
Di�erentiability of Point Process Models andAsymptotic E�ciency of Di�erentiable FunctionalsR. HoltrodeGesamthochschule Siegen L. R�uschendorfUniversit�at M�unsterAbstractIn this paper we consider some di�erent techniques allowing to constructasymptotically e�cient estimators in point process models. In particular weestablish L2-di�erentiability for point processes with multiplicative intensitiesand thus can apply Hadamard di�erentiability techniques for the i.i.d. case.In the second part of the paper we extend some properties of di�erentiablefunctionals known from the i.i.d. situation to general LAN models of pointprocesses. We establish the LAN condition for point processes with di�eren-tiable intensities and as consequence obtain optimality of various estimatorsin general intensity models.1 IntroductionLet for n 2 IN; Pn = fPn;�; � 2 Ig be a class of probability measures on (
n;Fn),where Fn = (Fnt)t2[0;1] is a �ltration generated by point processes Nn = (Nn;t)t2[0;1].Let Nn have Fn-predictable intensities �n;� w.r.t. Pn;�; � 2 I, i.e. Nn has theDoob-Meyer decompositionNn;t = Mn;�(t) + Z t0 �n;�(s)ds; (1.1)Mn;� a Pn;�-martingale and An;�(t) = R t0 �n;�(s)ds the compensator. The likelihoodratio on Fn;t under suitable continuity conditions is given bydPn;�1dPn;�o jFn;t = exp(Z t0 log �n;�1�n;�o dNn � Z t0 (�n;�1(s)� �n;�o(s))ds) (1.2)for �o; �1 2 I (cf. Jacod (1975), Liptser, Shiryaev (1978) and Karr (1985)). Forgeneral reference on point processes we refer to Bremaud (1981), Karr (1985) andKutoyants (1984). Aalen (1978) introduced models with multiplicative intensities.Here I is assumed to be a subset of the caglad functions � : [0; 1]! [0;1) (caglad= left continuous, right hand limits) and �n;� = ��n, where �n is a basic predictableintensity and � is the (unknown) parameter. In iid models of point processes wehave n observed independent copies (N (1); �(1)); : : : ; (N (n); �(n)) of the basic point1



process (N;�). Nn = Pni=1N (i) is a su�cient statistic with intensity �n;� = ��n =�Pni=1 �(i) in the multiplicative model, �n;� = Pni=1 �(i)� in the general case.The problem of estimation of the compensator An;� (or the intensities �) hasbeen considered by Aalen (1978), Rebolledo (1978), Liptser and Shiryayev (1978).For point processes on [0; t]; t!1 cf. Kutoyants (1984); for point processes on a�xed interval [0; 1] we refer to Greenwood and Wefelmeyer (1989) and Millar (1990),while for the case of Poisson processes cf. Karr (1985), R�uschendorf (1989), Liese(1990), Kutoyants and Liese (1990). The aim of the present paper is twofold. Onone hand side we extend the relationship between di�erentiability and e�ciency tothe estimation of functionals with values in general topological vector spaces in thegeneral LAN case. For the iid case cf. van der Vaart (1988) and Gill (1986), forthe estimation of real functionals cf. Pfanzagl and Wefelmeyer (1988) in the LANcase. We apply this extension to establish asymptotically optimal estimators in themultiplicative intensity model and in general LAN models. The consideration ofestimators in general topological spaces is of importance, since it allows to obtain asimmediate consequence the asymptotic e�ciency of