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Abstract

We develop the method of optimal portfolio choice based on the concept of
cost-efficiency in two directions. First, instead of specifying a payoff distribution
in an unique way we allow customer defined constraints resp. preferences for
the choice of a distributional form of the payoff distribution. This leads to a
class of possible payoff distributions. We determine upper and lower bounds
for the corresponding strategies in stochastic order and describe related upper
and lower price bounds for the induced class of cost-efficient payoffs. While the
results for the cost-efficient payoff given so far in the literature in the context of
Lévy models are based on the Esscher pricing measure we consider as alternative
an empirical pricing measure leading to more precise pricing of cost-efficient
options in the market. We show in some examples for real market data that
this choice is numerically feasible and leads to more precise prices for the cost
efficient payoffs and for values of the efficiency loss.

Keywords : cost-efficient strategies, Lévy models, Esscher transform, cost-efficiency,
empirical pricing, optimal portfolio

1 The concept of cost-efficiency

This distributional analysis concept for portfolio choice has been introduced
by Dybvig (1988a). The basic principle is to improve a given payoff XT with
distribution G, i.e. XT ∼ G, in a market model given by (Ω,F , (Ft)0≤t≤T , P )
and an underlying price process S = (St)0≤t≤T by choosing a cheapest payoff
XT which has the same payoff distribution G as XT , i.e. XT ∼ G that satisfies

c(XT ) = min
XT∼G

c(XT ). (1.1)

Here c(XT ) = e−rTE[ZTXT ] is the cost of a strategy with terminal payoff XT

based on a pricing density ZT used in the market such that (e−rtZtSt) is a
P -martingale. The cheapest payoff XT with payoff distribution G in (1.1) has
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been named cost-efficient payoff in Bernard et al. (2012) and in the subsequent
literature. Similarly, a payoff XT ∼ G is called most expensive if

c(XT ) = max
XT∼G

c(XT ). (1.2)

`(XT ) = c(XT )− c(XT ) (1.3)

is called the efficiency loss of XT .
The following characterization of cost-efficient payoffs has been stated in

various generality in a series of papers including Dybvig (1988a,b), Jouini and
Kallal (2001), Dana (2005), Schied (2004), Burgert and Rüschendorf (2006),
Bernard and Boyle (2010), Bernard et al. (2012), Vanduffel et al. (2008, 2012)
and Rüschendorf (2012).

Theorem 1.1 (Cost-efficient payoffs)

a) For a given payoff distribution G holds

c(XT ) = e−rT
∫ 1

0
G−1(u)F−1

ZT
(1− u)du (1.4)

and c(XT ) = e−rT
∫ 1

0
G−1(u)F−1

ZT
(u)du. (1.5)

b) A payoff XT ∼ G is cost-efficient if and only if XT and ZT are antimonotonic.
XT ∼ G is most expensive if and only if XT and ZT are comonotonic.

c) If FZT
is continuous then the cost efficient resp. most expensive payoffs are

given by

XT = G−1(1− FZT
(ZT )) (1.6)

resp. XT = G−1(FZT
(ZT )). (1.7)

Theorem 1.1 has been applied in several papers to determine cost efficient
payoffs, in particular in the context of the Samuelson model as well as in some
classes of exponential Lévy processes (see Bernard et al. (2012), Vanduffel et al.
(2012) and v. Hammerstein et al. (2014)) and has been applied to real market
data.

In the context of Lévy models the results have been mainly based on the
Esscher measure defined by the pricing density

Zϑt =
eϑLt

MLt(ϑ)
, (1.8)

where MLt denotes the moment generating function of Lt and ϑ, the Esscher
parameter, is a solution to the equation

er =
ML1(ϑ+ 1)

ML1(ϑ)
. (1.9)

Condition (1.9) implies that the Esscher measure Qϑ = ZϑTP is a risk neutral
measure for the discounted stock price process (e−rtSt)0≤t≤T . It has the pleasant

property that w.r.t. Qϑ L remains a Lévy process with modified parameters.
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In the context of Lévy models the market is bullish, i.e, E St
S0

> ert iff

ϑ < 0 and the market is bearish iff ϑ > 0 (see v. Hammerstein et al. (2014,
Proposition 2.2)). Furthermore, for ϑ < 0 a payoff XT is cost-efficient iff Xt

is an increasing function in LT and for ϑ < 0, XT is cost-efficient iff XT is a
decreasing function of LT . In particular a put is inefficient in increasing markets
where ϑ < 0 and a call is inefficient in decreasing markets where ϑ > 0. It is
shown (for certain examples) that the magnitude of efficiency loss is increasing
in the magnitude of the trend in the market described by |ϑ|. As consequence
one gets that path dependent options are not cost-efficient and thus can be
improved by cost-efficient options.

