DH(s) ≤ SH(s), s ∈R.

It is possible to use the rearrangement algorithm to provide numerical upper
bounds on D(s). These upper bounds, which we report in Table 1, show that the
parameterized dual bounds D∗

H are of good quality. We remark that the computa-
tion of analytical dual bounds in the inhomogeneous setting is handable only for
low dimensions d ≤ 5. If one needs less accuracy, the rearrangement algorithm can
produce reasonable bounds up to dimensions d ≤ 30.
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Figure 2: Reduced standard bounds (in log scale) SH (see (3.11a)), reduced dual
bounds DH (see (3.12a)) and parameterized dual bounds D∗

H (see (4.6)) for the sum
of d = 4 Pareto-distributed risks, coupled by a Frank copula. The parameter of the
Frank copula is set to δ= 2, while the tail parameters of the Pareto are θ1 = 1.5,θ2 =
2,θ3 = 2.5.
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Standard bound Dual bound Par. dual bound Num. upper bound

s = 10 0.269193 0.239977 0.212608 0.218750
s = 15 0.155761 0.127512 0.113569 0.117188
s = 20 0.089151 0.079053 0.070731 0.078125
s = 25 0.061485 0.053968 0.048500 0.054688
s = 30 0.044010 0.039332 0.035422 0.039062
s = 35 0.033779 0.030035 0.027107 0.031250

Table 1: Reduced standard bounds SE ∗
d

(s) (see (3.11a)), reduced dual bounds DE ∗
d

(s)

(see (3.12a)) and parameterized dual bounds D(s) (see (4.6)) for the same random
vector as in Figure 2. Upper bounds for D(s), calculated numerically via the algo-
rithm introduced in [PR] (2011), are also provided.

6 Concluding remarks

In this paper, we discuss and suggest various methods and results for the problem of
obtaining good upper and lower bounds for the risk distribution of the joint portfolio
of dependent risks. We discuss also numerical aspects of the problem.

In the simple marginal case, we describe the role of rearrangements and optimal
couplings. We give a general extension of the conditional moment method which is
easy to calculate. The dual bounds improve generally the standard bounds. They are
easy to calculate in the homogeneous case. In the inhomogeneous case, for dimen-
sion d ≥ 5, the rearrangement algorithm for the approximation of Fréchet bounds
is preferable while, in bounded domains, the conditional bounds give good alterna-
tives.

The bounds can be essentially improved if further information on the depen-
dence structure is available, for instance in the case of positive dependence in the
portfolio. For the case of information on (overlapping) higher order marginals, we
present several classical and new reduction results. Of particular importance seems
to be the reduction of general marginal structures by a weighting method. This leads
to some new classes of reduced bounds for general marginal systems.

We discuss and demonstrate the quality of various bounds in some examples.
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