di�erentiable functionals � � Tnof e�cient estimators Tn. In order that this idea is fruitful one should considere�cient estimators Tn with values in a function space (like D[0; 1]). (We apply thisidea to the case where Tn is either the point process Nn itself or the Nelson-Aalenestimator, both on D[0; 1].)In the second place we establish essentially two di�erent methods of proof for theasymptotic e�ciency of estimators in point processes. As examples we use the pointprocess Nn itself and the Nelson-Aalen estimator. One method of proof is the directway to asymptotic e�ciency. We have to establish in the �rst step the (asymptotic)di�erentiability of the functional � which we wish to estimate. Then in a secondstep we prove that the model is LAN and in a third step that the estimator hasa stochastic expansion based on the canonical gradient. This approach is given inTheorem 8 in the iid case and in Theorem 13 in the general LAN case. The secondmethod is to represent the functional which we want to estimate as Hadamarddi�erentiable functional of more simple functionals, where estimators are easy toconstruct (cf. Proposition 4 and Theorem 5 in the iid case, Theorem 13 in the LANcase). In iid models one obtains particular simple and exible proofs of asymptotice�ciency of estimators if the underlying model is L2-di�erentiable (cf. Theorem5). We establish L2-di�erentiability of the multiplicative point process model in thesense that di�erentiability of the intensities plus some regularity conditions implyL2-di�erentiability of the probability measures. This implies, as is well known, theLAN condition; it also implies the construction of locally most powerful tests andCramer Rao bounds. \Local" di�erentiability of point process models (and moregenerally of semimartingale models) has been established in a recent paper by Jacod(1990) under the sole condition of di�erentiability of the intensities (also in the caseof not multiplicative models). The potentially interesting statistical applications ofthese results still have to be worked out.In Section 2 we discuss a su�cient condition for L2-di�erentiability in terms ofloglikelihood functions. This is useful since for a large class of stochastic processesthe density process is an exponential martingale. In Section 3 we consider the es-2



timation in iid models. The reason for treating iid models separately is two-fold.On one hand side one can use the L2-di�erentiability property of the underlyingmodel and on the other hand in the case of iid models the relation between e�-ciency and di�erentiability is well established in the literature. We establish theL2-di�erentiability of the multiplicative point process model in Section 4. In gen-eral non-multiplicative point process models we determine an e�cient estimator forthe integrated expected intensity process. The Nelson{Aalen estimator can be re-spresented as a Hadamard di�erentiable functional of this e�cient estimator anda further e�cient estimator for the expected basis intensity process and, therefore,itself is e�cient. In Section 5 we discuss the estimation of asymptotically di�er-entiable functionals with values in topological vectorspaces in the LAN case. Thisextends the discussion of the relation between e�ciency and di�erentiability givenin the iid case by van der Vaart (1989). We consider applications to the estimationof functionals of the intensity process in point process models and in particular givea simple proof of the LAN condition for point process models with di�erentiableintensities.2 A Su�cient Condition for L2-Di�erentiabilityLet P � M1(
