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Abstract

In this paper we extend results on optimal risk allocations for portfolios
of real risks w.r.t. convex risk functionals to portfolios of risk vectors. In
particular we characterize optimal allocations minimizing the total risk as
well as Pareto optimal allocations. Optimal risk allocations are shown to ex-
hibit a worst case dependence structure w.r.t. some specific max-correlation
risk measure and they are comonotone w.r.t. a common worst case scenario
measure. We also derive a new existence criterion for optimal risk allocations
and discuss some examples.
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1 Introduction

In this paper we consider an extension of the optimal risk allocation problem resp.
the risk exchange problem to the case of risk vectors. This extension allows to
include the effects of dependence in a portfolio as measured by multivariate risk
measures %i in the risk allocation problem. On a basic probability space (Ω,A, P )
we consider convex, proper, normed lower semicontinuous (lsc) risk functions, called
in the following risk functionals %i : Lpd(P )→ (−∞,∞], 1 ≤ i ≤ n, defined on risk
vectors X = (X1, . . . , Xd) with Xi ∈ Lp(P ) = Lp, i.e. Lpd(P ) = Lpd is the d-fold
product of Lp(P ). The risk functionals %i describe the risk evaluation of n traders
in the market. Here %i are normed means that %i(0) = 0 and %i are proper means
that dom %i 6= Ø and %i(X) 6= −∞ for all X. We allow unbounded risks and assume
that 1 ≤ p ≤ ∞.

For a given portfolio of d risks described by a risk vector X = (X1, . . . , Xd) ∈ Lpd
we define the set A(X) = An(X) of n-allocations of the portfolio X by

A(X) :=

{
(ξ1, . . . , ξn) | ξi ∈ Lpd,

n∑
i=1

ξi = X

}
. (1.1)
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For an allocation (ξ1, . . . , ξn) ∈ A(X) trader i is exposed to the risk ξi which is
evaluated by the risk functional %i. ξi may contain some zero components and
thus trader i may only be exposed to some of the d components of risk in our
formulation. Let

R := {(%i(ξi)) | (ξi) ∈ A(X)} (1.2)

denote the corresponding risk set. Our aim is to characterize Pareto-optimal (PO)
allocations (ξi) ∈ A(X), i.e. allocations such that the corresponding risk vectors are
minimal elements of the risk setR in the pointwise ordering. A related optimization
problem is to characterize allocations (ηi) ∈ A(X) which minimize the total risk,
i.e.

n∑
i=1

%i(ηi) = inf

{ n∑
i=1

%i(ξi) | (ξi) ∈ A(X)

}
(1.3)

=: ∧%i(X).

The optimal allocation problem of risks is a classical problem in mathematical
economics and insurance and is of considerable practical and theoretical interest.
It has been studied in the case of real risks, i.e. in the case d = 1 in the classical
papers of Borch (1962), Gerber (1979), Bühlmann and Jewell (1979), Deprez and
Gerber (1985) and others in the context of risk sharing in insurance and reinsurance
contracts. In more recent years this problem has also been studied in the context of
financial risks as in risk exchange, assignment of liabilities to daughter companies
individual hedging problems and others (see the papers of Heath and Ku (2004),
Barrieu and El Karoui (2005a,b), Burgert and Rüschendorf (2006, 2008), Jouini
et al. (2007), Acciaio (2007), Filipović and Svindland (2007), [KR]1 (2008), and
others).

The aim of this paper is to extend the risk allocation results to the case of
multivariate risks resp. the case of risk portfolios. The main motivation for consid-
ering multivariate risk measures is to include the influence of (positive) dependence
on the risk of a portfolio. In recent papers several of the aspects of multivariate
risks like worst case portfolios, diversification effects or strong coherence have been
studied (see e.g. Ekeland et al. (2009), [R] (2009), Carlier et al. (2009)). As we will
see the optimal risk allocation problem has some close ties to these developments.

After the introduction of some basic notions from convex analysis in Chapter 2
we derive in Chapter 3 the basic characterization of optimal total risk minimizing
allocations and give a link to Pareto-optimal allocations. Due to the multivariate
structure the proof of this characterization needs a new element in the analysis. In
Chapter 4 we specialize to law invariant convex risk measures %i. A characterization
of their subgradients leads to a close connection between optimal allocations and
worst case portfolio vectors. More precisely it is shown that optimal allocations are

1Kiesel and Rüschendorf is abbreviated within this paper with [KR], Rüschendorf with [R].
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comonotone w.r.t. a common worst case scenario measure. Further they exhibit a
worst case dependence structure w.r.t. some specific max-correlation risk measure.
In Chapter 5 we derive a new general existence criterion for optimal allocations
and finally discuss some examples in Chapter 6.

2 Some notions from convex analysis

Throughout this paper we consider convex, lower semicontinuous (lsc) proper risk
functions % on Lpd called in the following risk functionals. Generally, for a convex
proper function on a locally convex space E paired with its dual space E∗ by
(E,E∗, 〈·, ·〉) we denote by

f ∗ : E∗ → IR, f ∗(x∗) = sup
x∈E

(〈x∗, x〉 − f(x)), x∗ ∈ E∗, (2.1)

the convex conjugate and by

f ∗∗ : E → IR, f ∗∗(x∗) = sup
x∗∈E∗

(〈x, x∗〉 − f ∗(x∗)), x ∈ E, (2.2)

the bi-conjugate of f . Let further

∂f(x) = {x∗ ∈ E∗ | f(y)− f(x) ≥ 〈x∗, y − x〉, ∀y ∈ E} (2.3)

denote the set of subgradients of f in x. Then

∂f(x) = {x∗ ∈ E∗ | ∀y ∈ E, 〈x∗, y〉 ≤ D(f ;x)(y)}, (2.4)

where D(f, x)(y) is the right directional derivative of f in x in direction y. This
connection is useful in the applications in order to calculate the subgradient.

