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Summary: We derive comparison results for Markov processes with respect to stochastic orderings
induced by function classes. Our main result states that stochastic monotonicity of one process and
comparability of the infinitesimal generators implies ordering of the processes. Unlike in previous
work no boundedness assumptions on the function classes are needed anymore. We also present an
integral version of the comparison result which does not need the local comparability assumption
of the generators. The method of proof is also used to derive comparison results for time-discrete
Markov processes.

1 Introduction

Ordering conditions for Markov processes in terms of conditions on the infinitesimal gen-
erators have been given in several papers in the literature. Massey (1987), Herbst and
Pitt (1991), Chen and Wang (1993) and Chen (2004) describe stochastic ordering for dis-
crete state spaces for diffusions and diffusions with jumps in terms of their infinitesimal
generators. For bounded generators and in the case of discrete state spaces Daduna and
Szekli (2006) give a comparison result for the stochastic ordering of Markov processes in
terms of comparison of their generators. Rüschendorf (2008) (abbreviated in the sequel as
[Ru]) established a comparison result for Markov processes on polish spaces using bound-
edness conditions on the order defining function classes. These boundedness conditions
arise from the method of proof used in that paper which makes essential use of an idea in
Liggetts characterization result for association of Markov processes (see Liggett (1985)).
A similiar idea was also used in a paper of Cox et al. (1996) and Greven et al. (2002) for
the special case of directionally convex ordering of a system of interacting diffusions. For
Lévy processes some general ordering results were derived in Bergenthum and Rüschen-
dorf (2007) (abbreviated in the sequel as [BeRu]) and for the case of supermodular ordering
in Bäuerle et al. (2008). The comparison results in [BeRu, 2007] go beyond the frame of
Markov processes to semimartingales and are based on stochastic analysis (Itô’s formula
and generalized Kolmogorov backward equation).

In this paper we extend the approach in [Ru, 2008] based on strongly continuous semi-
groups and their infinitesimal generators. In Section 2 we recollect the necessary notation
and results on strongly continuous semigroups on Banach spaces B and their generators.
This generality allows to omit the restrictive boundedness conditions in previous papers
which prevent applications to interesting orderings defined by nonbounded function classes
as e.g. convex orderings. As consequence we obtain general ordering results for Markov
Processes in Section 3 by the same simple method as in [Ru, 2008]. Furthermore we give
a variant of this comparison result where the conditions appear in an integrated form. This
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integral version of the comparison result can be useful in those cases where a local compa-
rability of the generators is difficult to achieve. We discuss several applications that can be
dealt with the generalized approach in this paper. Moreover the simple method of proof in
continuous time which is used in Section 3 is adapted also to the discrete time case. This
in fact gives a new proof to a classical comparison result in for discrete time processes.

2 Strongly continuous semigroups and their
infinitesimal generators

In this section we recollect some important notions and results from semigroup theory on
general Banach spaces. Our main references are Engel and Nagel (2000) and Pazy (1983).

Let T = (Tt)t∈R+ be a semigroup of bounded linear operators on a Banach space
(B, || · ||) i.e.

T0 = id,

Tt+s = TtTs for s, t ≥ 0.
(2.1)

T is called uniformly continuous, if

lim
t↓0

||Tt − id || = 0. (2.2)

T is called a contraction, if

||Ttf || ≤ ||f ||, ∀t ≥ 0, f ∈ B. (2.3)

T is called a strongly continuous semigroup on B also called C0-semigroup, if

lim
t↓0

Ttf = f, ∀f ∈ B. (2.4)

If T is strongly continuous then

lim
h↓0

1
h

∫ t+h

t

Tsfds = Ttf, f ∈ B. (2.5)

The infinitesimal generator A : DA ⊂ B → B of a strongly continuous semigroup is
defined as

Af := lim
t↓0

1
t

(Ttf − f) (2.6)

for its domain

DA :=
{

f ∈ B : lim
t↓0

1
t

(Ttf − f) exists
}

.

We list two classical examples of semigroups.

