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Abstract

By a classical result of Gray et al. (1975) the %̄ distance between stationary pro-
cesses is identified with an optimal stationary coupling problem of the corresponding
stationary measures on the infinite product spaces. This is a modification of the opti-
mal coupling problem from Monge–Kantorovich theory. In this paper we derive some
general classes of examples of optimal stationary couplings which allow to calculate
the %̄ distance in these cases in explicit form. We also extend the %̄ distance to random
fields and to general nonmetric distance functions and give a construction method for
optimal stationary c̄-couplings. Our assumptions need in this case a geometric positive
curvature condition.

1 Introduction
Gray et al. (1975) introduced the %̄ distance between two stationary probability measures
µ, ν on EZ, where (E, %) is a separable, complete metric space (Polish space). The %̄
distance extends Ornstein’s d̄ distance (Ornstein (1973)) and is applied to the information
theoretic problem of source coding with a fidelity criterion, when the source statistics are
incompletely known. %̄ is defined via the following steps. Let %n : En × En → R denote
the average distance per component on En

%n(x, y) :=
1
n

n−1∑
i=0

%(xi, yi), x = (x0, . . . , xn−1), y = (y0, . . . , yn−1). (1.1)

Let %̄n denote the corresponding minimal `1-metric also called Wasserstein distance or
Kantorovich distance of the restrictions of µ, ν on En, i.e.

%̄n(µ, ν) = inf
{∫

%n(x, y)dβ(x, y) | β ∈ M(µn, νn)
}

, (1.2)

where µn, νn are the restrictions of µ, ν on En, i.e. on the coordinates (x0, . . . , xn−1) and
M(µn, νn) is the Fréchet class of all measures on En × En with marginals µn, νn. Then
the %̄ distance between µ, ν is defined as

%̄(µ, ν) = sup
n∈N

%̄n(µ, ν). (1.3)
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It is known that %̄(µ, ν) = limn→∞ %̄n(µ, ν) by Fekete’s lemma on superadditive se-
quences.

%̄ has a natural interpretation as average distance per coordinate between two stationary
sources in an optimal coupling. In the original Ornstein version % was taken as discrete
metric on a finite alphabet. This interpretation is further justified by the basic representation
result (cp. Gray et al. (1975, Theorem 1))

%̄(µ, ν) = %̄s(µ, ν) := inf
Γ∈Ms(µ,ν)

∫
%(x0, y0)dΓ(x, y) (1.4)

= inf{E%(X0, Y0) | (X,Y ) ∼ Γ ∈ Ms(µ, ν)}. (1.5)

Here Ms(µ, ν) is the set of all jointly stationary (i.e. jointly shift invariant) measures on
EZ × EZ with marginals µ, ν and (X, Y ) ∼ Γ means that Γ is the distribution of (X, Y ).
Thus %̄(µ, ν) can be seen as a Monge–Kantorovich problem on EZ with however a mod-
ified Fréchet class Ms(µ, ν) ⊂ M(µ, ν). (1.5) states this as an optimal coupling problem
between jointly stationary processes X , Y with marginals µ, ν. A pair of jointly stationary
processes (X, Y ) with distribution Γ ∈ Ms(µ, ν) is called optimal stationary coupling of
µ, ν if it solves problem (1.5), i.e. it minimizes the stationary coupling distance %̄s.

By definition it is obvious (see Gray et al. (1975)) that

%̄1(µ, ν) ≤ %̄(µ, ν) ≤
∫

%(x0, y0)dµ0(x0)dν0(y0), (1.6)

the left hand side being the usual minimal `1-distance (Kantorovich distance) between the
single components µ0, ν0.

As remarked in Gray et al. (1975, Example 2) the main representation result in (1.4),
(1.5) does not use the metric structure of % and % can be replaced by a general cost function
c on E × E implying then the generalized optimal stationary coupling problem

c̄s(µ, ν) = inf{Ec(X0, Y0) | (X, Y ) ∼ Γ ∈ Ms(µ, ν)}. (1.7)

Only in few cases information on this optimal coupling problem for %̄ resp. c̄ is given
in the literature. Gray et al. (1975) determine %̄ for two i.i.d. binary sequences with success
probabilities p1, p2. They also derive for quadratic cost c(x0, y0) = (x0 − y0)2 upper and
lower bounds for two stationary Gaussian time series in terms of their spectral densities.
We do not know of further explicit examples in the literature for the %̄ distance. The aim of
our paper is to derive optimal couplings and solutions for the %̄ metric resp. the generalized
c̄ distance.

The %̄ resp. c̄ distance is particularly adapted to stationary processes. One should note
that from the general Monge–Kantorovich theory characterizations of optimal couplings
for some classes of distances c are available and have been determined for time series and
stochastic processes in some cases. For processes with values in a Hilbert space (like the
weighted `2 or the weighted L2 space) and for general cost functions c, general criteria
for optimal couplings have been given in Rüschendorf and Rachev (1990) and Rüschen-
dorf (1991). For some examples and extensions to Banach spaces see also Cuesta-Albertos
et al. (1993) and Rüschendorf (1995). Some of these criteria have been further extended to
measures µ, ν in the Wiener space (W,H, µ) w.r.t. the squared distance c(x, y) = |x−y|2H
by Feyel and Üstünel (2002, 2004) and Üstünel (2007). All these results are also applica-
ble to stationary measures and characterize optimal couplings between them. But they do
not respect the special stationary structure as described in the representation result in (1.5),
(1.7). In the following sections we want to determine optimal stationary couplings between
stationary processes.

In Section 2 we consider the optimal stationary coupling of stationary processes on R
and on Rm with respect to squared distance. In Section 3 we give an extension to the case
of random fields. Finally we consider in Section 4 an extension to general cost functions.
We interpret an optimal coupling condition by a geometric curvature condition.
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2 Optimal couplings of stationary processes w.r.t. squared
distance

In this section we consider the case where E = R (resp. Rm), Ω = EZ and with squared
distance c(x0, y0) = (x0 − y0)2 (resp. ‖x0 − y0‖2 on Rm). Let L : Ω → Ω denote
the left shift, (Lx)t = xt−1. Then a pair of processes (X, Y ) with values in Ω × Ω is
jointly stationary when (X, Y ) d= (LX, LY ) ( d= denotes equality in distribution). A Borel
measurable map S : Ω → Ω is called equivariant if

L ◦ S = S ◦ L. (2.1)

This notion is borrowed from the corresponding notion in statistics, where it is used in
connection with statistical group models. The following lemma concerns some elementary
properties.

Lemma 2.1 a) A map S : Ω → Ω is equivariant if and only if St(x) = S0(L−tx) for any
t, x.

b) If X is a stationary process and S is equivariant then (X, S(X)) is jointly stationary.

Proof:

a) If L ◦ S = S ◦ L then by induction S = Lt ◦ S ◦ L−t for all t ∈ Z, and thus St(x) =
S0(L−tx). Conversely, if St(x) = S0(L−tx), then St−1(x) = S0(L−t+1x) = St(Lx).
This implies L(S(x)) = S(Lx).

b) Since LX has the same law as X , it follows that (LX, L(S(X))) = (LX, S(LX)) =
(I, S)(LX) d= (I, S)(X) = (X,S(X)), I denoting the identity. 2

For X
d= µ and S : Ω → Ω the pair (X, S(X)) is called optimal stationary coupling

if it is an optimal stationary coupling w.r.t. µ and ν := µS = S#µ, i.e., when ν is the
corresponding image (push-forward) measure.