For a proper convex function f with ∂f(x) 6= Ø holds

x∗ ∈ ∂f(x) ⇔ 〈x∗, x〉 = f ∗(x∗) + f(x) (2.5)

⇔ 〈x∗, x〉 − f(x) = sup
y∈E

(〈x∗, y〉 − f(y)). (2.6)

Thus x is a minimizer of f if and only if

0 ∈ ∂f(x) (Fermat’s rule). (2.7)

If f is furthermore lower-semicontinuous, then we get by the Fenchel–Moreau-
Theorem the equivalence:

0 ∈ ∂f(x)⇔ x ∈ ∂f ∗(0). (2.8)

∂f ∗(0) is the set of all minimizers of f .
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For convex, lsc proper risk functionals %i it follows that %∗i are proper and

(
∧
%i)
∗ =

n∑
i=1

%∗i (2.9)

(see Barbu and Precupanu (1986, Chapter 2)). In consequence we obtain

n⋂
i=1

dom %∗i 6= Ø⇒ dom(∧%i) 6= Ø (2.10)

(see [KR] (2008, Proposition 2.1)). For all results on convex duality we refer to
Rockafellar (1974) and Barbu and Precupanu (1986).

In this paper we deal with the dual pair (Lpd, L
q
d, 〈·, ·〉d) where 〈·, ·〉d denotes the

canonical scalar product on the product spaces

〈Z,X〉d :=
d∑
j=1

EZjXj (2.11)

for X = (X1, . . . , Xd) ∈ Lpd, Y = (Y 1, . . . , Y d) ∈ Lqd, where q is the conjugate
index to p, 1

p
+ 1

q
= 1. In the case p = 1, q = ∞ the dual space is the set baqd

of d-tuples of finitely additive normal P -continuous measures integrating |x|q. To
avoid cumbersome notation we still use Lqd in this case. For law invariant risk
functionals as used in the second part of the paper in fact we can reduce to the
class of probability measures and thus to Lqd.

The portfolio vectors (ξi)1≤i≤n are contained in the corresponding productspaces
defining the dual pair ((Lpd)

n, (Lqd)
n, 〈·, ·〉nd) where for X = (X1, . . . , Xn) ∈ (Lpd),

Z = (Z1, . . . , Zn) ∈ (Lqd)
n the scalar product is given by

〈Z,X〉nd :=
n∑
i=1

〈Zi, Xi〉d. (2.12)

We will use the notation 〈Z,X〉 = 〈Z,X〉nd when omitting the indices does not lead
to confusion.

3 Optimal allocations of portfolios

To characterize Pareto-optimal allocations we describe at first allocations which
minimize the total risk, i.e. solutions of the infimal convolution

^
%i(X) = inf

{ n∑
i=1

%i(ξi) | (ξi) ∈ A(X)

}
. (3.1)
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The inf-convolution problem is a restricted optimization problem. It can be trans-
formed into an unrestricted global minimization problem

^
%i(X) = inf

{
%(ξ) + 1A(X)(ξ) | ξ ∈ (Lpd)

n
}

(3.2)

where %(ξ) :=
∑n

i=1 %i(ξi) and for a convex set A, 1A denotes the convex indicator

1A(x) =

{
0, x ∈ A,
∞, x 6∈ A.

(3.3)

We generally assume that there exists at least one n-allocation ξ ∈ An(X),
where % is continuous and finite. For f : E → IR ∪ {∞} the domain of continuity
is denoted by

domc(f) := {x ∈ E | f is finite and continuous in x}.

The inf-convolution problem resp. the minimal total risk problem is called well
posed for a given portfolio X if

domc(%) ∩ A(X) 6= Ø. (3.4)

The following is the basic characterization of minimal total risk allocations
which extends the developments for real risks to the portfolio case. For the ample
literature to this theorem see the references as mentioned in the introduction.

Theorem 3.1 (Characterization of minimal total risk) Let %i be risk func-
tionals on Lpd, 1 ≤ p ≤ ∞. Let X ∈ Lpd be a risk portfolio such that the minimal
total risk problem is well posed and let (ηi) ∈ An(X) be a risk allocation. Then the
following statements are equivalent:

1) (ηi) has minimal total risk (w.r.t. %1, . . . , %n and X)

2) ∃V ∈ Lqd : V ∈ ∂%i(ηi), 1 ≤ i ≤ n (3.5)

3) ∃V ∈ Lqd : ηi ∈ ∂%∗i (V ), 1 ≤ i ≤ n (3.6)

Proof: The equivalence of 2) and 3) is a well known result in convex analysis (see
e.g. Barbu and Precupanu (1986), Aubin (1993)). The proof of the equivalence of 1)
and 2) needs in the multivariate case some additional arguments compared to the
corresponding proof in the one-dimensional case as in Jouini et al. (2007), Acciaio
(2007), and [KR] (2008).

Let ξ = (ξ1, . . . , ξn) ∈ An(X) be an allocation with total minimal risk, i.e.

^
%i(X) =

n∑
i=1

%i(ξi).
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Due to Fermat’s rule the representation in (3.2) implies

0 ∈ ∂(%+ 1An(X))(ξ). (3.7)

The infimal convolution is well posed for X. In consequence the subdifferential sum
formula (see Barbu and Precupanu (1986, Chapter 3, Theorem 2.6)) is applicable
to the right-hand side of (3.7) and yields

0 ∈ ∂%(ξ) + ∂1An(X)(ξ). (3.8)

Thus there exists an element Λ ∈ (Lpd)
n with

Λ ∈ ∂%(ξ) and − Λ ∈ ∂1An(X)(ξ). (3.9)

This leads to the equation

%(ξ) + %∗(Λ) = 〈Λ, ξ〉. (3.10)

In the next step we show that (3.10) implies the existence of some V ∈ Lqd such
that

%i(ξi) + %∗i (V ) = 〈V, ξi〉, ∀i, (3.11)

i.e. all components Λi of Λ are identical to V ∈ Lqd. This results from the following
proposition.