Examples 2.1 (1) For the Banach space B = Cb([0,∞)) of bounded continuous func-
tions on [0,∞) with sup-norm the translation semigroup T is defined by

(Ttf) (x) := f(x + t). (2.7)

T is a C0-contraction semigroup on Cb([0,∞)) with infinitesimal generator

Af =
d

dx
f = f ′ (2.8)

and with domain DA, the set of all f ∈ Cb with f ′ ∈ Cb. Obviously A is not a
bounded operator.
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(2) Consider the diffusion semigroup T on B = L p(Rd), 1 ≤ p < ∞, defined by

Ttf(x) :=
1

(4πt)d/2

∫
Rd

e−
|x−y|2

4t f(y)dy. (2.9)

T is a strongly continuous semigroup on L p(Rd), the class of measurable, p-times
integrable functions on Rd w.r.t. Lebesgue measure. The infinitesimal generator ∆
of T is the closure of the Laplace operator

∆f(x) =
d∑

i=1

∂2
iif(x1, . . . , xd). (2.10)

A is defined for all f in the Schwarz space

S(Rd) =
{
f ∈ C∞(Rd); f rapidly decreasing

}
.

The following result is basic (see Engel and Nagel (2000, Lemma 1.3 in Chapter II)).

Lemma 2.2 Let (A,DA) be the infinitesimal generator of a strongly continuous semigroup
T . Then it holds:

(1) A : DA ⊂ B → B is a closed, densely defined linear operator, i.e. DA ⊂ B is dense.

(2) If f ∈ DA, then Ttf ∈ DA and

d

dt
Ttf = TtAf = ATtf, f ∈ B, t ≥ 0. (2.11)

(3) For f ∈ B, t ≥ 0 holds ∫ t

0

Tsfds ∈ DA. (2.12)

(4) For t ≥ 0 holds

Ttf − f = A

∫ t

0

Tsfds, if f ∈ B (2.13)

=
∫ t

0

TsAfds, if f ∈ DA. (2.14)

For a time homogeneous Markov process X = (Xt)t≥0 on some measure space (E, E )
let Pt denote the transition kernel

Pt(x, B) = P (Xt ∈ B|X0 = x), x ∈ E, B ∈ E (2.15)

and T = (Tt) the corresponding transition semigroup defined by

Ttf(x) =
∫

E
Pt(x, dy)f(y) (2.16)

= E (f(Xt)|X0 = x)

for f in a suitable Banach space B of functions on E. Then this puts Markov processes in
the framework of semigroups.

Examples 2.3 (1) Let Bt = (B1
t , . . . , Bd

t ) be a Brownian motion on Rd, then

Pt(x, V ) = (2πt)−d/2

∫
V

e−
|y−x|2

2t dy (2.17)

for 0 < t, V ∈ B(Rd). The corresponding semigroup T can be considered e.g. on
C0 or on Cb.
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(2) Let X = (Xt)t≥0 be a Lévy process on Rd with semigroup T = (Tt) and infinitesimal
generator A, then C2

0 ⊂ DA and

Af(x) =
d∑

i=1

bi∂if(x) +
1
2

d∑
i,j=1

ci,j∂2
ijf(x) (2.18)

+
∫
Rd

(
f(x + y) − f(x) −

d∑
i=1

∂if(x)yi1{yi:|yi|≤1}

)
F (dy)

for f ∈ C2
0 , where (b, c, F ) is the local characteristic of X with drift vector b =

(bi)1≤i≤d, c = (ci,j)i,j≤d the diffusion characteristic, a symmetric, positive semidefi-
nite matrix and F the Lévy measure of X i.e. F ({0}) = 0 and

∫
Rd

(
|x|2 ∧ 1

)
F (dx)

< ∞ characterizing its jumps.

(3) For countable state spaces E we denote by

pt(x, y) := Pt(x, {y}), x, y ∈ E, t ≥ 0 (2.19)

the transition function,

Pt := (pt(x, y))x,y∈E the transition matrix

and

Q := (q(x, y))x,y∈E the infinitesimal generator

or intensity matrix, where

q(x, y) = lim
t↓0

1
t
pt(x, y) for x ̸= y (2.20)

q(x, x) = lim
t↓0

1
t

(pt(x, x) − 1) (2.21)

assuming existence and finiteness of the limits. For many applications of ordering re-
sults to queuing networks the theory of continuous time Markov chains with transition
function pt respectively induced semigroup T = (Tt)t≥0 is essential.

The following proposition from Sato (1999, E.34.10) gives an example for the useful-
ness of the generalized frame of semigroups on Banach spaces different from C0 or Cb.