We first consider the case E = R and Ω = RZ. To construct a class of optimal stationary
couplings we define for a convex function f : Rn → R an equivariant map S : Ω → Ω.
For x ∈ Ω let

∂f(x) = {y ∈ Rn | f(z) − f(x) ≥ y · (z − x), ∀z ∈ R} (2.2)

denote the subgradient of f at x, where a · b denotes the standard inner product of vectors
a and b. By convexity ∂f(x) 6= φ. Let F (x) = (Fk(x))0≤k≤n−1 be measurable and
F (x) ∈ ∂f(x), x ∈ Rn. The equivariant map S is defined via Lemma 2.1 by

S0(x) =
n−1∑
k=0

Fk(x−k, . . . , x−k+n−1), St(x) = S0(L−tx), x ∈ Ω. (2.3)

For terminological reasons we write any map of the form (2.3) as

S0(x) =
n−1∑
k=0

∂kf(x−k, . . . , x−k+n−1), St(x) = S0(L−tx), x ∈ Ω. (2.4)

In particular for differentiable convex f the subgradient set coincides with the derivative of
f , ∂f(x) = {∇f(x)} and ∂tf(x) = ∂

∂xt
f(x).
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Remark 2.2 a) In information theory a map of the form St(x) = F (xt−n+1, . . . , xt+n−1)
is called a sliding block code (see Gray et al. (1975)). Thus our class of maps S defined
in (2.4) are particular sliding block codes.

b) Sei (2006, 2010a,b) introduced so-called structural gradient models (SGM) for station-
ary time series, which are defined as {(Sϑ)#Q | ϑ ∈ Θ}, where Q is the infinite product
of the uniform distribution on [0, 1], on [0, 1]Z, {Sϑ | ϑ ∈ Θ} is a parametric family
of transformations of the form given in (2.4) and S#

ϑ Q denotes the pullback measure of
Q by Sϑ. It turns out that these models have nice statistical properties, e.g. they allow
for simple likelihoods and allow the construction of flexible dependencies. The restric-
tion to functions of the form (2.4) is well founded by an extended Poincaré lemma (see
Sei (2010b, Lemma 3)) saying in the case of differentiable f that these functions are
the only ones with (the usual) symmetry and with an additional stationarity property
St−1(x) = St(Lx) for x ∈ RZ, which is related to our notion of equivariant mappings.

c) Even if a map S has a representation of the form (2.4), the inverse map S−1 does not
have the same form in general. We give an example. Let X = (Xt)t∈Z be a real-valued
stationary process with a spectral representation Xt =

∫ 1

0
e2πiλtM(dλ), where M(dλ)

is an L2-random measure. Define a process Y = (Yt) by

Yt = St(X) := Xt + ε(Xt−1 + Xt+1), ε 6= 0.

This is of the form (2.4) with a function f(x0, x1) = x2
0/4 + εx0x1 + x2

1/4 which is
convex if |ε| < 1/2. Under this condition, the map X 7→ Y is shown to be invertible as
follows. The spectral representation of Y is N(dλ) := (1 + ε(e2πiλ + e−2πiλ))M(dλ).
Then we have the following inverse representation

Xt =
∫ 1

0

e2πiλt

1 + ε(e2πiλ + e−2πiλ)
N(dλ) =

∑
s∈Z

bsYt−s,

where (bs)s∈Z is defined by {1+ε(e2πiλ +e−2πiλ)}−1 =
∑

s∈Z bse−2πiλs. By standard
complex analysis, the coefficients (bs) are explicitly obtained:

bs =
z
|s|
+

ε(z+ − z−)
, z± :=

−1 ±
√

1 − 4ε2

2ε
.

Note that |z+| < 1 and |z−| > 1 since |2ε| < 1. Hence bs 6= 0 for all s ∈ Z and the
inverse map S−1(Y ) =

∑
s bsYs does not have a representation as in (2.4).

The following theorem implies that the class of equivariant maps defined in (2.4) gives
a class of examples of optimal stationary couplings between stationary processes.

Theorem 2.3 (Optimal stationary couplings of stationary processes on R) Let f be a con-
vex function on Rn, let S be the equivariant map defined in (2.4) and let X be a stationary
process with law µ. Assume that X0 and ∂kf(Xn) (k = 0, . . . , n − 1) are in L2(P ). Then
(X, S(X)) is an optimal stationary coupling w.r.t. squared distance between µ and µS , i.e.

E[(X0 − S0(X))2] = min
(X,Y )∼Γ∈Ms(µ,µS)

E[(X0 − Y0)2] = %̄s(µ, µS),

Proof: Fix any Γ ∈ Ms(µ, µS). By the gluing lemma (see Appendix A), we can construct
a jointly stationary process (X,Y, X̃) on a common probability space such that X ∼ µ,
Y = S(X) and (X̃, Y ) ∼ Γ. From the definition of Y0 = S0(X), we have Y0 ∈ L2(P ).
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Then by the assumption of identical marginals

A :=
1
2
E[(X0 − Y0)2 − (X̃0 − Y0)2]

= E[−X0Y0 + X̃0Y0]
= E[(X̃0 − X0)S0(X)]

= E

[
(X̃0 − X0)

n−1∑
k=0

(∂kf)(X−k, . . . , X−k+n−1)

]
.

Using the stationarity assumption on X we get with Xn = (X0, . . . Xn−1), X̃n =
(X0, . . . , X̃n−1) that

A = E

[
n−1∑
k=0

(X̃k − Xk)(∂kf)(X0, . . . , Xn−1)

]
≤ E[f(X̃n) − f(Xn)]
= 0,

the inequality is a consequence of convexity of f . This implies optimality of (X,Y ). We
note that the last equality uses integrability of f(Xn), which comes from convexity of f
and the L2-assumptions. This completes the proof. 2

Theorem 2.3 allows to determine explicit optimal stationary couplings for a large class
of examples. Note that – at least in principle – the % distance can be calculated in explicit
form for this class of examples.

The construction of Theorem 2.3 can be extended to multivariate stationary sequences
in the following way. Let (Xt)t∈Z be a stationary process, Xt ∈ Rm and let f : (Rm)n →
R be a convex function on (Rm)n. Define an equivariant map S : (Rm)Z → (Rm)Z by

S0(x) =
n−1∑
k=0

∂kf(x−k, . . . , x−k+n−1)

St(x) = S0(L−tx), x ∈ Ω = (Rm)Z

(2.5)

where L−t operates on each component of x and ∂`f is (a representative of) the subgradient
of f w.r.t. the `-th component. Thus for differentiable f we obtain

S0(x) =
n−1∑
k=0

∇kf(x−k, . . . , x−k+n−1) (2.6)

where ∇`f is the gradient of f w.r.t. the `-th component.
The classical result for optimal couplings w.r.t. the squared norm distance on Rm due to

Rüschendorf and Rachev (1990) and Brenier (1991) characterizes optimal couplings (Y,Z)
of distributions P , Q on Rm by the condition that

Z ∈ ∂h(Y ) a.s. (2.7)

for some convex function h. The construction in (2.5) adapts this result to optimal stationary
couplings of stationary processes on Rm.