;A) be a family of probability measures on (
;A) dominated by a�-�nite measure �. A cone T (P ) in L2(P ) is called tangent cone in P 2 P if eachelement g 2 T (P ) is tangent vector of a L2-di�erentiable path in P , i.e. there existsa path (Pt)0�t�1 � P with Po = P andZ [1t ((dPtd� )1=2 � (dPd� )1=2)� 12g(dPd� )1=2]2d� �!t#0 0: (2.1)We assume for simplicity reasons that all distributions are pairwise equivalent anddenote by pt = dPtd� ; p = dPd� densities w.r.t. �. Then (2.1) is equivalent toZ 1t2 [(ptp )1=2 � 1 � 12 tg]2dP �!t#0 0: (2.2)It is well known that (2.2) is equivalent to (cf. Witting (1985), p. 187)Z 1t2r2t 1[0;1](jrtj)dP �!t#0 0 (2.3)and Z 1t2 jrtj1(1;1)(jrtj)dP �!t#0 0; (2.4)where rt := ptp � 1 � tg. Also the tangent cone T (P ) is known to be a subset ofL2�(P ) = fh 2 L2(P ); R h dP = 0g.The aim of this section is to derive the following criterion for L2-di�erentiabilityin terms of the log likelihood function. 3



Theorem 1 Let (Pt)0�t�1 � P be a path of pairwise equivalent distributions withlog likelihood `t = log ptp and assume that for some g 2 L2(P )Z (1t `t � g)2dP �!t#0 0 (2.5)and lim supt#0 Z 1t2`2tdPt � Z g2dP: (2.6)Then (Pt)0�t�1 is L2-di�erentiable in P with tangent vector g.Proof: We establish conditions (2.3) and (2.4). Since by assumption (2.5) rt =op(1), Z 1t2 (e`t � 1� `t)2 1[0;1](jrtj)1[0;1](j`t � tgj)dP� Z 1t2 (e`t � 1� `t)2 1[0;3](j`tj)dP� Z 1t2 [`2t2 (1 + e`t)]2 1[0;3](j`tj)dP� C Z 1t2 `4t 1[0;3](j`tj)dP:For any 0 < " < 3Z 1t2 `4t 1(";3](j`tj)dP � 9 Z 1t2 `2t 1(";3](j`tj)dP �!t#0 0;since the integral is uniformly integrable by (2.5) and `t = op(1). By Lemma19.1.1 of Pfanzagl and Wefelmeyer (1982) there exists a nullfunction v : (0; 1] ![0;1) with R 1t2 `2t 1(v(t);3](j`tj)dP �!t#o 0 and, therefore, R 1t2 `4t 1(v(t);3](j`tj)dP �!t#0 0.Since it is easy to see that R 1t2 `4t 1[0;v(t))(j`tj)dP � v(t)2 R 1t2 `2t dP �!t#0 0 we obtainR 1t2 `4t 1[0;3](j`tj)dP �!t#0 0 and, therefore, R 1t2 r2t 1[0;1](jrtj) 1[0;1](j`t � tgj)dP �!t#0 0.Since R 1t2 r2t 1[0;1](jrtj) 1(1;1)(j`t � tgj)dP � R (1t `t� g)2dP , (2.3) is implied by condi-tion (2.5).In order to establish (2.4) we obtain as in the �rst part a nullfunction v : (0; 1]![0;1) with Z 1t2 j`t � tgj1(1;1)(jrtj)1(v(t);1)(j`t � tgj)dP �!t#0 0:Since for su�ciently small t > 0Z 1t2 j`t � tgj1(1;1)(jrtj) 1[0;v(t)](j`t � tgj)dP� Z 1t2 j`t � tgj 1(1�v(t);1)(je`t � 1 � `tj) 1[0;v(t)](j`t � tgj)dP� v(t)t2 Z 1(1�v(t);1)(je`t � 1 � `tj)dP4