Proposition 2.4 Let (Xt)t≥0 be a time homogeneous translation invariant Markov process
with X0 = x and transition function Pt. Then the corresponding semigroup T = (Tt)t≥0

Ttf(x) =
∫
Rd

Pt(x, dy)f(y) =
∫
Rd

Pt(dy)f(x + y), f ∈ L p (2.22)

is a C0-contraction semigroup on L p = L p(Rd), 1 ≤ p < ∞.

For a strongly continuous semigroup T = (Tt)t≥0 with infinitesimal generator A define
F (t) := Ttf, t ≥ 0. Then by (2.11) F solves the homogeneous Cauchy problem

F ′(t) = AF (t), F (0) = 0 for f ∈ DA. (2.23)

The link to the inhomogeneous Cauchy problem and the characterization of its solution in
the following theorem is the fundamental tool for the comparison result in the following
section. We adapt the proof of Liggett (1985, Chapter I, Theorem 2.15), to the general class
of strongly continuous semigroups on a Banach space as considered in this section. Some
related results can be found in Pazy (1983) or in Yan (1987) as well.
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Theorem 2.5 (Inhomogeneous Cauchy problem) Let T = (Tt)t≥0 be a strongly con-
tinuous semigroup on B with infinitesimal generator A and let F, G : [0,∞) → B be
functions such that

(1) F (t) ∈ DA, for all t ≥ 0.

(2)
∫ t

0
Tt−sG(s)ds exists for all t ≥ 0.

(3) F solves the inhomogeneous Cauchy problem, i.e.

F ′(t) = AF (t) + G(t) for t ≥ 0,

then

F (t) = TtF (0) +
∫ t

0

Tt−sG(s)ds. (2.24)

Proof: We consider the B valued function v(s) = Tt−sF (s) which is well-defined, since
T is a C0-semigroup on B. Furthermore we have

Tt−s−hF (s + h) − Tt−sF (s)
h

= Tt−s

(
F (s + h) − F (s)

h

)
+
(

Tt−s−h − Tt−s

h

)
F (s)

+ (Tt−s−h − Tt−s)F ′(s)

+ (Tt−s−h − Tt−s)
(

F (s + h) − F (s)
h

− F ′(s)
)

.

The first term converges to Tt−sF
′(s) as h tends to zero, since T is a bounded linear

operator. To see that the second term converges to −Tt−sAF (s) as h tends to zero one has
to use the first assumption and (2.11). The third expression converges to zero as h tends
to zero, since T is a strongly continuous semigroup that is it fulfills (2.4). Treating the last
term in the same way and using additionally the linearity of T we see that it disappears as h
tends to zero. As a result v(s) is differentiable for 0 < s < t and using the third assumption
we obtain

d

ds
v(s) = Tt−sF

′(s) − Tt−sAF (s) = Tt−sG(s).

Moreover Tt−sG(s) is integrable by assumption. Integrating this equality yields

F (t) − TtF (0) =
∫ t

0

Tt−sG(s)ds for all t ≥ 0,

which proves the claim. 2

Remark 2.6 Assumption 2.5-(2) holds in particular if G is continuous on [0,∞). If G
is not continuous but in L 1([0, τ ], B), then 2.5-(2) does hold as well, since we have
||Tt−·G||L 1([0,τ ],B) ≤ c||G||L 1([0,τ ],B) for t ∈ [0, τ) and c > 0.

3 Comparison of Markov processes

3.1 Continuous time Markov processes
We assume that X and Y are two time homogeneous Markov processes with values in
(E,E ). Let S = (St) and T = (Tt) denote their semigroups which we assume are
strongly continuous semigroups on some Banach function space B on E like C0(E), Cb(E),
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L p(E, µ) where E allows to define these structures as Banach spaces. Denote by A and B
the corresponding infinitesimal generator of S and T respectively. Let F ⊂ B be a set of
real functions on E and let ≤F denote the corresponding stochastic order on M1(E), the
set of probability measures on E defined by

µ ≤F ν if
∫

fdµ ≤
∫

fdν, for all f ∈ F . (3.25)

We assume that
F ⊂ DA ∩ DB . (3.26)

Theorem 3.1 (Conditional comparison result) Assume that

(1) X is stochastically monotone w.r.t. F i.e. f ∈ F implies Stf ∈ F for all t ≥ 0, and

(2) Af ≤ Bf [PX0 ], for all f ∈ F . (3.27)

Then
Stf ≤ Ttf [PX0 ], f ∈ F . (3.28)

Proof: Define for f ∈ F the function F : [0,∞) → B by F (t) := Ttf − Stf . Then F
satisfies the differential equation

F ′(t) = BTtf − AStf

= B(Ttf − Stf) + (B − A)(Stf).