Proposition 3.2 For all X ∈ Lpd and ξ ∈ An(X) holds

∂1An(X)(ξ) =
{
Z ∈ (Lqp)

n | Z =
n∑
i=1

Zei, Z ∈ Lqd
}
, (3.12)

where ei is the i-th unit vector of the n-fold product space (Lqd)
n. Thus the product

Zei is understood as the element of (Lqd)
n which has Z as its i-th component and

0 ∈ Lqd otherwise.

Proof of Proposition 3.2: By definition of the subdifferential we have

∂1An(X)(ξ) = {Z ∈ (Lqd)
n | 〈η, Z〉 ≤ 〈ξ, Z〉, ∀η ∈ An(X)}

If Z =
∑n

i=1 Zei, with Z ∈ Lqd and η ∈ An(X), then

〈η, Z〉 =
n∑
i=1

〈ηi, Z〉

=
〈 n∑

i=1

ηi, Z
〉

=
〈 n∑

i=1

ξi, Z
〉

= 〈ξ, Z〉.
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Thus Z ∈ ∂1An(X).

Conversely for Z ∈ ∂1An(X)(ξ) and η ∈ An(X) holds

〈η, Z〉 ≤ 〈ξ, Z〉. (3.13)

Choosing η of the form η = ξ + ηek − ηe` with k, ` ∈ {1, . . . , n} and η ∈ Lpd we
obtain from (3.13)

〈η, Zk〉 ≤ 〈η, Z`〉.
Reverting the roles of k, ` we obtain the opposite inequality and consequently
Zk = Z, 1 ≤ k ≤ n for some Z ∈ Lqd. Thus Z =

∑n
i=1 Zei is of the form as stated

in (3.12). 2

Continuation of the proof of Theorem 3.1: From the definition of the convex
conjugate it follows that

%∗(Z) =
n∑
i=1

%∗i (Zi), Z = (Z1, . . . , Zn) ∈ (Lqd)
n.

From Proposition 3.2 we obtain for Λ as in (3.9) Λ =
∑n

i=1 V ei with V ∈ Lqd. (3.10)
then implies

n∑
i=1

(%i(ξi) + %∗i (V )) =
n∑
i=1

〈ξi, V 〉. (3.14)

Since by the Fenchel inequalities

%i(ξi) + %∗i (V ) ≥ 〈ξi, V 〉, ∀i (3.15)

(3.14) implies equality in (3.15) and in consequence

V ∈ ∂%i(ξi), ∀i.

Thus 1) implies 2). The above given proof can be reverted to yield also the
opposite direction. 2

To obtain a connection of minimizing the total risk to Pareto-optimality we
introduce as in [KR] (2008) a condition called non-saturation property. We say
that % has the non-saturation property if

(NS) inf
X∈Lp

d

%(X) is not attained (3.16)

The non-saturation property is a weak property of risk measures. It is implied
in particular by the cash invariance property. Under the (NS) condition Pareto-
optimality is related to the problem of minimizing the total weighted risk. This
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is described by the weighted minimal convolution (
∧
%i)γ(X) defined for weight

vectors γ = (γ1, . . . , γn) ∈ IRn by

(
∧
%i)γ(X) := inf

{ n∑
i=1

γi%i(ξi) | (ξ1, . . . , ξn) ∈ An(X)

}
. (3.17)

The connection between Pareto-optimality and minimizing total weighted risk goes
back in more special cases to the early papers in insurance (see e.g. Gerber (1979)).

Theorem 3.3 (Characterization of Pareto-optimal allocations) Let %i,
1 ≤ i ≤ n, be risk functionals on Lpd satisfying the non-saturation conditions (NS).
Then for X ∈ Lpd and (ξ1, . . . , ξn) ∈ An(X) the following are equivalent

1) (ξ1, . . . , ξn) is a Pareto-optimal allocation of X w.r.t. %1, . . . , %n

2) ∃γ = (γ1, . . . , γn) ∈ IRn
>0 such that

(
∧
γi)γ(X) =

n∑
i=1

γi%i(ξi) (3.18)

3) ∃γ = (γi) ∈ IRn
>0 and ∃V ∈ Lqd such that

V ∈ γi∂%i(ξi), ∀i (3.19)

4) ∃γ = (γi) ∈ IRn
>0 and ∃V ∈ Lqd such that

ξi ∈ ∂(γi%i)
∗(V ), ∀i (3.20)

Proof: The proof of Theorem 3.3 follows by a similar line of arguments as in [KR]
(2008) in the one-dimensional case. 2

The intersection condition (3.19) can also be described by saying that

V ∈ ∂(
∧
%i)γ(X). (3.21)

This is a consequence of the following proposition.

Proposition 3.4 If (ξi) ∈ An(X) minimizes the total risk w.r.t. %1, . . . , %n, then

∂(
∧
%i)(X) =

n⋂
i=1

∂%i(ξi). (3.22)

Proof: (3.22) is a consequence of the definition of subgradients of %i and
∧
%i

using the Fenchel inequality. The details are as in the one-dimensional case (see
[KR] (2008, Prop. 3.2)). 2
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4 Law invariant risk measures and comonotonic-

ity

For the specialization to law invariant risk measures %i on Lpd optimal allocations
take a more specific form and are connected with multivariate comonotonicity.
By the classical comonotone improvement theorem of Landsberger and Meilijson
(1994), see also Dana and Meilijson (2003) and Ludkovski and Rüschendorf (2008)
for some extensions, any allocation (ξi) ∈ An(X) in d = 1 can be improved by a
comonotone allocation uniformly w.r.t. all convex law invariant risk measures %i.
A uniform improvement result can not be expected in the multivariate case. There
is no notion of comonotonicity in d ≥ 1 which is applicable to all law invariant risk
measures. There is however a senseful notion of µ-comonotonicity introduced in
Ekeland et al. (2009) which allows to construct an µ-comonotone improvement of
an allocation with however a more restricted range of improvement. See the recent
paper of Carlier et al. (2009). In this section we establish that Pareto-optimal
allocations w.r.t. law invariant risk measures are µ-comonotone for certain scenario
measures µ.