In this paper, which is based on the dissertation Wolf (2014) we extend
the distributional method of portfolio choice in two directions. In Section 2
we allow that a customer instead of specifying the wished payoff distribution
completely determines a (finite) set of acceptable payoff distributions e.g. by
posing constraints on the distribution functions at certain points and specifying
customer preferences. For the resulting class of admissible payoff distributions
we determine upper and lower bounds in stochastic order and determine upper
and lower price bounds for the resulting cost-efficient payoffs.

In Section 3 we use a more realistic pricing method based on an empirical
pricing measure while the cost-efficiency method applied to Lévy models has
been based so far on pricing by the Esscher pricing measure. We show that this
leads to more precise pricing of cost-efficient options and is numerically doable.
We investigate some classes of basic options for real market data and determine
cost efficient payoffs and the corresponding efficiency losses.

2 Customer specified payoff distributions

It is of particular interest for financial institutions or insurance companies to
find accessible and economically priced strategies which fulfill customer-specified
constraints and individual preferences. Typically, investors have little information
on the strategy or option itself respectively the distribution function of the payoff
of the option they actually seek for their current financial situation. In addition,
it is hard to determine the entire distribution function of a suitable strategy or
payoff for the customer.

It is however easier manageable and can be compiled via surveys or by
interviewing clients to specify the aimed payoff distribution G at certain points
α i.e. to specify that P (XT ≤ α) = β for (α, β) ∈ C in some parameter class C.
The general class of in this way determined payoff distribution function

FC := {G | G is a df , G(α) = β, ∀(α, β) ∈ C} (2.1)

may be a considerably large class.
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Thus a second kind of restriction describing the individual preferences of a
customer is introduced by specifying a certain (typically finite) subset of payoff
distributions

{F1, . . . , FN} ⊂ FC , (2.2)

which are considered as acceptable. The first restriction in (2.1) specifies the
payoff distribution G at certain levels of payoffs, the second restriction in (2.2)
defines some individual preferences on the chosen payoff distribution. Note that
the specification set C could be empty. In this case only some class F1, . . . , FN
of individually preferred payoff distributions is specified and no specified payoff
levels are included.

Let G∗ denote the supremum of F1, . . . , FN in stochastic order and let
G∗ denote the infimum of F1, . . . , FN in stochastic order. Then it is natural
to consider all those payoff distributions G to be acceptable which satisfy
G∗ ≤st G ≤st G

∗. Let

FC,N := {G ∈ FC |G∗ ≤st G ≤st G
∗} (2.3)

denote the set of all acceptable payoff distributions. We say that FC,N is generated
by F1, . . . , FN and write FC,N ∼ F1, . . . , FN . Then the following Proposition is
obtained easily from the definition.

Proposition 2.1 The elements G∗ and G∗ of the admissible class FC,N in
stochastic order are given by

G∗(x) = min{F1(x), . . . , FN (x)} (2.4)

and
G∗(x) = max{F1(x), . . . , FN (x)}. (2.5)

Moreover G∗ and G∗ satisfy the specified constraints, i.e. G∗, G
∗ ∈ FC.

Let for G ∈ FC,N XG
T be the cost-efficient strategy with payoff distribution

G. Then we obtain the following price bounds for cost-efficient payoffs with
payoff distribution in FC,N .

Proposition 2.2 For any G ∈ FC,N holds

c(XG∗
T ) ≤ c(XG

T ) ≤ c(XG∗
T ). (2.6)

If FZT
is continuous, then

XG∗
T = max

1≤i≤N
XFi
T , XG∗

T = min
1≤i≤N

XFi
T . (2.7)

Proof: The inequalities in (2.6) are due to the representation of the lower
cost bound in (1.4). If FZT

is continuous then the cost-efficient payoff is given
by Theorem 1.1 as

XG
T = G−1(1− FZT

(ZT )). (2.8)

Using this representation and the stochastic ordering in the definition of FC,N
the result follows. Note that

XG∗
T = (G∗)−1(1− FZT

(ZT )) (2.9)
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= (min{F1, . . . , FN})−1(1− FZT
(ZT ))

= max{F−1
1 (1− FZT

(ZT )), . . . , F−1
N (1− FZT

(ZT ))}) (2.10)

= max
1≤i≤N

XFi
T .