By the stochastic monotonicity assumption holds Stf ∈ F and thus H(t) := (B−A)(Stf)
is well-defined in B and H(t) ≥ 0 by (3.27). Thus F solves the nonhomogeneous Cauchy
problem that is

F ′(t) = BF (t) + H(t), F (0) = 0. (3.29)

Since H(t) ≥ 0 it follows that
∫ t

0
Tt−sH(s)ds exists and is finite. Further by Lemma 2.2-2

and by the stochastic monotonicity assumption we obtain

F (t) = Ttf − Stf ∈ DB .

Thus the assumptions of Theorem 2.5 are satisfied and imply that the solution F (t) has an
integral representation of the form

F (t) = TtF (0) +
∫ t

0

Tt−sH(s)ds

=
∫ t

0

Tt−sH(s)ds as F (0) = 0.

Since H(s) ≥ 0 it follows that F (t) ≥ 0 for all t > 0 and thus the statement of the theorem.
2

For diffusion processes with jumps a related comparison theorem is given by Zhang
(2006). He applies this comparison result to discuss the existence and uniqueness of in-
variant probability measures for uniformly elliptic diffusion processes with jumps. Several
examples where the local comparison condition for the infinitesimal generators is easy to
verify were given by [Ru, 2008].
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Example 3.2 For pure diffusion processes X and Y in Rd with respective diffusion matri-
ces a := (aij(x)) and b := (bij(x)), the infinitesimal generators are given by

Af(x) =
1
2

∑
ij

aij(x)
∂2f

∂xi∂xj
and Bf(x) =

1
2

∑
ij

bij(x)
∂2f

∂xi∂xj
. (3.30)

Thus for convex ordering the comparison condition (3.27) is implied by

Af(x) ≤ Bf(x), f ∈ Fcx ∩ C2

which is equivalent to the positive semidefiniteness of the matrix b− a. Note that since the
choice L 1(E) as the considered Banach space is included, an application of the compar-
ison result to convex ordering in the nonbounded case is justified by our extension of the
comparison results.

Define the componentwise ordering of processes X, Y by

(X) ≤F (Y ) if Eh(Xt1 , . . . , Xtk
) ≤ Eh(Yt1 , . . . , Ytk

) (3.31)

for all 0 ≤ t1 < · · · < tk and for all functions h that are componentwise in F and are inte-
grable. Thus componentwise ordering is an ordering of the finite dimensional distributions.
As in [Ru, 2008, Corollary 2.4] we obtain the following comparison result as consequence
of the conditional ordering theorem (Theorem 3.1) and the separation theorem (see [BeRu,
2007, Proposition 3.1]) for the ordering of Markov processes.

Corollary 3.3 (Componentwise ordering result) Assume that the conditions of Theorem
3.1 hold true and that X0 ≤F Y0. Then the componentwise ordering (X) ≤F (Y ) of the
processes X and Y holds.

For some applications the pointwise ordering conditions on the infinitesimal generators
as in (3.27) are too strong. For instance in the pure diffusion case with generator as in
equation (3.30) with coefficients given by

aij(x) = −1 and bij(x) = 2 ·
(
1Rd

+
(x) − 1Rd

−
(x)
)

for all i, j ∈ {1, . . . , d} (3.32)

the pointwise ordering condition is not true for the class of directionally convex functions.
It turns out that a weaker integral condition allows to obtain an integral comparison result.
In order to describe the development of stochastic dependence between two processes X
and Y we establish the integral comparison result for more general function classes. For
example we would like to have conditions that imply that over the time t the positive de-
pendence in process Y between Y0 and Yt is getting stronger than in process X between
X0 and Xt. That is

Eh(X0, Xt) ≤ Eh(Y0, Yt) for all t > 0 (3.33)

and for all integrable dependence functions h ∈ F[2]. For several results on dependence
ordering of this type we refer to Daduna and Szekli (2006) and Daduna et al. (2006). In
order to compare w.r.t. such functions h we need the information about the type of com-
parison which is contained in a tupel of function classes (F ,F (2)). Therefore let F (2) be a
function class on E2 and let F be a function on E and define

F[2] := {f ∈ F (2)| f(x, ·), f(·, x) ∈ F}.