For 1 ≤ p ≤ ∞ we consider finite, law invariant convex risk measures % on
Lpd. In fact we take the insurance version Ψ(X) = %(−X) which has a simpler
monotonicity property, Ψ : Lpd → IR1. Let Y ∈ Dq

d, where

Dq
d = {(Y1, . . . , Yd) : Yi ≥ 0, Yi ∈ Lq, EPYi = 1, 1 ≤ i ≤ d} ⊂ Lqd (4.1)

is the set of d-tuples of P densities and let µ = P Y denote the distribution of Y .
The maximal correlation risk measure in direction Y resp. µ is defined by

Ψ̂Y (X) = supeX∼X EX̃ · Y
= supeY∼µEX · Ỹ = Ψµ(X) (4.2)

(see [R] (2006)). Ψµ = Ψ̂Y is a law invariant coherent risk measure on Lpd. For
the representation in (4.2) µ can be identified with the d-tuple of its marginals
(µ1, . . . , µd) ∈ M1

d . With this identification any finite law invariant, convex risk
measure Ψ on Lpd has a robust representation of the form

Ψ(X) = max
µ∈Q

(Ψµ(X)− α(µ)), (4.3)

where Q is a weakly closed subset of Qd,p = {Q ∈M1
d |

dQi

dP
∈ Lq(P )}, 1 ≤ p ≤ ∞,

1
p

+ 1
q

= 1 and α(·) is some law invariant penalty function (see [R] (2006)). We
choose in the following α as the minimal penalty function corresponding to the
Fenchel conjugate %∗ of %. Equivalently we can write (4.3) in the form

Ψ(X) = max
µ∈A

(Ψµ(X)− α(µ)), (4.4)
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where A ⊂ {µ ∈ M q(IRd
+,Bdd) | ∃Y ∈ Dq

d such that Y ∼ µ} is a weakly closed
subset of distributions of density vectors with q-integrable components.

For X ∈ Lpd and Y ∈ Lqd define that X, Y are optimally coupled, X ∼oc Y if

Ψ̂Y (X) = supeY∼Y EX · Ỹ = EX · Y, (4.5)

where Ỹ ∼ Y means equality in distribution. For any Y ∈ Lqd, Y ∼ µ holds a
symmetry relation

Ψµ(X) = supeX∼X EX̃ · Y. (4.6)

We next give a basic characterization of subgradients of convex law invariant
risk measures Ψ on Lpd with representation as in (4.3) with α = Ψ∗. Define the risk
functional

F (µ) := FX(µ) := Ψµ(X)−Ψ∗(µ). (4.7)

µ0 ∈ A is called a worst case scenario measure of Ψ for X if

FX(µ0) = max
µ∈A

FX(µ) = Ψ(X). (4.8)

Theorem 4.1 For a finite, convex, law invariant risk measure Ψ on Lqd and for
X ∈ Lpd, Y0 ∈ Lqd with µ0 = P Y0 ∈ A the following statements are equivalent:

1) Y0 ∈ ∂Ψ(X)

2) a) µ0 is a worst case scenario of Ψ for X

b) X ∼oc Y0

Proof: 1) ⇒ 2) For Y0 ∈ ∂Ψ(X) we have for all Z ∈ Lpd:

Ψ(X)−Ψ(Z) ≤ EY0 · (X − Z). (4.9)

Thus we obtain from law invariance of Ψ

0 = Ψ(X)−Ψ(X̃) ≤ EY0 · (X − X̃), ∀X̃ ∼ X

or equivalently
EY0 · X̃ ≤ EY0 ·X, ∀X̃ ∼ X.

This however is equivalent to

Ψµ0(X) = supeX∼X EY0 · X̃ ∼ X = EY0 ·X

and thus X ∼oc Y0, i.e. condition a) holds.
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For the proof of b) note that Y0 ∈ ∂Ψ(X) implies also

Ψ(X) = EX · Y0 −Ψ∗(Y0). (4.10)

In consequence we obtain

FX(µ0) = supeY∼Y0

EỸ ·X −Ψ∗(Y0)

= max
µ∈A

supeY∼Y (EỸ ·X −Ψ∗(µ)) = max
µ∈A

FX(µ),

i.e. µ0 is a worst case scenario measure.

2) ⇒ 1) Let now Y0 ∈ Lqd with µ0 = P Y0 ∈ A fulfill that Y0 ∼oc X and that
µ0 is a worst case scenario measure. Then we obtain

Ψ(X) = max
µ∈A

(Ψµ(X)−Ψ∗(µ))

= max
µ∈A

FX(µ) = FX(µ0)

= Ψµ0(X)−Ψ∗(µ0)

= EY0 ·X −Ψ∗(Y0)

using that Ψ∗ is also law invariant. Thus Y0 ∈ ∂Ψ(X) is a subgradient of Ψ in X. 2

Theorem 4.1 combined with the subgradient intersection condition in the char-
acterization theorem of minimal risk allocations in Theorem 3.1 implies that op-
timal risk allocations have a specific µ-comonotonicity property where µ satisfies
the intersection condition. There is also a close connection to the notion of worst
case portfolios which concerns a worst case dependence structure for fixed marginal
distributions. For a risk measure Ψ on Lpd a portfolio X = (X1, . . . , Xn) is called a
worst case portfolio with respect to Ψ if

Ψ

(
1

n

n∑
i=1

Xi

)
= supeXi∼Xi

Ψ

(
1

n

n∑
i=1

X̃i

)
(4.11)

(see [R] (2009)). Combining Theorems 3.1, 4.1 with the characterization of worst
case portfolios in [R] (2009) we obtain the following result connecting the notion
of optimal allocations with µ-comonotonicity and with the notion of worst case
portfolios.

Theorem 4.2 (Optimal allocations for law invariant risk measures) Let
Ψ1, . . . ,Ψn be a finite, lsc convex law invariant risk measures on Lpd with scenario
sets Ai. Let X ∈ Lpd be a risk vector such that the minimal risk allocation problem
for X is well posed. Let Fi(µ) = Fi,ξi(µ) = Ψµ(ξi)−Ψ∗i (µ) denote the risk functional
of ξi w.r.t. Ψi.