The case with G∗ is seen similarly. �

Remark 2.3 1. In the case of an exponential Lévy model with Esscher
parameter θ̄ the cost-efficient payoff can be represented in the following
simplified form

XG∗
T :=

{
G∗−1(1− FLT

(LT )), if θ̄ > 0,

G∗−1(FLT
(LT )), if θ̄ < 0

(2.11)

and analogously for G∗.

2. As consequence of Propositions 2.1, 2.2 an investor may choose any pay-
off distribution function G between the lower and upper bound G∗, G

∗

matching his individual payoff constraints. Inequality (2.6) shows the cor-
responding range of possible prices of the cost-efficient payoffs. If the cost
of the stochastically largest payoff distribution G∗ is still acceptable for the
investor then this would be the choice. If the cost is the most important
criterion, then XG∗

T would be the choice suitable for this customer. In
general a choice of a payoff distribution G ∈ FC,N might be based on a
reward cost criterion of the form

EXG
T − λc(XG

T ) = max
G∈FC,N

! (2.12)

Note that EXG
T is identical to

∫
xG(dx) and thus easy to determine.

In the following we determine in some examples the optimal strategy corre-
sponding to the upper payoff bound G∗ and we explain how the optimal payoff is
related to the generating optimal payoffs which fulfill customer-given constraints.
To keep things simple we consider the case N = 2 and FC,N to be generated by

{FPut, FCall}, {FsqC, FsqP}, {Fstrdl, Fbfly}

where sqC, sqP denotes the self-quanto call and put with terminal payoffs
XsqC
T = ST (ST −K)+, X

sqP
T = ST (K − ST )+ while strdl,bfly denotes the long

straddle resp. long call butterfly spread options. We do not specify the payoff
distribution function at certain levels in our examples but just specify the chosen
payoff distributions. Since these intersect we implicitly also fix some constraint
pairs (α, β). We evaluate the cost-efficient strategies for real market data of
Volkswagen, Allianz, ThyssenKrupp and E.ON for the period October and
November 2012 and 23 trading days. The initial stock price is S0 = 130.55, the
closing price at October 1, 2012. As distributional models we use the NIG, the
VG and the normal model with parameters estimated from market data. We
choose as pricing measure the Esscher martingale measure. For details on the
data and the statistical analysis we refer to v. Hammerstein et al. (2014) and to
Wolf (2014).
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FC,2 ∼ {FPut, FCall}

We consider Volkswagen data for the period October and November 2012 and 23
trading days. The initial stock price is S0 = 133,55, the closing price on October
1, 2012. The price ST = 153 of Volkswagen at maturity November 1, 2012, is
used to compute the payoffs ω•(ST ).

We consider first the standard long put XPut
T and call XCall

T with strike K =
136 and K = 134 respectively and T = 23 trading days, i.e. FC,2 = {FPut, FCall}.
This choice is consistent with the customer-given constraints, (α, β) = (19.4614,
0.9076).

Volkswagen c(XPut
T ) ωPut(ST ) c(XCall

T ) ωCall(ST )

NIG 8.66 0.00 3.93 19.00

VG 8.63 0.00 3.90 19.00

Normal 8.65 0.00 3.92 19.00

Volkswagen c(XG∗

T ) ωG∗
(ST ) c(XPut

T ) ωPut(ST )

NIG 4.64 19.11 4.52 19.11

VG 4.60 19.13 4.49 19.13

Normal 4.63 19.07 4.51 19.07

Table 1: Comparison of prices and payoffs for standard put, call, cost-efficient put and the
cost-efficient min-cost strategy XG∗

T .
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Figure 1: Distribution of standard put with
strike K = 136 and call with strike K = 134
for Volkswagen. The dotted line marks the min-
imum G∗.
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Figure 2: Optimal strategy XG∗

T for Volks-
wagen in case of a standard put with strike
K = 136 and call with strike K = 134.