Theorem 2.4 (Optimal stationary couplings of stationary processes on Rm) Let f be
a convex function on (Rm)n and let S be the equivariant map on Ω = (Rm)Z defined in
(2.5). Let X be a stationary process on Rm with distribution µ and assume that X0 and
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∂kf(Xn), 0 ≤ k ≤ n− 1, are square integrable. Then (X,S(X)) is an optimal stationary
coupling between µ and µS = S#µ w.r.t. squared distance, i.e.

E‖X0 − S0(X)‖2
2 = inf{E‖Y0 − Z0‖2

2 | (Y,Z) ∼ Γ ∈ Ms(µ, µS)} = %̄s(µ, µS). (2.8)

Proof: The proof is similar to that of Theorem 2.3. For a jointly stationary process (X, Y, X̃)
with X ∼ µ, Y

d= S(X) and X̃
d= X ∼ µ we have using stationarity and convexity as in

Theorem 2.3.

1
2
E(‖X0 − Y0‖2

2 − ‖X̃0 − Y0‖2
2) = E[−X0 · Y0 + X̃0 · Y0]

= E(X̃0 − X0) ·
n−1∑
k=0

∂kf(X−k, . . . , X−k+n−1)

= E
n−1∑
k=0

(X̃k − Xk) · ∂kf(X0, . . . , Xn−1)

≤ E(f(X̃0, . . . , X̃n−1) − f(X0, . . . , Xn−1)) = 0.

The third equality follows from the stationarity assumption and the inequality follows from
convexity of f . Thus (2.8) follows. 2

Remark 2.5 Considering the case where µ is a stationary probability measure on RZ cor-
responding to the real stationary process X on R we can introduce the multivariate station-
ary process Y by Yk = (Xk, Xk+1, . . . , Xk+m−1) on Rm. As consequence of Theorem 2.4
we obtain explicit optimal coupling results for the strengthened stationary distances rela-
tive to (1.3), (1.4), (1.5) by comparing finite dimensional distributions

%m(µ, ν) = inf
{
E‖Y0 − Z0‖2 | Y0

d= µm, Z0
d= νm,

(Y, Z) jointly stationary, Y d= µ,Z
d= ν
} (2.9)

Thus we can compare and optimally couple not only the one-dimensional marginals in
a stationary way but can also compare the multivariate marginals in a stationary way.

3 Optimal stationary couplings of random fields
In the first part of this section we introduce the %̄ distance defined on a product space in the
case of countable groups and establish an extension of the Gray et al. (1975) representation
result to random fields. In a second step we extend this result to amenable groups on a
Polish function space. This motivates the consideration of the optimal stationary coupling
result as in Section 2.

We consider stationary real random fields on an abstract group G. Section 2 was con-
cerned with the case of stationary discrete time processes, where G = Z. Interesting ex-
tensions concern the case of stationary random fields on lattices G = Zd or the case of
stationary continuous time stochastic processes with G = R or G = Rd.

Let e be the unit element of G. We consider the product space Ω = EG of a Polish
space (E, %) (e.g. E = R) equipped with the product topology. Note that Ω is not Polish
in general, but its marginal sets EF on a finite or countable subset F ⊂ G are Polish. The
(left) group action of G on Ω is defined by (gx)h = xg−1h. In particular, (gx)g = xe. The
function x 7→ gx is continuous. A Borel probability measure µ on Ω is called stationary if
µg = µ for every g ∈ G.
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Let P and Q be stationary Borel probability measures on Ω = EG. For any finite
subset F of G and sequences xF = (xg)g∈F and yF = (yg)g∈F , define %F (xF , yF ) =
|F |−1

∑
g∈F %(xg, yg). Define %̄F (P,Q) by

%̄F (P, Q) = inf
(XF ,YF )∼ΓF ∈M(PF ,QF )

E[%F (XF , YF )], (3.1)

where PF and QF are marginal distributions of P and Q, respectively. The natural exten-
sion of the %̄ distance is defined by

%̄(P,Q) = sup
F⊂G

%̄F (P,Q), (3.2)

where the supremum is taken over all finite subsets F of G. We also define the stationary
coupling distance %̄s

%̄s(P, Q) = inf
(X,Y )∼Γ∈Ms(P,Q)

E[%(Xe, Ye)], (3.3)

where Ms(P,Q) is the set of jointly stationary measures with marginals P and Q.
Gray et al. (1975) showed that %̄ = %̄s if G = Z (see (1.5)). We will prove this equal-

ity for general countable groups G under a weak kind of amenability assumption. In this
section, we denote Γ[%] = E[%(Xe, Ye)] and Γ[%F ] = E[%F (XF , YF )] for Γ ∈ M(P, Q).

Lemma 3.1 %̄(P, Q) ≤ %̄s(P, Q).

Proof: Fix an arbitrary ε > 0. Take a jointly stationary measure Γ ∈ Ms(P, Q) such that
Γ[%] ≤ %̄s(P, Q) + ε. Then %̄F (P, Q) ≤ Γ[%F ] = Γ[%] ≤ %̄s(P, Q) + ε. Since F and ε are
arbitrary, we obtain %̄(P,Q) ≤ %̄s(P, Q). 2

We need a technical lemma.

Lemma 3.2 Let G be countable and F ⊂ G be finite. Then

%̄F (P, Q) = inf
Γ∈M(P,Q)

Γ[%F ].

Proof: It is sufficient to prove existence of Γ ∈ M(P, Q) for any ΓF ∈ M(PF , QF ). This
follows from the general extension property of probability measures with given marginals.

2

To establish the equality %̄ = %̄s, we put an additional amenability assumption on G.
The proof of the following representation theorem follows the lines of the proof of Theo-
rem 1 of Gray et al. (1975).

Theorem 3.3 Let G be a countable group. Assume that there exists a sequence {Fn}n≥0

of finite subsets of G such that limn→∞ |Fn ∩ (hFn)|/|Fn| = 1 for any h ∈ G. Then

%̄(P, Q) = %̄s(P, Q).

Proof: Fix ε > 0. For each n ≥ 0, choose a measure Γn ∈ M(P, Q) such that Γn[%Fn
] ≤

%̄Fn + ε (see Lemma 3.2). Define measures Γ̄n by

Γ̄n(A) =
1

|Fn|
∑

g∈Fn

Γn(gA).
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Note that Γ̄n[%] = Γn[%Fn
]. The first marginal measure of Γ̄n is

Γ̄n(A1 × Ω) =
1

|Fn|
∑

g∈Fn

Γn(g(A1 × Ω)) =
1

|Fn|
∑

g∈Fn

P (gA1) = P (A1),

since P is stationary. Similarly, the second marginal measure of Γ̄n is Q. Hence Γ̄n ∈
M(P, Q). Since P and Q are tight measures, the sequence {Γ̄n}n≥0 is tight and therefore
has a subsequence converging weakly. We assume without loss of generality that {Γ̄n}n≥0

itself converges weakly to a measure Γ̄. Then Γ̄ ∈ M(P,Q). Furthermore, Γ̄ is stationary,
i.e. Γ̄ ∈ Ms(P, Q). Indeed, for any h ∈ G and measurable A ⊂ Ω2, we have

Γ̄n(hA) =
1

|Fn|
∑

g∈Fn

Γn(ghA)

=
1

|Fn|
∑

g∈Fn∩(hFn)

Γn(gA) + o(1)

= Γ̄n(A) + o(1),

where we used limn→∞ |Fn ∩ (hFn)|/|Fn| = 1. This implies stationarity of Γ̄. Finally,

%̄s ≤ Γ̄[%] ≤ lim sup
n→∞

Γ̄n[%] = lim sup
n→∞

Γn[%Fn ] ≤ lim sup
n→∞

%̄Fn + ε ≤ %̄ + ε.