For an allocation (ξi) ∈ An(X) the following statements are equivalent:
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1) (ξi) has minimal the total risk (w.r.t. Ψ1, . . . ,Ψn and X)

2) ∃V ∈ Lqd : V ∈ ∂Ψi(ξi), 1 ≤ i ≤ n (4.12)

3) a) ∃ joint worst case scenario measure µ0 ∈Mq
d for all ξi w.r.t. Ψi, i.e.

Fi(µ0) = sup
µ∈Ai

Fi(µ) = Ψi(ξi), 1 ≤ i ≤ n (4.13)

b) ξ1, . . . , ξn are µ0 comonotone.

4) a) ∃ joint worst case scenario measure µ0 for all ξi w.r.t. Ψi.

b) ξ1, . . . , ξn is a worst case dependence structure for the (4.14)

max correlation risk measure Ψµ0 .

Remark 4.3 From the characterization of risk minimizing allocations in (4.13)
we obtain for an optimal allocation (ξi) ∈ A(X)

n∑
i=1

Ψi(ξi) =
n∑
i=1

Fi(µ0) =
n∑
i=1

(Ψµ0(ξi)−Ψ∗i (µ0))

= Ψµ0

(
n∑
i=1

ξi

)
−

n∑
i=1

Ψ∗i (µ0)

= Ψµ0(X)−
n∑
i=1

Ψ∗i (µ0). (4.15)

In case all Ψi are coherent risk measures (4.15) implies that

∧
Ψi(X) =

n∑
i=1

Ψi(ξi) = Ψµ0(X). (4.16)

5 Existence of minimal risk allocations

As main result in this section we derive a characterization of the existence of
risk minimizing allocations as well as give several sufficient conditions. In the
one-dimensional case existence results for optimal allocations have been based on
the monotone improvement theorem (see Jouini et al. (2007) and Acciaio (2007))
which allows to restrict to allocations ξi = fi(X) with some monotone functions fi,
which allows to apply Dini’s theorem. Alternatively a strong intersection condition
(SIS) from convex analysis (see Barbu and Precupanu (1986)) has been used in
[KR] (2008) and Filipović and Svindland (2007).

In this section we shall make use of the subdifferential sum formula for functions
f , g:
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(SD(x)) ∂(f + g)(x) = ∂f(x) + ∂g(x) (5.1)

which is used in convex analysis for dealing with existence of the convolution (see
Barbu and Precupanu (1986)). There is a close link with the following epigraph
condition for the conjugates f ∗, g∗:

(EC) epi(f + g)∗ = epi(f ∗) + epi(g∗). (5.2)

The following theorem of Burachik and Jeyakumar (2005, Theorem 3.1) extends
previous results and states that the EC-condition implies the subdifferential sum
formula.

Theorem 5.1 Let f , g : X → (−∞,∞] be proper, lsc convex functions on a
Banach space X such that dom f ∩dom g 6= Ø. If f , g fulfill the epigraph condition
(EC), then they satisfy the subdifferential sum formula SD(x) for all x ∈ dom f ∩
dom g.

Subdifferentiability of f ∧ g at a point x and the subdifferential sum formula
SD(x∗) for the conjugates f ∗, g∗ implies existence of a minimizer of f ∧ g at x.
For f , g as in Theorem 5.1 the following theorem is essentially a reformulation of
Theorem 2.3 in [KR] (2008).

Theorem 5.2 (Local existence) Assume that f ∧ g is subdifferentiable at x and
assume that the subdifferential sum formula w.r.t. f ∗ and g∗ holds for some x∗ ∈
∂(f ∧ g)(x)

∂(f ∗ + g∗)(x∗) = ∂f ∗(x∗) + ∂g∗(x∗). (5.3)

Then there exists an allocation (ξ1, ξ2) ∈ A2(x) which minimizes the total risk,

f ∧ g(x) = f(ξ1) + g(ξ2). (5.4)

Proof: The proof follows as in [KR] (2008, Theorem 2.3). In that paper the strong
intersection property (SIS) was postulated and used to imply the subdifferentia-
bility of f ∧ g. 2

Next we establish that the conditions in Theorem 5.2 are in fact equivalent to
the existence of a minimizer. The infimal convolution f ∧ g is called exact in x if
the inf is attained at x as in (5.4); it is called exact if this holds for all x ∈ X. Let
f , g be functions as in Theorem 5.1.

Proposition 5.3 The following statements are equivalent

1) f ∧ g is exact
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2) f ∧ g is subdifferentiable at all x ∈ X and ∀x∗ ∈ ∂(f ∧ g)(x) the subdifferential
sum formula holds for f ∗, g∗, i.e.

∂(f ∗ + g∗)(x∗) = ∂f ∗(x∗) + ∂g∗(x∗). (5.5)

Proof: The direction 2) ⇒ 1) follows from Theorem 5.1.

For the converse direction there exists to x ∈ X an allocation (ξ1, ξ2) ∈ A2(x)
with minimal total risk. Then by the characterization result in Theorem 3.1 and
using Proposition 3.4 there exists an element

x∗ ∈ ∂f(ξ1) ∩ ∂g(ξ2) = ∂(f ∧ g)(x). (5.6)

Thus f ∧ g is subdifferentiable in x.

To establish the subdifferential sum formula (5.5) let x∗ ∈ ∂(f ∧ g)(x). Then
we obtain

x ∈ ∂(f ∧ g)∗(x∗) = ∂(f ∗ + g∗)(x∗) (5.7)

(see (Barbu and Precupanu, 1986, Corollary 1.4, Chapter 2)). On the other hand

x∗ ∈ ∂f(ξ1) ∩ ∂f(ξ2) (5.8)

for any solution (ξ1, ξ2) of (f ∧ g)(x) by Theorem 3.1. This implies

ξ1 ∈ ∂f ∗(x∗) and ξ2 ∈ ∂g∗(x∗).