� v(t)t2 Z 1(1=2;1)(j`tj)dP� 4v(t) Z 1t2 `2t dP �!t#0 0;we obtain R 1t2 j`t � tgj1(1;1)(jrtj)dP �!t#0 0. Furthermore,Z 1t2 je`t � 1 � `tj 1(1;1)(jrtj)dP� Z 1t2 `2t2 (1 + e`t)1(1;1)(jrtj)dP= 12 Z 1t2`2t 1(1;1)(jrtj)dP+ 12 Z 1t2`2t ptp 1(1;1)(jrtj)dP:By (2.5) the integrand in the �rst term is uniformly integrable and converges stochas-tically to zero; so the �rst term tends to zero. We next prove the uniform integrabilityof the integrand of the second term. By Vitali's theorem and (2.6) it is su�cient toshow that 1t2 `2t ptp �g2 = op(1). We decompose 1t2 `2t ptp �g2 = 1t2 `2t rt+ 1t2 `2t �g2+ 1t2 `2t tg.For " > 0 holds: P ( 1t2 `2t �M) � 1M Z `2tt2 dP �!M!1 0:Since by (2.5) this holds uniformly in t, P ( 1t2 `2t �M(")) � "2 for all t > 0 and someM(") > 0. Since rt = op(1) this implies for small t and any � > 0 : P (j 1t2 `2t rtj >�) � P ( 1t2 `2t � M(")) + P ( 1t2 `2t < M("); 1t2 `2t jrtj > �) � "2 + P (M(")jrtj > �) � ".Similarly, also the third term converges to zero stochastically. 2We shall need the following lemma to apply (2.5) in examples.Lemma 2.1 In the situation of Theorem 1 let R `t dPt �!t#0 0, then H(Pt; P ) �!t#00; H the Hellinger distance. If, furthermore, f = (f(t))0�t�1 is a stochastic processwith kEPf2k1 <1 and lim supt#0 kEPtf2k1 <1, then kEPtf �EP fk1 �!t#0 0.Proof: Note that R `t dPt = R pt`nptp d� = I(Pt; P ) is the Kullback-Leibler I-divergence. By Csiszar's (1966) inequality holds kPt � Pk � 2(I(Pt; P ))1=2. Onthe other hand by Lemma 2.15 in Strasser (1985) holds H2(Pt; P ) � 2kPt � Pk.Therefore, H(Pt; P ) � 2(I(Pt; P ))1=4. For the second part we use the inequalitiesj Z f(s)dPt � Z f(s)dP j= j Z f(s)((ptp )1=2 + 1)((ptp )1=2 � 1)dP j5



� (Z f2(s)((ptp )1=2 + 1)2dP Z ((ptp )1=2 � 1)2dP )1=2� 2f(kEPtf2k1 + kEP f2k1)g1=2H(Pt; P ) �!t#0 0: 23 E�cient Estimation in i.i.d. Point Process Mod-elsIn i.i.d. models e�cient estimation of di�erentiable functionals � : P ! B withvalues in general topological vector spaces B has been investitaged by several au-thors; we refer in particular to Millar (1990), Strasser (1985), van der Vaart (1988)and Le Cam (1987). For theorems of the type: e�ciency of estimators (Tn) impliesthat of (� � Tn) for Hadamard di�erentiable functionals � (tangentially to certainsupporting sets) cf. van der Vaart (1988) and Gill (1986).Let (B; d) be a metric topological vector space with �-algebra B satisfying thestandard conditions:1. Translation and scalar multiplication are measurable;2. B contains the balls and is contained in the Borel �-algebra;3. each separable probability measure L on (B;B) is uniquely determined by themarginals (b�(L)); b� 2 B� = B�� the dual w.r.t. topology � generated byd; b� B-measurable.These conditions are satis�ed for B = D[0; 1] supplied with supremum metric andB = �(�t; 0 � t � 1) the �-algebra, generated by the projections. Let T (P ) =T (P;P) be a tangent cone in L2(P ) and let � : P ! B be a di�erentiable functionali.e. 8g 2 T (P ) there is a path (Pt) in P with tangent vector g and 1t (�(Pt)��(P ))!�0P (g), where �0P : linT (P )! B is continuous linear and so can be extended to theclosure of lin T (P ) in L2(P ): _�b�(�; P ) 2 L2(P ) is called gradient in direction b� 2 B��if b� � �0p(g) = Z g _�b�(�; P )dP;8g 2 T (P ): (3.1)The projection ~�b�(�; P ) of a gradient _�b�(�; P ) on linT (P) is called canonical gradi-ent.We assume the existence of a separable probability measure N on (B;B) withb�(N) = N(0; k~�b�(�; P )k2P ) for all b� 2 B�� , then the convolution theorem and min-imax theorem hold in the asymptotic iid model (Pn) (cf. van der Vaart (1988) orin a di�erent formulation Strasser (1985) and Millar (1988) and a regular estimatorsequence is e�cient if it has (normalized) N as its asymptotic distribution. This isequivalent to the condition that pn(Tn � �(P )) is tight and b� � Tn is e�cient for6