Since ε is arbitrary, we have %̄s ≤ %̄. 2

Remark 3.4 1. For the example G = Zd, we can take Fn = {−n, . . . , n}d. On the
other hand, if G is the free group generated by two elements f1, f2 6= e, then there
does not exist a sequence {Fn} satisfying the amenability condition because the
neighboring set (f1Fn ∪ f2Fn ∪ f−1

1 Fn ∪ f−1
2 Fn) \ Fn has at least 2|Fn| + 2

elements.

2. The above given proof extends directly to the case of compact groups where Γ̄n is
defined via integration w.r.t. the normalized Haar measure. An extension of the rep-
resentation result to general amenable groups on product spaces seems possible, but
there are still some technical problems. Instead we will give an extension to amenable
transformation groups acting on Polish function spaces.

Let (G,G) be a group of measurable transformations acting on a Polish space (B, %)
of real functions on E and let P , Q be stationary probability measures on B, i.e. P g = P ,
Qg = Q, ∀g ∈ G. We assume that G is an amenable group, i.e. there exists a sequence λn

of asymptotically left invariant probability measures on G such that

λn(gA) − λn(A) → 0, ∀A ∈ G. (3.4)

The hypothesis of amenability is central for example in the theory of invariant tests. Many
of the standard transformation groups are amenable. A typical exception is the free group
of two generators. The Ornstein distance can be extended to this class of stationary random
fields as follows. Define the average distance w.r.t. λn by

%n(x, y) :=
∫

%(gx, gy)λn(dg). (3.5)

The induced minimal probability metric is given by

%̄n(P, Q) = inf{E%n(X, Y ) | (X,Y ) ∼ Γ ∈ M(P, Q)}. (3.6)
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Finally, the natural extension of the %̄ metric of Gray et al. (1975) is defined as

%̄(P,Q) = sup
n

%̄n(P,Q). (3.7)

Remark 3.5 In the particular case when G is countable and λn = 1
|Fn|

∑
g∈Fn

εg for
some increasing class of finite sets Fn ⊂ G we can take the product space B = EG and
we obtain %n(x, y) = 1

|Fn|
∑

g∈Fn
%(gXg, gYg) and

%̄n(P, Q) = inf{E%n(XFn , YFn | (XFn , YFn) ∼ ΓFn ∈ M(PFn , QFn)} (3.8)

with XFn = (gX)g∈Fn =: πFn(X), YFn = (gY )g∈Fn = πFn(Y ). Thus %̄n depends
only on the finite dimensional projections PFn = PπFn , QFn = QπFn of P , Q and we
include the previous framework. Amenability of G corresponds to the condition that Fn is
asymptotically left invariant in the sense that

|Fn ∩ (hFn)|/|Fn| → 1, ∀h ∈ G, (3.9)

i.e. to the condition in Theorem 3.3.

The optimal stationary coupling problem is introduced similarly as in Section 2 by

%̄s(P, Q) = inf{E[%(eX, eY )] | (X,Y ) ∼ Γ ∈ Ms(P, Q)} (3.10)

where Ms(P, Q) = {Γ ∈ M1(B × B) | Γ(g,g) = Γ, ∀g ∈ G} is the class of jointly
stationary measures with marginals P , Q and e is the neutral element of G. We use the
notation Γ(%) = E[%(eX, eY )] and Γn(%) = E[%n(X, Y )] for Γ ∈ M(P, Q).

We now can state an extension of the Gray–Neuhoff–Shields representation result for
the %̄ distance of stationary random fields to amenable groups.

Theorem 3.6 (General representation result for %̄ distance) Let G be an amenable
group acting on a Polish function space B on E, let P , Q be stationary integrable probabil-
ity measures on B, i.e. for X

d= P , E%(X, y) < ∞ for y ∈ E. Then the extended Ornstein
distance %̄ defined in (3.7) coincides with the optimal stationary coupling distance %̄s,

%̄(P, Q) = %̄s(P, Q).

In particular, %̄ does not depend on choice of λn.

Proof: To prove that %̄(P, Q) ≤ %̄s(P, Q) let for ε > 0 given Γ ∈ Ms(P, Q) be such that
Γ(%) ≤ %̄s(P, Q)+ε. Then using the integrability assumption and stationary of Γ we obtain
for all n ∈ N

%̄n(P,Q) ≤ Γn(%) = E

∫
%(gX, gY )λn(dg)

=
∫

E%(gX, gY )λn(dg) = Γ(%) ≤ %̄s(P,Q) + ε.

This implies that %̄(P,Q) ≤ %̄s(P, Q).
For the converse direction we choose for fixed ε > 0 and n ≥ 0 an element Γn ∈

M(P, Q) such that Γn(%) ≤ %̄n(P,Q) + ε. We define probability measures {Γ̄n} by

Γ̄n(A) :=
∫

G

Γn(gA)dλn(g). (3.11)

Then using the integrability condition and amenability of G we obtain that

Γ̄n(gA) − Γ̄n(A) =
∫

G

(Γn(gA) − Γn(A))λn(dg) → 0, (3.12)
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i.e. Γ̄n is asymptotically left invariant on B × B.
By definition Γ̄n ∈ M(P, Q), just take projections on finite components of Γ̄n

Γ̄n(A1 × Ω) =
∫

G

Γn(gA1 × Ω)λn(dg)

=
∫

G

P (gA1)λn(dg) = P (A1)

since P is stationary. Using tightness of {Γ̄n} we get a weakly converging subsequence
of {Γ̄n}. W.l.g. we assume that {Γ̄n} converges weakly to some probability measure Γ̄ on
B × B. In consequence by (3.12) we get Γ̄ ∈ Ms(P,Q). Finally,

%̄s(P,Q) ≤ Γ̄(%) ≤ lim sup Γ̄n(%)
≤ lim sup %̄n(P, Q) + ε ≤ %̄(P, Q) + ε

for all ε > 0 which concludes the proof. 2

Motivated by the representation results in Theorem 3.3, 3.6 we now consider the opti-
mal stationary coupling problem for general groups G acting on E = R. Let F be a finite
subset of G and let f : RF → R be a convex function. The function f is naturally identified
with a function on Ω by f(x) = f((xg)g∈F ). As in Section 2 any choice of the subgra-
dient of f is denoted by ((∂gf)(x))g∈F . Define an equivariant Borel measurable function
S : Ω → Ω by the shifted sum of gradients

Se(x) =
∑
g∈F

(∂gf)(gx) and Sh(x) = Se(h−1x), h ∈ G. (3.13)

Note that Se(x) depends only on (xg)g∈G(F ), where G(F ) is the subgroup generated by F
in G. We have S ◦ g = g ◦ S for any g ∈ G because

Sh(gx) = Se(h−1gx) = Sg−1h(x) = (gS(x))h.

Hence if X is a stationary random field, then (X, S(X)) is a jointly stationary random
field.