Thus we obtain
x = ξ1 + ξ2 ∈ ∂f ∗(x∗) + ∂g∗(x∗). (5.9)

(5.9) implies the inclusion

∂(f ∗ + g∗)(x∗) ⊂ ∂f ∗(x∗) + ∂g∗(x∗).

Therefore, equality holds since the opposite inclusion holds generally true. 2

By Theorem 5.1 and Proposition 5.3 the epigraph condition (EC) holding true
for f ∗, g∗ together with subdifferentiability of f ∧ g implies existence of optimal
allocations. In the following we improve this statement and establish that the sub-
differentiability condition can be skipped. Our proof is based essentially on the
following proposition which is a restatement of Proposition 2.2 of Boţ and Wanka
(2006) for the conjugates f ∗, g∗ of f , g.

Proposition 5.4 Assume that dom(f ∗)∩ dom(g∗) 6= Ø. Then the following state-
ments are equivalent:

1) The epigraph condition (EC) holds for f ∗, g∗, i.e.

epi(f ∗ + g∗)∗ = epi(f) + epi(g). (5.10)
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2) (f ∗ + g∗)∗ = f ∧ g and f ∧ g is exact. (5.11)

Based on the equivalence in Proposition (5.3) we next see that the first condition
in 2) of Proposition 5.4 of Boţ and Wanka (2006) can be omitted.

Proposition 5.5 If the equivalent conditions of Proposition 5.3 hold true, then

(f ∗ + g∗)∗ = f ∧ g. (5.12)

Proof: For x ∈ X the subdifferentiability of f ∧ g and the subdifferential sum
formula (5.5) imply the existence of some x∗ ∈ ∂(f ∧ g)(x) such that

x ∈ ∂(f ∧ g)∗(x∗) = ∂(f ∗ + g∗)(x∗) = ∂f ∗(x∗) + ∂g∗(x∗). (5.13)

The exactness of f ∧ g and the characterization of minimal allocations in The-
orem 3.1 imply the existence of (ξ1, ξ2) ∈ A2(x) such that

ξ1 ∈ ∂f ∗(x∗) and ξ2 ∈ ∂g∗(x∗). (5.14)

In consequence we obtain from (5.13)

〈x∗, x〉 = (f ∗ + g∗)(x∗) + (f ∗ + g∗)∗(x). (5.15)

From (5.14) we conclude

〈x∗, ξ1〉 = f ∗(x∗) + f(ξ1), (5.16)

as well as
〈x∗, ξ2〉 = g∗(x∗) + g(ξ2). (5.17)

Summing up (5.16) and (5.17) and comparing this to (5.14) we conclude

(f ∗ + g∗)∗(x) = f(ξ1) + g(ξ2) = (f ∧ g)(x), (5.18)

and thus (5.12) holds true. 2

As consequence of Theorem 5.1, Propositions 5.3–5.4 we now obtain equivalence
of exactness of f ∧g to the epigraph condition for f ∗, g∗. This is our main existence
result for optimal allocations and improves in particular Theorem 5.2.

Theorem 5.6 (Existence of optimal allocations) Let f , g be proper lsc con-
vex functions from a Banach space X to (−∞,∞] such that dom(f ∗)∩ dom(g∗) 6=
Ø.

Then the following statements are equivalent:
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1) f ∧ g is exact.

2) The epigraph condition (EC) holds for f ∗, g∗, i.e.

epi((f ∗ + g∗)∗) = epi f + epi g. (5.19)

3) f ∧ g is subdifferentiable at all x ∈ X and for all x∗ ∈ ∂(f ∧ g)(x) holds the
subdifferential sum formula

∂(f ∗ + g∗)(x∗) = ∂f ∗(x∗) + ∂g∗(x∗).

For sublinear functions it is even possible to omit the subdifferentiability prop-
erty of f ∧ g in 3). Since Corollary 3.1 of Burachik and Jeyakumar (2005) provides
following equivalence.

Corollary 5.7 Let f , g be funcitons like in Theorem 5.6 with the additional con-
dition of positive homegenity. Then the following conditions are equivalent:

1) The epigraph condition (EC) holds for f ∗, g∗, i.e.

epi((f ∗ + g∗)∗) = epi f + epi g.

2) For all x∗ ∈ dom f ∗ ∩ dom g∗ holds the subdifferential sum formula

∂(f ∗ + g∗)(x∗) = ∂f ∗(x∗) + ∂g∗(x∗).

Thus Theorem 5.6 becomes

Proposition 5.8 Let f , g be funcitons like in Theorem 5.6 with the additional
condition of positive homegenity. Then the following conditions are equivalent:

1) f ∧ g is exact.

2) The epigraph condition (EC) holds for f ∗, g∗, i.e.

epi((f ∗ + g∗)∗) = epi f + epi g.

3) For all x∗ ∈ dom f ∗ ∧ dom g∗ holds the subdifferential formula

∂(f ∗ + g∗)(x∗) = ∂f ∗(x∗) + ∂g∗(x∗).
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In general the epigraph condition (EC) for f ∗, g∗ in (5.19) is not easy to check.
In the following proposition we restate some sufficient conditions for the epigraph
condition (EC) in (5.19) which by Theorem 5.6 implies the existence of optimal
allocations. All these sufficient conditions can be found in Boţ and Wanka (2006).
The strong intersection condition (SIS) was also used in [KR] (2008).

We need some notation. For a subset D ⊂ X denote by

core(D) := {d ∈ D | ∀x ∈ X, ∃ε > 0, ∀λ ∈ (−ε, ε), d+ λx ∈ D} (5.20)

the core of D. Further let icr(D) denote the intrinsic core of D relative to the affine
hull aff(D) of D. Further for D convex define the strong quasi-relative interior of
D by

sqri(D) := {x ∈ D | cone(D − x) is a closed subspace}. (5.21)

Proposition 5.9 (Interior point conditions) Any of the following interior
point conditions implies the epigraph condition (5.19).

dom f ∗ ∩ int dom g∗ 6= Ø (5.22)

0 ∈ core(dom g∗ − dom f ∗) (5.23)

0 ∈ sqri(dom g∗ − dom f ∗) (5.24)

0 ∈ icr(dom g∗ − dom f ∗) and

aff(dom g∗ − dom f ∗) is a closed subspace.
(5.25)

The statements in Proposition 5.9 are given in Boţ and Wanka (2006) where
also further relations between these conditions are discussed. For more sufficient
conditions on (5.19) we refer to the references therein.