b� � �; b� 2 B�� ; B-measurble (we assume the usual rate pn at this place). The lastcondition is known to be equivalent to a stochastic expansion:pn(b� � Tn � b� � �(P )) = n�1=2 nXj=1 ~�b�(xj; P ) + op(1): (3.2)In (3.2) one can restrict to \generating" subsets B 0 � B�� ; in the case B = D[0; 1]one can restrict to b� = �t; t 2 [0; 1] (cf. Theorem 4.9 of van der Vaart (1988)).Lemma 3.1 Let T (P ) � L2(P ) be a tangent cone with linT (P ) = L2�(P ) and letf = (ft)0�t�1 be a stochastic process in D[0; 1] such that(ft) is uniformly integrable (3.3)and supfZ f2s dQ;Q 2 P;H(Q;P ) < "; s 2 [0; 1]g <1 (3.4)for some " > 0, orsupfZ f2s dQ;Q 2 P; V (Q;P ) < "; s 2 [0; 1]g <1for some " > 0; V the sup-metric. If (f (j)) is a sequence of i.i.d. copies of f , thenTn = 1nPnj=1 f (j) is asymptotically e�cient for � : P ! D[0; 1]; �(P )s = R fs dP; s 2[0; 1] if (pn(Tn � �(P ))) is tight w.r.t. P .Proof: The proof of Lemma (5.21) in van der Vaart (1988) and conditions (3.3),(3.4) imply that � is di�erentiable with canonical gradient ~��t(f; P ) = ft � R ft dP .Since pn(�t � Tn � �t � �(P ))= 1pn nXj=1(f (j)t � Z f (j)t dP )= 1pn nXj=1 ~��t(f (j); P );(Tn) is asymptotically e�cient. 2Since convergence in distribution w.r.t. the sup-norm is equivalent to conver-gence w.r.t. the Skorohod topology if the limiting process is continuous (cf. Pollard(1984), p. 137), it is su�cient thatpn(Tn � �(P )) D�! V; (3.5)V a process with continuous path's.For the application of Lemma 3 to the i.i.d. point process model (N;F) withintensity �� w.r.t. P�; � 2 I, we formulate the following conditions:7



C.1 linT (P�) = L2�(P�);C.2 supfR 10 E��i�(s)ds; � 2 I; H(P�; P�) < "g <1 for some " > 0; i = 1; 2;C.3 �� has caglad path's and pn( 1n�n;��E���) D�! Y , a process with continuuospath's (convergence in G[0; 1], the class of caglad processes with Skorohodtopology).Condition 1 will be established in Section 4 in the case of multiplicative intensi-ties. The CLT in C.3 is a consequence of the conditions: 9�0 > 12 ; � > 1, such thatfor 0 � s � t � u � 1: E(��(u)� ��(t))2 � (G(u)�G(t))�0E(��(u)� ��(t))2(��(t)� ��(s)2 � (F (u)� F (s))� (3.6)for some continuous, monotonically nondecreasing functions F;G on [0; 1] (cf. Hahn(1978)). Consider next the estimation of the functional�1(P�) = E�N = _Z0E���(s)ds:Proposition 2 Under conditions C.1, C.2, C.3 �1 : P ! (D[0; 1]; k k1) is di�er-entiable in P� and T1;n = 1nNn = 1n Pni=1N (i) is asymptotically e�cient for �1.Proof: By Lemma 3, we have to bound R N2s dP� uniformly in a neighbourhood ofP�. With A�(t) = R t0 ��(s)ds and M�(t) = Nt �A�(t) we obtain for s 2 [0; 1]Z N2s dP� � E�N21 = Z (M�(1) +A�(1))2dP� (3.7)� 2(Z (M�(1))2dP� + Z (A�(1))2dP�)= 2(Z Z 10 ��(s)ds dP� + Z (Z 10 ��(s)ds)2dP�� 2[Z 10 E���(s)ds+ Z Z 10 �2�(s)ds dP� ]< 1 by C.2 if H(P� ; P�) < ":In the next step we have to establish tightness of (pn(T1;n� �1(P�))) w.r.t. P�.pn(T1;n � �1(P�))t = 1pn nXi=1M (i)� (t) + Z t0 pn( 1n�(s)n;� �E��n;�(s))ds; (3.8)where �n;�(s) = Pni=1 �(i)� (s) is the intensity of Nn. For the convergence of the�rst term we apply the CLT of Rebolledo (cf. [10], [11], [21]). For the predictablevariation < 1pn nXi=1M (i)� (t) >t= 1n nXi=1 < M (i)� >t (3.9)= 1n nXi=1 Z t0 �(i)� (s)ds = Z t0 1n nXi=1 �(i)� (s)ds= Z t0 �n;�(s)ds: 8