Typical examples for F (2) are Fcx(R2d), d ∈ N, the class of convex functions on R2d and
Fsm(R2d), d ∈ N the class of supermodular functions on R2d and for F are Fcx(Rd)
resp. Fsm(Rd) (for definitions and properties, see Müller and Stoyan (2002)). Then
F[2] = Fcx(R2d) resp. F[2] = Fsm(R2d), since the functions in F (2) are componentwise
in Fcx(Rd) and Fsm(Rd) respectively
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Let X and Y be two time homogeneous Markov processes as introduced at the begin-
ning of this section. Additionally we assume that for every f ∈ F[2] the existence of the
integrals Ef(X0, Xt), Ef(Y0, Yt) and the domain condition (3.26).

Theorem 3.4 (Integral comparison result w.r.t. F[2]) Assume that

(1) X is stochastically monotone w.r.t. F[2] i.e. f ∈ F[2] implies (Stf(x, ·)) ∈ F , for
x ∈ E and t ≥ 0,

(2) for τ ∈ R+ the map s 7→ (Tτ−sBf(x, ·)) is integrable on [0, τ) for all f ∈ F[2], x ∈
E and

(3) for all f ∈ F[2] and all t ≥ s it holds that∫
E

∫
E

(Af(x, ·)) (y)PY
t−s(x, dy)PX0(dx)

≤
∫

E

∫
E

(Bf(x, ·)) (y)PY
t−s(x, dy)dPX0(dx). (3.34)

Then∫
E

(Stf(x, ·)))(x)PX0(dx) ≤
∫

E
(Ttf(x, ·)) (x)PX0(dx) for all f ∈ F[2] and t ≥ 0.

(3.35)

Proof:Let x ∈ E and define for f ∈ F[2] the function Fx : [0,∞) → B by Fx(t)(·) :=
(Ttf(x, ·) − Stf(x, ·)) (·). Then F satisfies the differential equation

F ′
x(t) =

d

dt
(Ttf(x, ·)) − d

dt
(Stf(x, ·))

= B (Ttf(x, ·)) − A (Stf(x, ·))
= B (Ttf(x, ·) − Stf(x, ·))) + ((B − A)(Stf(x, ·))

By the stochastic monotonicity assumption holds Stf(x, ·) ∈ F and thus Hx(t)(·) :=
((B − A)(Stf(x, ·)) (·) is well-defined in B. Thus Fx solves the nonhomogeneous Cauchy
problem, i.e.

F ′
x(t) = BFx(t) + Hx(t) and Fx(0) = 0.

Further we obtain∫ t

0

∥Tt−sHx(s)∥ds =
∫ t

0

∥ (Tt−s(BSsf(x, ·)) − Tt−s(ASsf(x, ·))) ∥ds

≤
∫ t

0

∥Tt−s (BSsf(x, ·)))∥ds +
∫ t

0

∥Tt−s (ASsf(x, ·)) ∥ds

< ∞.

This estimate follows from the stochastic monotonicity assumption, the integrability of
Tt− ·Bf(x, ·) and property (2.14) from Lemma 2.2. Hence

∫ t

0
Tt−sHx(s)ds exists and is

finite. Moreover by Lemma 2.2-2 and the stochastic monotonicity assumption we have

Fx(t) = Ttf(x, ·) − Stf(x, ·) ∈ DB .

Thus the assumptions of Theorem 2.5 are fulfilled and imply that the solution Fx(t) has an
integral representation has a respecta

Fx(t) = TtFx(0) +
∫ t

0

Tt−sHx(s)ds

=
∫ t

0

Tt−sHx(s)ds as Fx(0) = 0.
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By assumption we can integrate both sides to obtain∫
E

Fx(t)PX0(dx) =
∫

E

∫ t

0

Tt−sHx(s)dsPX0(dx)

=
∫ t

0

∫
E

Tt−sHx(s)PX0(dx)ds,

where we apply the Theorem of Fubini. But since the inner integral has a representation of
the form ∫

E

∫
E

Hx(s)(y)PY
t−s(x, dy)PX0(dx)

=
∫

E

∫
E

((B − A)(Ssf(x, ·)) (y)PY
t−s(x, dy)PX0(dx),

condition (3.34) delivers the positivity of
∫

E Fx(t)PX0(dx) which proves the statement of
the theorem. 2

In the case of equal initial distributions we obtain from (3.35) for all t > 0

Ef(X0, Xt) =
∫

E(f(x,Xt)|X0 = x)PX0(dx)

=
∫ (

(Stf(x, ·)) (z)
)∣∣z=x

PX0(dx)

≤
∫ (

(Ttf(x, ·)) (z)
)∣∣z=x

PX0(dx)

=
∫

E(f(x, Yt)|Y0 = x)PY0(dx)

= Ef(Y0, Yt).