In the following we extend the results of this section to more than two functions.
It is clear how the infimal convolution, the subdifferential sum formula and the
epigraph condition are formulated for n functions. All preceding statements can be
carried to this setup straight forward except that in Proposition 5.9. Each interior
point condition has to be stated as a system of n − 1 conditions, to imply the
epigraph condition

epi

(( n∑
i=1

g∗i

)∗ )
=

n∑
i=1

epi gi. (5.26)

Proposition 5.10 For lower semicontinuous functions g1, . . . , gn any of the fol-
lowing interior point conditions implies the epigraph condition (5.26).

(SIS)

n−1⋂
i=1

int dom g∗i ∩ dom g∗k 6= Ø, k ∈ {2, . . . , n} (5.27)
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0 ∈ core

( k−1⋂
i=1

dom g∗i − dom g∗k

)
, k ∈ {2, . . . , n} (5.28)

0 ∈ sqri

( k−1⋂
i=1

dom g∗i − dom g∗k

)
, k ∈ {2, . . . , n} (5.29)

0 ∈ icr

( k−1⋂
i=1

dom g∗i − dom g∗k

)
and

aff

( k−1⋂
i=1

dom g∗i − dom g∗k

)
is a closed subspace, k ∈ {2, . . . , n}.

(5.30)

Proof: At first we observe that the strong intersection condition

(SIS)
n−1⋂
i=1

int dom g∗i ∩ dom g∗n 6= Ø

is equivalent to the following system of interior point conditions

k−1⋂
i=1

int dom g∗i ∩ dom g∗k 6= Ø, k = 2, . . . , n. (5.31)

The proof of Proposition 5.10 is based on the fact that the infimal convolution of
functions g1, . . . , gn can be solved iteratively, i.e.

n̂

i=1

gi =
( n−1̂

i=1

gi

)
∧ gn. (5.32)

Assume that any of the interior point conditions of Proposition 5.9 holds for the
functions f ∗n−1 :=

(∧n−1
i=1 gi

)∗
=
∑n−1

i=1 g
∗
i and g∗n. This means with the equivalence

of (SIS) and (5.31) that in Proposition 5.10 one of the conditions hold for k = n,
where dom

(∑n−1
i=1 g

∗
i

)
=
⋂n−1
i=1 dom g∗i resp. int dom

(∑n−1
i=1 g

∗
i

)
=
⋂n−1
i=1 int dom gi.

Then we get as consequence of Proposition 5.9

epi((f ∗n−1 + g∗n)∗) = epi(gn) + epi

(( n−1∑
i=1

g∗i

)∗)
. (5.33)

Note that fn−1 is not necessarily lower semicontinuous. If we assume that any of
the interior point conditions of Proposition 5.9 holds additionally for the functions
f ∗n−2 :=

(^n−2

i=1
gi
)∗

=
∑n−2

i=1 g
∗
i and g∗n−1 (which corresponds to k = n − 1 in

Proposition 5.10) we get again from Proposition 5.9

epi((f ∗n−2 + g∗n−1 + g∗n)∗) = epi(gn) + epi(gn−1) + epi

(( n−2∑
i=1

g∗i

)∗)
. (5.34)
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Proceeding further the same way and using the facts that dom
(∑k−1

i=1 g
∗
i

)
=⋂k−1

i=1 dom g∗i resp. int dom
(∑n−1

i=1 g
∗
i

)
=
⋂k−1
i=1 int dom g∗i holds for any k ∈ {2, . . . , n}

we see that any system of conditions of Proposition 5.10 implies (5.26). 2

Obviously it is sufficient for the application of Proposition 5.10 that for k ∈
{2, . . . , n} any of the interior point conditions hold.

6 Uniqueness

Uniqueness of optimal allocations is a consequence of strict convexity.

Proposition 6.1 Let Ψi, i ∈ {1, . . . , n − 1} be strictly convex risk functionals on
Lpd in the following sense

Ψi(λX + (1 + λ)Y ) < λΨi(X) + (1− λ)Ψi(Y ) for all λ ∈ (0, 1)

for all X, Y ∈ dom Ψi. Then any optimal allocation of X ∈ Lpd with ∧Ψi(X) <∞
is unique.

Proof: We suppose that for X ∈ Lpd with
∧n
i=1 Ψi(X) < ∞ there exist two min-

imizer (X1, . . . , Xn) ∈ (Lpd)
n and (Y1, . . . , Yn) ∈ (Lpd)

n of the total risk. Then the
allocation Zi := λXi + (1− λ)Yi with λ ∈ (0, 1) defines an allocation of X with∑

Ψi(Zi) < λ
∑

Ψi(Xi) + (1− λ)
∑

Ψi(Yi) =
n̂

i=1

Ψi(X).

This contradicts the optimality of (X1, . . . , Xn). 2

Remark 6.2 It is obvious that in Proposition 6.1 it is necessary to postulate the
strict convexity for at least n−1 risk functionals. If there were less than n−1 strict
convex risk functionals then as consequence one could not exclude the existence of a
rearrangement (X1, . . . , Xn) ∈ (Lpd)

n of an optimal allocation (X1, . . . , Xn) ∈ (Lpd)
n

which is optimal, too.

If for example Ψn−1 and Ψn are constant on Lpd, then any rearrangement
(X1, . . . , Xn) ∈ (Lpd)

n of (X1, . . . , Xn) ∈ (Lpd)
n defined by X i = Xi, i ∈ {1, . . . , n−

2} Xn−1 = Xn−1 + Y , Xn = Yn − Y for any Y ∈ Lpd is optimal, too.