We obtain the following theorem.

Theorem 3.7 Let P , Q be stationary random field probability measures with respect to a
general group of measurable transformations G. Let S be an equivariant map as defined
in (3.13) with a convex function f . Let X be a real stationary random field with law µ and
assume that Xe and (∂gf(X))g∈F are in L2(µ). Then (X, S(X)) is an optimal stationary
coupling w.r.t. squared distance between µ and µS , i.e.

E(Xe − Se(X))2 = min
(X,Y )∼Γ∈Ms(µ,µS)

E[(Xe − Ye)2].

Proof: The construction of the equivariant mapping in (3.13) and the following remark
allow us to transfer the proof of Theorem 2.4 to the class of random field models. Fix
Γ ∈ Ms(µ, µS). Let G(F ) be the subgroup generated by F in G. Then G(F ) is countable
(or finite). We denote the restricted measure of µ on RG(F ) by µ|G(F ). By the gluing lemma,
we can consider a jointly stationary random field (Xg, Yg, X̃g)g∈G(F ) on a common proba-
bility space such that (Xg)g∈G(F ) ∼ µ|G(F ), Yg = Sg(X) and (X̃g, Yg)g∈G(F ) ∼ Γ|G(F ).
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Then we have

1
2
E[(Xe − Se(X))2 − (X̃e − Se(X))2] = E[Se(X)(X̃e − Xe)]

=
∑
g∈F

E
[(

(∂gf)(gX)
)
(X̃e − Xe)

]
=
∑
g∈F

E
[(

(∂gf)(X)
)
(X̃g − Xg)

]
≤ E[f(X̃) − f(X)]
= 0.

This implies that (X, S(X)) is an optimal stationary coupling w.r.t. squared distance be-
tween the random fields µ and µS = S#µ. 2

4 Optimal stationary couplings for general cost functions
The Monge–Kantorovich problem and the related characterization of optimal couplings
have been generalized to general cost functions c(x, y) in Rüschendorf (1991, 1995), while
McCann (2001) extended the squared loss case to manifolds; see also the surveys in Rachev
and Rüschendorf (1998) and Villani (2003, 2009). Based on these developments we will
extend the optimal stationary coupling results in Sections 2, 3 to more general classes of
distance functions. Some of the relevant notions from transportation theory are collected
in the Appendix B. We will restrict to the case of time parameter Z. As in Section 3 an
extension to random fields with general time parameter is straightforward.

Let E1, E2 be Polish spaces. and let c : E1 × E2 → R be a measurable cost function.
For f : E1 → R and x0 ∈ E1 let

∂cf(x0) =
{
y0 ∈ E2 | c(x0, y0) − f(x0) = inf

z0∈E1
{c(z0, y0) − f(z0)}

}
(4.1)

denote the set of c-supergradients of f in x0.
A function ϕ : E1 → R ∪ {−∞} is called c-concave if there exists a function

Ψ : E2 → R ∪ {−∞} such that

ϕ(x) = inf
y∈E2

(c(x, y) − Ψ(y)), ∀x ∈ E1. (4.2)

If ϕ(x) = c(x, y0) − Ψ(y0), then y0 ∈ ∂cϕ(x) is a c-supergradient of ϕ at x. For squared
distance c(x, y) = ‖x − y‖2

2 in Rm = E1 = E2 c-concavity of ϕ is equivalent to the
concavity of ϕ − ‖x‖2

2/2.
The characterization of optimal couplings T (x) ∈ ∂cϕ(x) for some c-concave function

ϕ leads for regular ϕ to a differential characterization of c-optimal coupling functions T

∇xc(x, T (x)) = ∇ϕ(x) (4.3)

see Rüschendorf (1991), Villani (2009). In case (4.3) has a unique solution in T (x) this
equation describes optimal c-coupling functions T in terms of differentials of c-concave
functions ϕ and the set of c-supergradients ∂cϕ(x) reduces to just one element

∂cϕ(x) = {x −∇xc∗(x, ϕ(x))}. (4.4)

Here c∗ is the Legendre transform of c and ∇xc(x, ·) is invertible and (∇xc)−1(x, ϕ(x))
= ∇xc∗(x, ϕ(x)) (see Rüschendorf (1991); Rachev and Rüschendorf (1998) and Villani
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(2003, 2009)). For functions ϕ which are not c-concave, the supergradient ∂cϕ(x) may be
empty.

The construction of optimal stationary c-couplings of stationary processes can be pur-
sued in the following way. Define the average distance per component cn : En

1 ×En
2 → R

by

cn(x, y) =
1
n

n−1∑
t=0

c(xt, yt) (4.5)

and assume that for some function f : En
1 → R, there exists a function Fn : En

1 → En
2

such that
Fn(x) = (Fk(x))0≤k≤n−1 ∈ ∂cnf(x), x ∈ En

1 . (4.6)

Note that (4.6) needs to be satisfied only on the support of (the projection of) the stationary
measure µ. In general we can expect ∂cnf(x) 6= ∅, ∀x ∈ En

1 only if f is cn-concave. For
fixed y0, . . . , yn−1 ∈ E2 we introduce the function hc(x0) = 1

n

∑n−1
k=0 c(x0, yk), x0 ∈ E1.

hc(x) describes the average distance of x0 to the n points y0, . . . , yn−1 in E2. We define
an equivariant map S : EZ

1 → EZ
2 by

S0(x) ∈ ∂c(hc(x0)) |yk=Fk(x−k,...,x−k+n−1),0≤k≤n−1

St(x) = S0(L−tx), S(x) = (St(x))t∈Z.
(4.7)

Here the c-supergradient is taken for the function hc(x0) and the formula is evaluated at
yk = Fk(x−k, . . . , x−k+n−1), 0 ≤ k ≤ n − 1. After these preparations we can state the
following theorem.

Theorem 4.1 (Optimal stationary c-couplings of stationary processes) Let X =
(Xt)t∈Z be a stationary process with values in E1 and with distribution µ, let c : E1 ×
E2 → R be a measurable distance function on E1 × E2 and let f : En

1 → R be measur-
able cn-concave. If S is the equivariant map induced by f in (4.7) and if c(X0, S0(X)),
{c(Xk, Fk(Xn))}n−1

k=0 and f(Xn) are integrable, then (X, S(X)) is an optimal stationary
c-coupling of the stationary measures µ, µS i.e.

Ec(X0, S0(X)) = inf{Ec(Y0, Z0) | (Y,Z) ∼ Γ ∈ Ms(µ, µS)} = c̄s(µ, µS). (4.8)

Proof: The construction of the equivariant function in (4.7) allows us to extend the ba-
sic idea of the proof of Theorem 2.3 to the case of general cost function. Fix any Γ ∈
Ms(µ, µS). By the gluing lemma, we can consider a jointly stationary process (X, Y, X̃)
on a common probability space with properties X ∼ µ, Y = S(X) and (X̃, Y ) ∼ Γ. Then
we have by construction in (4.7) and using stationarity of X

E[c(X0, S0(X)) − c(X̃0, S0(X))]

≤ E

[
n−1

n−1∑
k=0

{c(X0, yk) − c(X̃0, yk)}
∣∣∣
yk=Fk(X−k,...,X−k+n−1)

]

= E

[
n−1

n−1∑
k=0

{c(Xk, yk) − c(X̃k, yk)}
∣∣∣
yk=Fk(X0,...,Xn−1)

]
= E

[
cn(Xn, Fn(Xn)) − cn(X̃n, Fn(Xn))

]
≤ E[f(Xn) − f(X̃n)]
= 0.