The latter theorem is also true for functions in F , i.e. for function classes on E. Thus in
the case of equal initial distribution we obtain the following corollary.

Corollary 3.5 (Integral comparison result w.r.t. F ) Assume that PX0 = PY0 and

(1) X is stochastically monotone w.r.t. F ,

(2) for τ ∈ R+ the map s 7→ (Tτ−sBf) is integrable on [0, τ) for all f ∈ F and

(3) for all f ∈ F and all t ≥ s it holds that∫
E

∫
E

Af(y)PY
t−s(x, dy)PX0(dx) ≤

∫
E

∫
E

Bf(y)PY
t−s(x, dy)dPX0(dx). (3.36)

Then
Xt ≤F Yt for all t ≥ 0. (3.37)

Remark 3.6 (a) In the particular case when Y is a stationary homogeneous Markov pro-
cess with invariant distribution π and X is a homogeneous Markov process with initial
distribution π, then condition (3.36) becomes∫

E
Af(x)π(dx) ≤ 0, (3.38)

since it holds that
∫

PY
t (x, dy)π(dx) = π(dy) for all t > 0. In situations like (3.32)

the local comparability of the generators is not true, so Theorem 3.1 is not applicable,
however condition (3.38) is satisfied. Thus we obtain Xt ≤F Yt for all t ≥ 0 from
Corollary 3.5.
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(b) One further application of Corollary 3.5 is the comparison of bivariate distribution
functions of Markov processes. As it is easily seen from the proof of Theorem 3.4
condition (3.34) can be replaced by∫

V

∫
E

(Af(y)) PY
t−s(x, dy)PX0(dx) ≤

∫
V

∫
E

(Bf(y))PY
t−s(x, dy)dPX0(dx),

(3.39)
where V ∈ E in order to obtain∫

V

(Stf(x)))PX0(dx) ≤
∫

V

(Ttf(x)) PX0(dx)

for all f ∈ F and t ≥ 0, if both expressions exist.

Now consider E = R and V := (−∞, u]. From Corollary 3.5 we have a comparison
of the two dimensional distribution functions of (X0, Xt) and (Y0, Yt) for all s, u ∈ R

and f := 1(−∞,s]:

P (X0 ≤ u,Xt ≤ s) =
∫ u

−∞
Stf(x)PX0(dx)

≤
∫ u

−∞
Ttf(x)PX0(dx) = P (Y0 ≤ u, Yt ≤ s) (3.40)

provided that the assumptions of Corollary 3.5 are fulfilled. If X and Y additionally
have the same marginals then (3.40) implies the concordance order.

In several cases condition (3.34) is not verifiable. In general one is interested in com-
paring Markov processes without knowing much about their transition kernels. The integral
comparison theorem implies however that a bivariate comparison of X and Y is possible if
a suitable local comparison condition on the infinitesimal generators holds true. The next
result implies in particular the integral comparison result in (3.35).

Corollary 3.7 (Bivariate comparison result) Assume that PX0 = PY0 and

(1) X is stochastically monotone w.r.t. F[2] i.e. f ∈ F[2] implies (Stf(x, ·)) ∈ F , for
x ∈ E and t ≥ 0,

(2) for τ ∈ R+ the map s 7→ (Tτ−sBf(x, ·)) is integrable on [0, τ) for all f ∈ F[2], x ∈
E and

(3) for all f ∈ F[2] and all x ∈ E it holds that

Af(x, ·) ≤ Bf(x, ·). (3.41)

Then
Ef(X0, Xt) ≤ Ef(Y0, Yt) for all f ∈ F[2] and t ≥ 0. (3.42)