Figure 1 shows the distribution functions of these strategies with a dotted
line expressing G∗ = min{FPut, FCall} which generates the optimal min-cost
strategy XG∗

T from equation (2.8). Figure 2 illustrates the corresponding optimal
payoff of the min-cost strategy XG∗

T for Volkswagen. When the price at maturity
ST ranges from about [0, 153.50] the payoff of the corresponding cost-efficient
min-cost strategy outperforms the standard call, which in this case is also cost-
efficient. If at maturity the price ST is greater than 153.50 the payoff of the
corresponding cost-efficient min-cost strategy equals the payoff of the standard
call and therefore outperforms the payoff of the corresponding cost-efficient

6



put option. As can be seen from Table 1 resp. Figure 1 there is only a small
influence of the different Lévy models chosen to model the data. Note that
ωX(ST ) denotes the payoff function of option X, i.e. in case of the standard call
we have ωCall(ST ) = (ST −K)+.

Figure 2 shows that the optimal strategy XG∗
T for Volkswagen is composed

of a standard call and a cost-efficient put as shown in Proposition 2.2.

FC,2 ∼ {Fstrdl, Fbfly}

The two options are chosen for ThyssenKrupp data as the standard long strad-
dle Xstrdl

T with exercise price K = 16.5 and the long call butterfly Xbfly
T with

strike prices K1 = 12 and K3 = 20, that is, we consider the set FC,2 ∼
{Fstrdl, Fbfly}. The payoff distribution function G∗ is shown in Figure 3. The
choice is consistent with a constraints specification to {(α1, β2), (α2, β2)} =
{(0.1657, 0.0685), (3.8722, 0.9481)}. In this case we consider the ThyssenKrupp
stock within the trading period [0, T ] with T = 23 days. The initial stock price
is S0 = 16.73, the closing price at October 1, 2012.

ThyssenKrupp c(Xstrdl
T ) ωstrdl(ST ) c(Xbfly

T ) ωbfly(ST ) c(XG∗

T ) ωG∗
(ST )

NIG 1.538 0.692 2.40 1.834 2.448 1.834

VG 1.531 0.688 2.41 1.839 2.452 1.839

Normal 1.529 0.694 2.40 1.841 2.449 1.841

Table 2: Comparison of prices and payoffs for cost-efficient straddle, butterfly and the cost-
efficient min-cost strategy XG∗

T . The terminal value ST = 17.74 of ThyssenKrupp at maturity,
November 1, 2012, is used to compute the payoffs ω·(ST ).
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Figure 3: Distribution of standard long strad-
dle with strike K = 16.5 and long call but-
terfly with strikes K1 = 12 and K3 = 20 for
ThyssenKrupp. The dotted line marks the mini-
mum G∗.
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Figure 4: Optimal strategy XG∗

T for
ThyssenKrupp in case of a standard long
straddle with strike K = 16.5 and long call
butterfly with strikes K1 = 12 and K3 = 20.

Figure 4 illustrates the corresponding optimal payoff of the min-cost strategy
XG∗
T for ThyssenKrupp. When the price at maturity ST ranges from about

[13.71, 19.72] the payoff of the corresponding cost-efficient min-cost strategy XG∗
T

outperforms the cost-efficient straddle. Otherwise, the payoff of the corresponding
cost-efficient min-cost strategy equals the payoff of the cost-efficient straddle call
and therefore outperforms the payoff of the corresponding cost-efficient butterfly
option. As it is easily observed from Table 2 the cost-efficient min-cost strategy
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XG∗
T performs almost as good as the cost-efficient long call butterfly option.

The guarantee of having a higher payoff in mean here results in a marginally
noticeable higher price compared to the optimal long call butterfly option and
thus may be a good choice for an investor.

FC,2 ∼ {FsqP, FsqC}

Finally, for the Allianz stock we consider the the self-quanto call XsqC
T and put

XsqP
T with strike K = 98 and maturity T = 23 days. Since the corresponding

distribution functions intersect (see Figure 5) this choice is consistent with the
customer constraints (α, β) = (1496.49, 0.95905).

Figure 6 illustrates the corresponding optimal payoff of the min-cost strategy
XG∗
T for Allianz. When the price at maturity ST ranges from about [0, 111.50]

the payoff of the corresponding cost-efficient min-cost strategy outperforms
the cost-efficient self-quanto call. Otherwise, the payoff of the corresponding
cost-efficient min-cost strategy equals the payoff of the cost-efficient self-quanto
call and therefore outperforms the payoff of the corresponding cost-efficient
self-quanto put.