Some further uniqueness results can be found in [KR] (2008). There it is shown,
e.g., that strict convexity of the risk functional Ψi implies the uniqueness of the
risk contribution Xi ∈ Lpd of an optimal allocation (X1, . . . , Xn) ∈ (Lpd)

n. Further a
uniqueness result is proved for weighted versions of the allocation problem which
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implies uniqueness of Pareto-optimal allocations for cash invariant risk measures,
which are strictly convex on L∞0 , the class of risks X ∈ L∞ with EX = 0.

These results can be easily adapted to the multivariate case as considered in
this paper.

7 Examples and Remarks

7.1 Dilated risk functionals

Let % be a convex risk functional on Lpd. The class of dilated risk functionals %λ is
defined for λ > 0 by

%λ(X) = λ%
(1

λ
X
)
, (7.1)

where multiplication is componentwise. Then the following rules hold true:

%∗λ = λ%∗, ∂%λ(X) = ∂%
(1

λ
X
)

and ∂%∗λ(V ) = λ∂%∗(V ).
(7.2)

As consequence we obtain from the characterization of minimal risk allocations
in Theorem 3.1 a simple optimal allocation rule.

Proposition 7.1 (Dilated risk functional) Let % be a convex risk functional on
Lpd, 1 ≤ p ≤ ∞. Let X ∈ Lpd be a risk portfolio such that the total risk problem
is well-posed for the dilated risk measures %i = %λi

, 1 ≤ i ≤ n, λi > 0 and let
Λ :=

∑n
i=1 λi and assume that 1

Λ
X ∈ int(dom %). Then the proportional allocation

ξi := λi

Λ
X, 1 ≤ i ≤ n, defines a total risk minimizing allocation of X.

Proof: For the proof we check the intersection condition (3.5) of Theorem 3.1. This
holds true by definition of the proportional allocation:

n⋂
i=1

∂%i(ξi) =
n⋂
i=1

∂%
( 1

λi
ξi

)
=

n⋂
i=1

∂%
( 1

Λ
X
)

(7.3)

= ∂%
( 1

Λ
X
)
6= Ø.

2

In the particular case when %i = %, 1 ≤ i ≤ n, the allocation ξi = 1
n
X, 1 ≤ i ≤ n,

is risk minimizing.
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7.2 Multivariate expected risk function

Let r : Rd → R be strictly convex, continuously differentiable and satisfy the
growth condition

|r(x)| ≤ C(1 + ‖x‖p) for some C ∈ R, p > 1. (7.4)

Then r induces the corresponding risk functional

%r : Lpd → R, %r(X) := Er(X), X ∈ Lpd. (7.5)

By the growth condition %r is a finite risk functional on Lpd. To determine the
subdifferential of %r on Lpd we next prove that ∇r(X) ∈ Lqd.

Lemma 7.2 Let 1
p

+ 1
q

= 1 and let r satisfy the growth condition (7.4). Then for

X ∈ Lpd holds
∇r(X) ∈ Lqd. (7.6)

Proof: Define the linear operator F : Lpd → R by

F (Y ) := E〈∇r(X), Y 〉 (7.7)

where 〈·, ·〉 is the Euclidean scalar product. We establish that F is well defined and
norm bounded. Note that convexity of r implies

‖F‖ = sup
‖Y ‖

L
p
d
≤1

E〈∇r(X), Y 〉

= sup
‖Y ‖

L
p
d
≤1

(E(r(X + Y )− r(X))

≤ C1 + sup
‖Y ‖

L
p
d
≤1

Er(X + Y )

≤ C1 + sup
‖Y ‖

L
p
d
≤1

E

(
1

2
r(2X) +

1

2
r(2Y )

)
≤ C2 +

1

2
sup

‖Y ‖
L

p
d
≤1

Er(2Y )

≤ C2 +
1

2
CE(1 + 2‖Y ‖p) ≤ C3.

By the Riesz representation theorem there exists a unique Z ∈ Lqd such that∫
〈∇r(X), Y 〉dP = F (Y ) =

∫
〈Z, Y 〉dP ∀Y ∈ Lpd. (7.8)

In consequence we obtain ∇r(X) = Z ∈ Lqd. 2
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Since α → 1
α

(r(X + αY ) − r(X)) is monotone increasing for X, Y ∈ Lpd, we
obtain by the monotone convergence theorem for the directional derivative of %r in
X in direction Y

D%r(X, Y ) = lim
α↓0

%r(X + αY )− %r(X)

α

= lim
α↓0

E
r(X + αY )− r(X)

α

= E∇r(X) · Y. (7.9)

Thus %r is Gateaux differentiable with subgradient

∂%r(X) = {∇r(X)} ∈ Lqd. (7.10)

For a family r1, . . . , rn of convex functions as above with corresponding expected
risk functionals %r1 , . . . , %rn on Lpd we consider the optimal risk allocation problem
for X ∈ Lpd. By Theorem 3.1 an optimal allocation (ξi) ∈ An(X) with minimal
total risk is characterized by the optimality equation

∇ri(ξi) = ∇rj(ξj), 1 ≤ i ≤ n. (7.11)

This is a multivariate extension of the classical Borch theorem to d ≥ 1. For
strictly convex ri, ∇ri is one-to-one and as a consequence we obtain

ξi = (∇ri)−1 · ∇r1(ξ1), 2 ≤ i ≤ n. (7.12)

The critical allocation condition then becomes

ξ1 +
n∑
i=2

(∇ri)−1 · ∇r1(ξ1) = X. (7.13)
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D. Filipović and G. Svindland. Convex risk measures on Lp. Preprint University
of Munich, 2007.

H. U. Gerber. An Introduction to Mathematical Risk Theory, volume 8 of Huebner
Foundation Monograph. Wharton School, University of Pennsylvania, 1979.

D. Heath and H. Ku. Pareto equilibria with coherent measures of risk. Mathematical
Finance, 14:163–172, 2004.

E. Jouini, W. Schachermayer, and N. Touzi. Optimal risk sharing for law-invariant
monetary utility functions. Mathematical Finance, 18:269–292, 2007.



24 Kiesel and Rüschendorf
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