Note that in general it is not enough to assume condition (3.27) in order to get (3.42).
In networks for example telecommunication networks or company supply networks

where different velocities in evolution are extant, it is valuable to understand their internal
dependencies in order to respond reasonably to changes in the evolution of the network. Is it
possible to transfer the knowledge about the dependencies in the faster evolving network to
the slower evolving network and vice versa? It is of interest to know how the dependence of
a network driven by a Markov process X alters when changing the speed of development.
An intuitive approach is to study speeding-down versions of a Markov process. Several
results of this type have been obtained in Bäuerle and Rolski (1998) and in Kulik and
Wichelhaus (2007).
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For f ∈ F[2], x ∈ E and c ∈ (0, 1) consider the speeding-down Markov process X̂c

induced by the following infinitesimal generator:

Bf(x, ·) =

{
c · Af(x, ·), for y ∈ E s.t. (Af(x, ·)) (y) ≥ 0,

0 for y ∈ E s.t. (Af(x, ·)) (y) < 0.
(3.43)

Thus in general both inequalities

Af(x, ·) < Bf(x, ·) on {Af(x, ·) < 0} and
Af(x, ·) ≥ cAf(x, ·) = Bf(x, ·) on {Af(x, ·) ≥ 0}

hold true. In consequence Corollary 3.7 is not applicable since condition (3.41) does not
hold for the infinitesimal generators of the Markov processes X and X̂c.

The following result generalizes the speeding-down property in (3.43). Assuming that
the infinitesimal generators of the corresponding Markov processes fulfill condition (3.34)
allows to apply the integral comparison result Theorem 3.4.

Corollary 3.8 Let X be a homogeneous Markov process. Assume that X is stochastically
monotone w.r.t. F[2]. Moreover for x ∈ E and τ ∈ R+ let the map s 7→ Tτ−sAf(x, ·) be
integrable on [0, τ) for all f ∈ F[2]. If for some c = (c1, c2) ∈ [0, 1)2 and all f ∈ F[2] it
holds that ∫ ∫

{Af(x,·)<0}
(1 − c2) · (Af(x, ·)) (y)PX

t−s(x, dy)PX0(dx)

≤
∫ ∫

{Af(x,·)≥0}
(c1 − 1) · (Af(x, ·)) (y)PX

t−s(x, dy)PX0(dx), (3.44)

then
Ef(X0, Xt) ≤ Ef(X̂c

0 , X̂c
t ), for all f ∈ F[2]

where X̂c is the speeding-down version of X induced by the infinitesimal generator

Bf(x, ·) =

{
c1 · Af(x, ·)(y), for y ∈ E s.t. (Af(x, ·)) (y) ≥ 0,

c2 · Af(x, ·)(y), for y ∈ E s.t. (Af(x, ·)) (y) < 0.
(3.45)

Proof: For proving this statement we use Theorem 3.4. Due to the construction in (3.45)
the properties of X are transferred to X̂c. Thus the only thing to do is to check condition
(3.34). But this follows from (3.44). 2

3.2 Discrete time Markov processes
Now we transfer the method of proof of the comparison result for the continuous time case
to the discrete time case. Let F ⊂ B be a set of real functions on E and let X = (Xn)n∈N0

and Y = (Yn)n∈N0 be real-valued, discrete-time homogeneous Markov processes. Denote
the one-step transition kernels for X and Y by KX : E × E → [0, 1] and KY : E × E →
[0, 1]. Also define as usual for a kernel K

Kf(x) =
∫

E
f(y)K(x, dy).

By a modification of the method of proof of Theorem 3.1 we obtain a discrete time
version of the conditional comparison result. This in fact gives a new proof to a classical
result (see e.g. Müller and Stoyan (2002, Theorem 5.2.11)).

Proposition 3.9 (Discrete time conditional comparison result; w.r.t. F )

11



(a) Assume that

(1) KY is stochastically monotone, i.e. f ∈ F implies KY f ∈ F , and

(2) KX(x, ·) ≤F KY (x, ·) for all x ∈ E. (3.46)

Then we have∫
f(x)KX

n (y, dx) ≤
∫

f(x)KY
n (y, dx), for all f ∈ F , n ∈ N0,

where Kn denotes the n-step transition kernel (K)n.

(b) If in addition X and Y possess the same initial distribution, then it holds that

Xn ≤F Yn, for all n ∈ N0.