The last inequality follows from cn-concavity of f while the last equality is a consequence
of the assumption that X

d= X̃ . As consequence we obtain that (X,S(X)) is an optimal
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stationary c-coupling. 2

The conditions in the construction (4.7) of optimal stationary couplings in Theorem
4.1 (conditions (4.6), (4.7)) simplify essentially in the case n = 1. In this case we get as
corollary of Theorem 4.1

Corollary 4.2 Let X = (Xt)t∈U be a stationary process with values in E1 and distribution
µ and let c : E1 × E2 → R be a cost function as in Theorem 4.1. Let f : E1 → R be
measurable c-concave and define

S0(x) ∈ ∂cf(x0), St(x) = S0(L−tx) ∈ ∂cf(xt), S(x) = (St(x))t∈Z. (4.9)

Then (X, S(X)) is an optimal stationary c-coupling of the stationary measures µ, µS .

Thus the equivariant componentwise transformation of a stationary process by super-
gradients of a c-concave function is an optimal stationary coupling. In particular in the case
that E1 = Rk several examples of c-optimal transformations are given in Rüschendorf
(1995) resp. Rachev and Rüschendorf (1998) which can be used to apply Corollary 4.2.

In case n ≥ 1 conditions (4.6), (4.7) are in general not obvious. In some cases cn-
convexity of a function f : En

1 → R is however easy to see.

Lemma 4.3 Let f(x) =
∑n−1

k=0 fk(xk), fk : E1 → R, 0 ≤ k ≤ n−1. If fk are c-concave,
0 ≤ k ≤ n − 1, then f is cn-concave and

∂cnf(x) =
n−1∑
k=0

∂cf(xk). (4.10)

Proof: Let yk ∈ ∂cfk(xk), 0 ≤ k ≤ n − 1, then with y = (yk)0≤k≤n−1 by definition of
c-supergradients

cn(x, y) − f(x) =
1
n

∑
k

(c(xk, yk) − fk(xk)) = inf{cn(z, y) − f(z); z ∈ En
1 }

and thus y ∈ ∂cnf(x). The converse inclusion is obvious. 2

Lemma 4.3 allows to construct some examples of functions Fn satisfying condition
(4.5). For n > 1 non-emptiness of the c-supergradient of hc(x0) = 1

n

∑n−1
k=0 c(x0, yk) has

to be established. The condition u0 ∈ ∂chc(x0) is equivalent to

c(x0, u0) − hc(x0) = inf
z

(c(z, u0) − hc(z)). (4.11)

In the differentiable case (4.11) implies the necessary condition

∇xc(x0, u0) = ∇xhc(x0) =
1
n

n−1∑
k=0

∇xc(x0, yk). (4.12)

If the map u → ∇xc(xo, u) is invertible then equation (4.12) implies

u0 = (∇xc)−1(x0, ·)

(
1
n

n−1∑
k=0

∇xc(x0, yk)

)
(4.13)

(see (4.4)). Thus in case that (4.11) has a solution, it is given by (4.13).
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Lemma 4.4 If (4.11) has a solution and u → ∇xc(x0, u) is invertible, then for x0 ∈ E1

u0 = (∇xc)−1(x0, ·)
(

1
n

∑n−1
k=0 ∇xc(x0, yk)

)
is a supergradient of hc in x0,

u0 ∈ ∂chc(x0). (4.14)

Example 4.5 If c(x, y) = H(x − y) for a strict convex function H , then ∇x(c(x, ·)
is invertible and we can construct the necessary c-supergradients of hc. If for example
c(x, y) = ‖x − y‖2, then we get for any x0 ∈ Rk,

u0 = u0(x0) =
1
n

n−1∑
k=0

yk = y (4.15)

is independent of x0 and
y ∈ ∂chc(x0), ∀x0 ∈ Rk. (4.16)

If c(x, y) = ‖x − y‖p, p > 1, then we get for x0 ∈ Rk

u0 = u0(x0) = x0 + |h(x0)|
1

p−1 h(x0)
|h(x0)|

, (4.17)

where h(x0) = 1
n

∑n−1
k=0 ‖x0 − yk‖p−1 x0−yk

‖x0−yk‖ . For this and related further examples see
Rüschendorf (1995).

The c-concavity of hc has a geometrical interpretation. u0 ∈ ∂chc(x0) if the difference
of the distance of z0 in E1 to u0 in E2 and the average distance of z0 to the given points
y0, . . . , yn−1 in E2 is minimized in x0. The c-concavity of hc can be interpreted as a posi-
tive curvature condition for the distance c. To handle this condition we introduce the notion
of convex stability.

Definition 4.6 The cost function c is called convex stable of index n ≥ 1 if for any y ∈ En
2

hc(x0) =
1
n

n−1∑
k=0

c(x0, yk), x0 ∈ E1, is c-concave. (4.18)

c is called convex stable if it is convex stable of index n for all n ≥ 1.

Example 4.7 Let E1 = E2 = H be a Hilbert space, as for example H = Rm, let c(x, y) =
‖x − y‖2/2 and fix y ∈ Hn, then

hc(x0) =
1
n

n−1∑
k=0

c(x0, yk)

= c(x0, ȳ) +
1
n

n−1∑
k=0

c(ȳ, yk), (4.19)

where ȳ = 1
n

∑n−1
k=0 yk Thus by definition (4.2) hc is c-concave and a c-supergradient of

hc is given by ȳ independent of x0, i.e.

ȳ ∈ ∂chc(x0), ∀x0 ∈ H. (4.20)

Thus the squared distance c is convex stable.
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The property of a cost function to be convex stable is closely connected with the geo-
metric property of non-negative cross curvature. Let E1 and E2 be open connected subsets
in Rm (m ≥ 1) with coordinates x = (xi)m

i=1 and y = (yj)m
j=1. Let c : E1 × E2 →

R be C2,2, i.e. c is two times differentiable in each variable. Denote the cross deriva-
tives by cij,k = ∂3c/∂xi∂xj∂yk and so on. Define cx(x, y) = (∂c/∂xi)m

i=1, cy(x, y) =
(∂c/∂yj)m

j=1, U = {cx(x, y) | y ∈ E2} ⊂ Rm, V = {cy(x, y) | x ∈ E1} ⊂ Rm. Assume
the following two conditions.

[B1] The map cx(x, ·) : E2 → U and cy(·, y) : E1 → V are diffeomorphic, i.e., they are
injective and the matrix (ci,j(x, y)) is positive definite everywhere.

[B2] The sets U and V are convex.

The conditions [B1] and [B2] are called bi-twist and bi-convex conditions, respectively.
Now we define the cross curvature σ(x, y; u, v) in x ∈ E1, y ∈ E2, u ∈ Rm and v ∈ Rm

by

σ(x, y; u, v) :=
∑

i,j,k,l

(
−cij,kl +

∑
p,q

cij,qc
p,qcp,kl

)
uiujvkvl (4.21)

where (ci,j) denotes the inverse matrix of (ci,j).
The following result is given by Kim and McCann (2008). Note that these authours

use the terminology time-convex sliding-mountain instead of the notion convex-stability as
used in this paper.