Allianz c(XsqC
T ) ωsqC(ST ) c(XsqP

T ) ωsqP(ST ) c(XG∗

T ) ωG∗
(ST )

NIG 205.40 0.00 452.85 557.10 468.61 557.10

VG 195.62 0.00 449.59 561.33 462.75 561.33

Normal 202.66 0.00 452.21 558.67 465.50 558.67

Table 3: Comparison of prices and payoffs for cost-efficient self-quanto call, self-quanto put and
the cost-efficient min-cost strategy XG∗

T . The terminal value ST = 95.92 of Allianz at maturity,
November 1, 2012, is used to compute the payoffs ω·(ST ).

From Table 3 one can observe that the cost-efficient min-cost strategy XG∗
T

performs almost as good as the cost-efficient self-quanto put option on the
Allianz stock. The guarantee of having a higher payoff in mean here expresses
in a marginally noticeable higher price compared to the optimal self-quanto put
and thus may be a good choice for an investor.
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Figure 5: Distribution of self-quanto put and
call with strike K = 98 for Allianz. The dotted
line marks the minimum G∗. The initial stock
price is S0 = 93.42, the closing price at October
1, 2012.
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Figure 6: Optimal strategy XG∗

T for Volks-
wagen in case of a standard put with strike
K = 136 and call with strike K = 134.
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3 An alternative pricing method

The applications of the method of portfolio selection based on cost-efficient
payoffs have been applied so far in the context of Lévy models using the Esscher
measure transform as pricing measure. This choice is mainly motivated by several
mathematical simplifications induced by this pricing method. In the more recent
research on option pricing it has however turned out that more precise pricing
methods are available. A promising and well established alternative pricing
method is pricing on the empirical pricing measure Q resp. the corresponding
state price density ZT = dQ

dP |FT
which is provided by choosing a suitable large

(but typically parametric) family of martingale measures and then choosing the
parameters of the martingale measure by fitting the prices of a class of vanilla
options observed in the market by the model prices. In this way market prices
determine the choice of the martingale measure. In contrast to the Esscher
pricing method the density ZT of the empirical pricing measure in Lévy models
is typically no longer a monotone function of LT .

To start with a typically parametric class of Lévy models is chosen for the
modeling of the underlying stock price process and the parameters of the model
are estimated from daily log-returns of the data (under the physical measure
P ). Then for a given financial derivative XT with maturity T > 0 the payoff
distribution G is determined explicitly (under P ). We want to emphasize that
the payoff function XT = G−1(1 − FZT

(ZT )) of the cost-efficient version also
depends on the payoff distribution G which is determined under P .

Then in the second step in the class of risk-neutral measures corresponding to
the chosen Lévy model the parameters of the risk-neutral measure are estimated
by a least square method over the squared differences of market and model
prices for some basic derivatives are minimized over the Lévy parameters in the
class of risk-neutral measures. Thus the risk neutral measure is modeled directly
from observed market prices of some basic vanilla options as e.g. calls or puts.
As a result we obtain the risk-neutral empirical pricing measure Q with density
ZT w.r.t. P . It is shown in the literature that this pricing measure leads to a
more precise pricing of derivatives.

Hence, in a straightforward manner, the price of the cost-efficient claim XT

is given by

erT c(XT ) = E[ZTG
−1(1− FZT

(ZT ))] =

∫
R
G−1(1− FZT

(hT (x))d
LQ
T

(x) dx

(3.13)

where hT := dQLT

dPLT
and d

LQ
T

denotes the density of LT under Q. This method

takes all relevant past and present market occurrences into account and gives
also a more accurate pricing of the cost-efficient versions of the derivatives. This
allows us to compute the expectations, which arise as prices of cost-efficient
strategies, as in equation (3.13).