Proof: (a) As in the proof of the conditional comparison result in Theorem 3.1 define for
f ∈ F the function F : N0 → B by F (n) := KY

n f −KX
n f . Then we obtain similar to the

case of continuous time a recursive equation for F :

F (n + 1) − F (n) = (KY − id)(KY
n f) − (KX − id)(KX

n f)

= (KX − id)(KY
n f − KX

n f) + (KY − KX)(KY
n f)

= (KX − id)F (n) + (KY − KX)(KY
n f).

This yields

F (n + 1) = KXF (n) + (KY − KX)(KY
n f) (3.47)

F (0) = 0. (3.48)

For n = 0 we have F (1) = (KY − KX)f ≥ 0, by condition (3.46).

For n = 1 this implies that F (2) = KXF (1)+ (KY −KX)(KY f) ≥ 0 by using the ≤F -
monotonicity of KY and the positivity preserving property of KX . Proceeding inductively
we get for all n ∈ N0 that

0 ≤ F (n) = KY
n f − KX

n f,

i.e. we have ∫
f(x)KX

n (y, dx) ≤
∫

f(x)KY
n (y, dx).

(b) Taking expectations, bearing in mind that X and Y have the same initial distribution,
we get Xn ≤F Yn for all n ∈ N0. 2

Observe that equation (3.47) can be rewritten in

F (n + 1) =
n∑

k=0

(
KX

k

(
KY − KX

) (
KY

n−kf
) )

for all n ∈ N0, (3.49)

using the recursive definition of F (n) and that fact that F (0) = 0. This enables us to
establish a comparison result for f ∈ F , where the conditions on the transition kernel
appear in integrated form.

Proposition 3.10 (Discrete integral comparison result w.r.t. F ) Let X = (Xn)n∈N0 and
Y = (Yn)n∈N0 be discrete-time homogeneous Markov processes. Assume that PX0 =
PY0 =: π, and
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(1) KY is stochastically monotone w.r.t. F , and

(2) for all f ∈ F it holds that

0 ≤
∫

E

(
KX

n

(
KY − KX

)
f
)
(x)π(dx) for all n ∈ N0 (3.50)

Then
Xn ≤F Yn for all n ∈ N0.

Proof: As in the proof of our integral comparison result Theorem 3.4 define for f ∈ F the
function F : N0 → B by F (n)(·) :=

(
KY

n − KX
n f
)
(·). Then by integrating both sides

with respect to π and using (3.49) we obtain∫
F (n + 1)(x)π(dx) =

∫ n∑
k=0

(
KX

k

(
KY − KX

) (
KY

n−kf
) )

(x)π(dx),

which is non-negative due to assumption (3.50) and the stochastic monotonicity of Y .
Moreover for all f ∈ F it holds that

Ef(Yn+1) − Ef(Xn+1) =
∫

E(f(Yn+1)|Y0 = x) − E(f(Xn+1)|X0 = x)π(dx)

=
∫ (

KY
n+1f(x) − KX

n+1f(x)
)
π(dx)

=
∫

F (n + 1)(x)π(dx),

and the statement of the propostion follows. 2

Note that condition (3.50) reduces to Ef(X0) ≤ Ef(Y1) for all f ∈ F if X is sta-
tionary with invariant distribution π. Then in this case Xn ≤F Yn is obvious, since Y is
stochastically monotone w.r.t. F .

The recursive formula in (3.49) is also true for f ∈ F[2] if for x ∈ E we define the
function Fx : N → B by Fx(n)(·) :=

(
KY f(x, ·) − KXf(x, ·)

)
(·). Then we obtain

similarly the following corollary.

Corollary 3.11 (Discrete integral comparison result w.r.t. F[2]) Let X = (Xn)n∈N0 and
Y = (Yn)n∈N0 be discrete-time, homogeneous Markov processes. Assume that PX0 =
PY0 =: π, and

(1) KY is stochastically monotone w.r.t. F[2], i.e. f ∈ F[2] implies KY f(x, ·) ∈ F , for
all x ∈ E, and

(2) for all f ∈ F[2] and all x ∈ E it holds that

0 ≤
∫

E

(
KX

n

(
KY − KX

)
f(x, ·)

)
(x)π(dx) for all n ∈ N0. (3.51)

Then
Ef(X0, Xn) ≤ Ef(Y0, Yn) for all f ∈ F[2], n ∈ N0.

Acknowledgements. We are thankful to an anonymous referee for carefully reading the
manuscript and posing the question whether an extension of the continuous time results to
the discrete time case is possible.
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