Proposition 4.8 Assume the conditions [B1] and [B2]. Then c is convex stable if and only
if the cross curvature is nonnegative, i.e.,

σ(x, y; u, v) ≥ 0, ∀x, y, u, v. (4.22)

The cross-curvature is related to the Ma-Trudinger-Wang tensor (Ma et al. (2005)),
which is the restriction of σ(x, y; u, v) to uivjci,j = 0. Known examples that have non-
negative cross-curvature are the n-sphere (Kim and McCann (2008), Figalli and Rifford
(2009)), its perturbation (Delanoë and Ge (2010), Figalli et al. (2010b)), their tensorial
product and their Riemannian submersion.

If E1, E2 ⊂ R, then the conditions [B1] and [B2] are implied from a single condition
in case cx,y = ∂2c(x, y)/∂x∂y 6= 0. Hence we have the following result as a corollary. A
selfcontained simplified proof of this result is given in Appendix C.

Proposition 4.9 Let E1, E2 be open intervals in R and let c ∈ C2,2, c : E1 × E2 → R.
Assume that cx,y 6= 0 for all x, y. Then c is convex stable if and only if σ(x, y) := −cxx,yy+
cxx,ycx,yy/cx,y ≥ 0.

Example 4.10 Let E1, E2 ⊂ R be open intervals and let E1∩E2 = ∅. Consider c(x, y) =
1
p |x−y|p with p ≥ 2 or p < 1. Then c is convex stable. In fact cx,y = −(p−1)|x−y|p−2 6=
0 for all x, y and σ(x, y) = (p − 1)(p − 2)|x − y|p−4 ≥ 0 for all x, y. As p → 0, we also
have a convex stable cost c(x, y) = log |x − y|.

If the cost function c is a metric then the optimal coupling in the case E1 = E2 = R
can be reduced to the case of E1 ∩ E2 = ∅ as in the classical Kantorovich–Rubinstein
theorem. This is done by subtracting (and renormalizing) from the marginals µ0, ν0 the
lattice infimum, i.e. defining

µ′
0 :=

1
a
(µ0 − µ0 ∧ ν0), ν′

0 :=
1
a
(ν0 − µ0 ∧ ν0). (4.23)

The new probability measures live on disjoint subsets to which the previous proposition can
be applied.
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Some classes of optimal c-couplings for various distance functions c have been dis-
cussed in Rüschendorf (1995), see also Rachev and Rüschendorf (1998). The examples
discussed in these papers can be used to establish cn-concavity of f in some cases. This is
an assumption used in Theorem 4.1 for the construction of the optimal stationary couplings.
Note that cn is convex-stable if c is convex-stable. Therefore the following proposition due
to Figalli et al. (2010a) (partially Sei (2010c)) is also useful to construct a cn-concave
function f .

Proposition 4.11 Assume [B1] and [B2]. Then c satisfies the non-negative cross curvature
condition if and only if the space of c-concave functions is convex, that is, (1 − λ)f + λg
is c-concave as long as f and g are c-concave and λ ∈ [0, 1].

Example 4.12 Consider Example 4.10 again. Let E1 = (0, 1), E2 = (−∞, 0), c(x1, y1) =
p−1(x1−y1)p (p ≥ 2) and cn(x, y) = (np)−1

∑n−1
k=0(xk−yk)p. An example of cn-concave

functions of the form f(x) =
∑n−1

k=0 fk(xk) with suitable real functions fk is given in
Rüschendorf (1995) Example 1 (b). We add a further example here. Put x̄ = n−1

∑n−1
k=0 xk

and let f(x) = A(x̄) with a real function A. We prove f(x) is cn-concave if A′ ≥ 1 and
A′′ ≤ 0. For example, A(ξ) = ξ +

√
ξ satisfies this condition. Equation (4.3) becomes

n−1(xi − yi)p−1 = n−1A′(x̄) (4.24)

which uniquely determines yi ∈ E2 since A′ ≥ 1 and xi ∈ E1. To prove cn-concavity of f ,
it is sufficient to show convexity of x 7→ cn(x, y) − f(x) for each y. Indeed, the Hessian is

δijn
−1(p − 1)(xi − yi)p−2 − n−2A′′(x̄) � −n−2A′′(x̄) � 0

in matrix sense. Note that the set of functions A satisfying A′ ≥ 1 and A′′ ≤ 0 is con-
vex, which is consistent with Proposition 4.11. Therefore, any convex combination of A(x̄)
and the cn-concave function

∑
k fk(xk) discussed above is also cn-concave by Proposi-

tion 4.11.

Appendix

A Gluing lemma for stationary measures
The gluing lemma is a well known construction of joint distributions. We repeat this con-
struction in order to derive an extension to the gluing of jointly stationary processes. For
given probability measures P and Q on some measurable spaces E1 and E2, we denote the
set of joint probability measures on E1 × E2 with marginals P and Q by M(P, Q).

Lemma A.1 (Gluing lemma) Let P1, P2, P3 be Borel probability measures on Polish
spaces E1, E2, E3, respectively. Let P12 ∈ M(P1, P2) and P23 ∈ M(P2, P3). Then there
exists a probability measure P123 on E1 × E2 × E3 with marginals P12 on E1 × E2 and
P23 on E2 × E3.

Proof: Let P1|2(·|·) be the regular conditional probability measure such that

P12(A1 × A2) =
∫

A2

P1|2(A1|x)P2(dx)

and P3|2(·|·) be the regular conditional probability measure such that

P32(A3 × A2) =
∫

A2

P3|2(A3|x)P2(dx).
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Then a measure P123 uniquely defined by

P123(A1 × A2 × A3) :=
∫

A2

P12(A1|x)P32(A3|x)P2(dx)

satisfies the required condition. 2

Next we consider an extension of the gluing lemma to stationary processes. We note
that even if a measure P123 on EZ

1 × EZ
2 × EZ

3 has stationary marginals P12 on EZ
1 × EZ

2

and P23 on EZ
2 × EZ

3 , it is not necessarily true that P is stationary. For example, consider
the {−1, 1}-valued fair coin processes X = (Xt)t∈Z and Y = (Yt)t∈Z independently,
and let Zt = (−1)tXtYt. Then (X, Y ) and (Y, Z) have stationary marginal distributions
respectively, but (X,Y, Z) is not jointly stationary because XtYtZt = (−1)t.

For given stationary measures P and Q on some product spaces, let Ms(P, Q) be the
jointly stationary measures with marginal distributions P and Q on the corresponding prod-
uct spaces.

Lemma A.2 Let E1, E2, E3 be Polish spaces. Let P1, P2, P3 be stationary measures on
EZ

1 , EZ
2 , EZ

3 , respectively. Let P12 ∈ Ms(P1, P2) and P23 ∈ Ms(P2, P3). Then there exists
a jointly stationary measure P123 on EZ

1 × EZ
2 × EZ

3 with marginals P12 and P23.

Proof: One can apply the same construction as in the preceding lemma. 2

B c-concave function
We review some basic results on c-concavity. See Rüschendorf (1991, 1995); Rachev and
Rüschendorf (1998); Villani (2003, 2009) for details.

Let E1 and E2 be two Polish spaces and c : E1 × E2 → R be a measurable function.