3.1 Pricing under the equivalent martingale measure

We briefly recall the construction of the class of equivalent martingale measures
in order to introduce the least squares estimation of the Lévy parameters of the
risk neutral measure.
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The pricing of derivatives which depends on the underlying price process
given by St = S0e

Lt requires (St)t≥0 to be a martingale. The martingale property
can be described alternatively by the following differential equation

dSt = St−
(

dLt +
c

2
dt+

∫
R

(ex − 1− x)µL(dt,dx)
)

(3.14)

where St− denotes the left limit at time point t. (Lt)t≥0 possesses the triplet of
local characteristics (b, c, F ) with random measure of jumps denoted by µL Lévy
measure F , drift b and volatility c. A necessary assumption for a martingale
is that each variable has a finite expectation E[St] = S0E[eLt ] <∞. This is a
consequence of assuming that there exists a constant M > 1 such that∫

{|x|>1}
eux F (dx) <∞ (3.15)

for all u ∈ [−M,M ] (see Sato (1999, Theorem 25.3)). Recall that all the common
Lévy processes such as hyperbolic, NIG , GH , VG , and CGMY Lévy processes
satisfy equation (3.15). From the stochastic differential equation (3.14) one can
derive that (St)t≥0 is a martingale if the drift parameter b coincides with the
exponential compensator of the Gaussian and the pure jump part of L, i.e.

b+ r = − c
2
−
∫
R

(ex − 1− x)F (dx). (3.16)

Note that because of the rich structure of the Lévy processes, the set of equivalent
martingale measures is in general very large (see Eberlein and Jacod (1997)).
We therefore consider a priori a martingale model which is determined by (3.16)
or a sufficiently large subclass of it, which is described by a set of parameters
η = (η1, . . . , ηk) such that (3.16) is fulfilled.

In general we have to consider a functional ϕ of the whole price path which
we write in the form ϕ(S0e

Lt , 0 ≤ t ≤ T ) = f(YT − s) where s = − logS0 and
the driving process Y can be L or other functions of the path of the underlying
Lévy process. The time-0-price of this option as a function of the process Y and
the value s is given by

c0(Y ; s) = EQ[ϕ(St, 0 ≤ t ≤ T )] = EQ[f(YT − s)]. (3.17)

The expectation is taken with respect to the empirical martingale measure Q
which is given by estimating the Lévy parameters from current prices of common
financial derivatives. The least squares estimation of the Lévy parameter is
determined as follows: We use the notation c0(η; s) = c0(Y ; s) for the time-0-price
in order to emphasize the dependence on the Lévy parameters η = (η1, . . . , ηk),
k ∈ N. The martingale measure Q respectively the Lévy parameters under Q
are determined by a least squares estimation technique. Hereto, we denote by
c0(η; s) the time-0-price of a standard long call (long put) with maturity T > 0
and strike K for a chosen Lévy model with parameters η. Let cm0 be the quoted
market price with maturity T and strike Km, 1 ≤ m ≤ m0. Then the solution η̂
of the minimization problem

min
η

[ m0∑
m=1

(
cm0 (η; s)− cm0

)2]
(3.18)
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yield the Lévy parameters of Y1 = L1 for the empirical risk-neutral measure
Q and cm0 (η; s) is the model price of a call with strike Km. Alternatively, a
summation over different maturities T could be done.

3.2 Cost-efficient strategies under empirical martingale mea-
sure pricing

We next calibrate a NIG model to real market data from a ThyssenKrupp
stock. Table 4 lists the estimated parameters η(L1) from the daily log-returns
from ThyssenKrupp from March 14, 2011 to March 13, 2014 as well as the
parameters of the calibrated empirical risk-neutral pricing measure. Also the
Esscher parameter θ̄ is displayed in Table 4.

ThyssenKrupp α β δ µ θ̄

η(L1) 49.24615 −3.5086 0.028 0.0015 0.449252

η(LQ
1 ) 116.1038 −7.2793 0.03452 0.00 −

Table 4: Estimated NIG parameters under Q from long call prices on ThyssenKrupp at March
14, 2014 with maturity T = 444 days and under P from daily log-returns of ThyssenKrupp from
March 14, 2011 to March 13, 2014.

Then in the second step we use least squares to calibrate the prices of
long calls on ThyssenKrupp on March 14, 2014 with expiration date December
15, 2015 within the NIG model. Figure 7 gives the resulting call price curve
in dependence of the strike K, varying form 10 to 48 which shows a good
coincidence with the observed market prices. For the least squares estimation
of the Lévy parameters the continuously compounded 1-Day-Euribor rate of
March 14, 2014, which equals r = 4.388879 · 10−6, is used.
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Figure 7: Calibration of NIG parameters for
prices of a long call on ThyssenKrupp at March
14, 2014 with expiration date December 15,
2015.
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Figure 8: Long call prices on ThyssenKrupp at
March 14, 2014 with maturity T = 444 days
and computed prices via the Esscher martingale
measure with estimated parameters under P
from daily log-returns of ThyssenKrupp from
March 14, 2011 to March 13, 2014.

Figure 8 shows that the long call prices computed by the Esscher martingale
measure depart considerably from the market prices in the central range 16 ≤
K ≤ 35 which confirms a weakness of this pricing method. The estimated
parameters η(LQ1 ) are listed in Table 4 for the ThyssenKrupp stock in the NIG
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model. For the least squares estimation long call prices1 on ThyssenKrupp at
March 14, 2014 with expiration date December 15, 2015 are used, that is, the
maturity equals T = 444 days. The estimated Lévy parameters η(L1) from the
daily log-returns of ThyssenKrupp from March 14, 2011 to March 13, 2014 can
be found in Table 4 and are utilized to compute the payoff distribution GCall

and the payoff of the cost-efficient XCall
T .

In the next step we compute the payoff distribution GCall of the long call
and the payoff of the cost-efficient call XCall

T (based on the parameters η(L1))
for the strikes K = 16 and K = 24. The interest rate used to calculate the
Esscher parameter θ̄ is the continuously compounded 1-Day-Euribor rate2 of
March 14, 2014, which is r = 4.388879 · 10−6.

In Table 5 we compare the two introduced pricing methods. The cost of a
long call option on ThyssenKrupp and the corresponding cost-efficient payoffs
in the NIG Lévy model are presented for the Esscher pricing method and for
pricing by the empirical pricing measure Q with parameters η(LQ1 ) based on
formula (3.13). We obtain a correction of the cost of the cost-efficient call. In
both cases the more precise price of the efficient call is reduced compared to
the Esscher price which leads to a correction of the relative efficiency loss in the
magnitude of 8% resp. 27%.

K = 16 c(XCall
T ) c(XCall

T ) Efficiency loss in %

η(L1) 4.4864 2.2597 49.63

η(LQ
1 ) 3.67 1.5434 57.95

K = 24 c(XCall
T ) c(XCall

T ) Efficiency loss in %

η(L1) 1.8271 0.7316 59.96

η(LQ
1 ) 0.85 0.5779 32.01

Table 5: The pricing methods, Esscher transform versus pricing under the equivalent martingale
measure Q, are compared. The initial stock price at March 14, 2014 is S0 = 18 and the maturity
is chosen to be T = 444 days. The other parameters needed for the calculations are taken from
Table 4.

Remark 3.4 (Numerical issues) Since the empirical pricing density ZT =
h(LT ) typically is not monotone in LT – in the NIG model it is the quotient
of two NIG densities – the expression 1 − FZT

(h(x)) in formula (3.13) must
be estimated or simulated. The results established in Table 5 for c(XCall

T ) in
the market model are achieved by simulating the distribution function FZT

for
ZT = hT (LT ) where

hT =
dQLT

dPLT
=

dQLT

dλ\
dλ\

dPLT
.

In order to obtain precise results we computed the distribution function FZT

by simulating the corresponding Lévy process over 9 · 106 times. For such an
estimation it appears that the absolute error has the scale of 10−5. A higher
number of simulations leads to a better value for the absolute error but also to
an increase of the timespan to compute the price.

1Historical call prices are listed, e.g. on www.eurexchange.com.
2The 1-Day-Euribor equals the 1-day interbank interest rate for the Euro zone (Eonia rate).

12



4 Conclusion

In our paper we propose a way to include realistically available information
of a customer on the specification of the payoff distribution aimed at and also
to include preferences of the customer given in terms of a finite number of
acceptable payoff curves. This information is combined with the construction of
cost-efficient payoffs which allows to interpolate between admissible costs and
high payoff.

As a second innovation we use a more precise pricing method based on the
empirical pricing measure compared to pricing of the mathematically simpler
Esscher pricing measure in order to obtain a more precise value of the price of
cost-efficient payoffs. We show that this approach is numerically feasible and
that it may lead in examples to considerably corrected prices for the cost-efficient
strategies and thus to more precise values for the efficiency loss.
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L. Rüschendorf. Risk bounds, worst case dependence and optimal claims and
contracts. In Proceedings of the AFMATH Conference, pages 23–36, Brussels
(2012), 2012.
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