Definition B.1 We define the c-transforms of functions f on E1 and g on E2 by

fc(y) := inf
x∈E

{c(x, y) − f(x)} and gc(x) := inf
y∈E2

{c(x, y) − g(y)}.

A function f on E2 is called c-concave if there exists some function g on E2 such that
f(x) = gc(x).

In general, fcc ≥ f holds. Indeed, for any x and y, we have c(x, y) − fc(y) ≥ f(x).
Then fcc(x) = infy{c(x, y) − fc(y)} ≥ f(x).

Lemma B.2 Let f be a function of E1. Then f is c-concave if and only if fcc = f .

Proof: The “if” part is obvious. We prove the “only if” part. Assume f = gc. Then fc =
gcc ≥ g, and therefore

fcc(x) = inf
y
{c(x, y) − fc(y)} ≤ inf

y
{c(x, y) − g(y)} = gc(x) = f(x).

Since fcc ≥ f always holds, we have fcc = f . 2

Define the c-supergradient of any function f : E1 → R by

∂cf(x) = {y ∈ E2 | c(x, y) − f(x) = fc(y)} .

Lemma B.3 Assume that ∂cf(x) 6= ∅ for any x ∈ E1. Then f is c-concave.
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Proof: Fix x ∈ E1 and let y ∈ ∂cf(x). Then we have

f(x) = c(x, y) − fc(y) ≥ fcc(x) ≥ f(x).

Hence fcc = f and thus f is c-concave. 2

The converse of Lemma B.3 does not hold in general. For example, consider E1 =
[0,∞), E2 = R and c(x, y) = −xy. Then c-concavity is equivalent to usual concavity.
The function f(x) =

√
x is concave but the supergradient at x = 0 is empty.

C Proof of Proposition 4.9
Consider the cost function c(x, y) on E1 × E2 with the assumptions in Proposition 4.9.
Since cx,y 6= 0, the map y 7→ cx(x, y) is injective. Denote its image and inverse function
by U = {cx(x, y) | y ∈ E2} and ηx = (cx(x, ·))−1 : U 7→ E2, respectively. Hence
cx(x, ηx(u)) = u for all u ∈ U and ηx(cx(x, y)) = y for all y ∈ E2. Note that U is
an interval and therefore convex. Also note that the subscript x of ηx does not mean the
derivative. By symmetry, we can define V = {cy(x, y) | x ∈ E1} and ξy = (cy(·, y))−1 :
V 7→ E1.

We first characterize the c-gradient of a differentiable c-concave function f . Let x ∈
E1 and y ∈ ∂cf(x). Then c(x, y) − f(x) ≤ c(z, y) − f(z) for any z ∈ E1. By the
tangent condition at z = x, we have cx(x, y) − f ′(x) = 0, or equivalently, y = ηx(f ′(x)).
Hence we have ∂cf(x) = {ηx(f ′(x))}. We denote the unique element also by ∂cf(x) =
ηx(f ′(x)).

To prove Proposition 4.9, it is sufficient to show that the following conditions are equiv-
alent:

(i) c is convex stable for any index n

(ii) The map u 7→ c(x, ηx(u)) − c(z, ηx(u)) is convex for all x, z ∈ E1.

(iii) −cxx,yy + cxx,ycx,yy/cx,y ≥ 0.

We first prove (i) ⇔ (ii). Assume (i). Let Q be the set of rational numbers. By the
definition of convex stability, for any u0, u1 ∈ U and λ ∈ [0, 1] ∩ Q, the function

φ(x) := (1 − λ)c(x, ηx(u0)) + λc(x, ηx(u1))

is c-concave. The c-gradient of φ is given by

∂cφ(x) = ηx((1 − λ)cx(x, ηx(u0)) + λcx(x, ηx(u1))) = ηx((1 − λ)u0 + λu1).

Then c-concavity, c(x, ∂cφ(x)) − φ(x) ≤ c(z, ∂cφ(x)) − φ(z) for any z, is equivalent to

c(x, ηx((1 − λ)u0 + λu1)) − c(z, ηx((1 − λ)u0 + λu1))
≤ (1 − λ){c(x, ηx(u0)) − c(z, ηx(u0))} + λ{c(x, ηx(u1)) − c(z, ηx(u1))}.

Since both hand side is continuous with respect to λ, (ii) is obtained. The converse is
similarly.

Next we prove (ii) ⇔ (iii). Assume (ii). Fix x, z ∈ E1 and u0 ∈ U . Let y0 = ηx(u0)
and therefore u0 = cx(x, y0). Since u 7→ c(x, ηx(u))− c(z, ηx(u)) is convex for any z, its
second derivative at u = u0 is non-negative:

∂2
u{c(x, ηx(u)) − c(z, ηx(u))}

∣∣
u=u0

= {cyy(x, y0) − cyy(z, y0)}(η(1)
x (u0))2 + {cy(x, y0) − cy(z, y0)}η(2)

x (u0)
≥ 0. (C.1)
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On the other hand, by differentiating the identity cx(x, ηx(u)) = u twice at u = u0, we
have

cx,yy(x, y0)(η(1)
x (u0))2 + cx,y(x, y0)η(2)

x (u0) = 0.

Combining the two relations, we have[
{cyy(x, y0) − cyy(z, y0)} −

cx,yy(x, y0)
cx,y(x, y0)

{cy(x, y0) − cy(z, y0)}
]

(η(1)
x (u0))2 ≥ 0.

Since η
(1)
x (u0) = 1/cx,y(x, y0) 6= 0, we obtain

{cyy(x, y0) − cyy(z, y0)} −
cx,yy(x, y0)
cx,y(x, y0)

{cy(x, y0) − cy(z, y0)} ≥ 0.

Now let v0 = cy(x, y0) and v = cy(z, y0). Then x = ξy0(v0) and z = ξy0(v) from the
definition of ξy. We have

{cyy(ξy0(v0), y0) − cyy(ξy0(v), y0)} −
cx,yy(ξy0(v0), y0)
cx,y(ξy0(v0), y0)

(v0 − v) ≥ 0. (C.2)

This means convexity of the map v 7→ −cyy(ξy0(v), y0). Hence its second derivative is
non-negative. Therefore

−cxx,yy(z, y0)(ξ(1)
y0

(v))2 − cx,yy(z, y0)ξ(2)
y0

(v) ≥ 0.

On the other hand, by differentiating the identity cy(ξy0(v), y0) = v twice, we have

cxx,y(z, y0)(ξ(1)
y0

(v))2 + cx,y(z, y0)ξ(2)
y0

(v) = 0.

Combining the two relations, we have[
−cxx,yy(z, y0) +

cxx,y(z, y0)
cx,y(z, y0)

cx,yy(z, y0)
]

(ξ(1)
y0

(v))2 ≥ 0. (C.3)

Since ξ
(1)
y0 (v) = 1/cx,y(z, y0) 6= 0, we conclude

−cxx,yy(z, y0) + cx,yy(z, y0)
cxx,y(z, y0)
cx,y(z, y0)

≥ 0.

Since z and y0(= ηx(u0)) are arbitrary, we obtain (iii).
The proof of (iii) ⇒ (ii) is just the converse. First, (C.3) follows from (iii). Since (C.3)

is the second derivative of the left hand side of (C.2), the convexity condition (C.2) fol-
lows. The condition (C.2) is equivalent to (C.1), and (C.1) is also equivalent to (ii). This
completes the proof.
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