By the strong law of large numbers in L1[0; 1] a.s.: �n;� ! _R0E���(s)ds = �1(P�) inL1[0; 1], which implies thatZ t0 �n;�(s)ds! Z t0 E���(s)ds =: �(t):Obviously, � 2 C[0; 1].For the Lindeberg condition we considerj� 1pn nXi=1M (i)� (t)j = 1pn�Nn;tand, therefore, E�[ X0�t�1(� 1pn nXi=1M (i)� (t))2 1fj� 1pnPni=1 M (i)� (t)j>"g] (3.10)= E�[ X0�t�1( 1pn�NN;t)2 1f 1pn�Nn;t>"g]� E�( X0�t�1 1n�Nn;t 1f 1pn>"g) (since �Nn;t 2 f0; 1g)= 1f 1pn>"g 1nE�Nn;1= 1f 1pn>"g Z t0 E���(s)ds! 0:Therefore, the CLT of Rebolledo implies weak convergence of the �rst term in (3.8).For the second term of (3.8) by assumption C.3 the integrand converges to aprocess with continuous path's on [0; 1]. By the a.s. representation theorem ofSkorohod there exists a version ~Yn of Yn := pn( 1n�n;�(�) � E��(�)) and ~Y of Ysuch that k~Yn � ~Y k1 ! 0 a.s. This implies that _R0 ~Yn(s)ds ! _R0 ~Y (s)ds a.s. and,therefore, weak convergence of the second term.From the decomposition CLT of Hahn (1978) we therefore can conclude thatthe sum of both terms (pn(T1;n � �1(P�))) converges to a process with continuouspath's (which is easy to identify by the �nite dimensional distributions). 2Remark:a) In the multiplicative intensity model �� = �� the conditions can be modi�ed.If j�j �M <1, then C.2 can be replaced byC.20 supfR 10 �(s)ds;� 2 I;H(P�; P�) < "g <1.b) In the case �� = �� consider the estimation of �2(P�) = E��. Under conditionC.1,C.200 supfE��2s; s 2 [0; 1];H(P�; P�) < "g <1 andC.300 pn( 1n�n � E��) D�! Y , where �n(s),9



a process with continuous path's,Tn = 1n�n is asymptotically e�cient for �2: (3.11)The proof is similar to that of Proposition 4.c) Extensions of Proposition 4 to the a.s. e�ciency of1n _Z0h(s)dNn;s for �(P�) = _Z0h(s)E���(s)dsfor a known function h are obvious. 2We next give an application to the e�cient estimation of the compensator in themultiplicative intensity modelTheorem 3 Under assumptions C.1, C.2, C.200, C.300, andC.4 1E�� is of bounded variationin the multiplicative intensity model, the functional � : P ! (D[0; 1]; k k1);�(P�) = _R0�(s)ds is di�erentiable in P� and the Nelson-Aalen estimatorTn = _R0 1�n(s) 1f�n(s)>0gdNn;s is asymptotically e�cient for � in P�.Proof: With E�Nt = R t0 �(s)E��sds, we obtain�(P�) = _Z0 1E��s�(s)E��sds= _Z0 1E��s d(E�Ns) = �( 1E��;E�N);where � : G[0; 1] � D[0; 1] ! D[0; 1] is de�ned by �(x; y) = _R0x dy"; y" the leastmonotonically nondecreasing majorant of y in D[0; 1] and where G[0; 1] are thecaglad functions, D[0; 1] (as usual) the cadlag functions. The proof follows from thefollowing steps:1. For y 2 C[0; 1] nondecreasing � is Hadamard-di�erentiable in (x; y) tangen-tially to G[0; 1] �Ky[0; 1], where Ky[0; 1] = fk 2 C[0; 1]; k is constant on in-tervals where y is constantg and �0(x;y)(h; k) = _R0x dk+ _R0h dy; h 2 G[0; 1]; k 2Ky[0; 1] ( _R0x dk de�ned by partial integration).1 is an extension of Lemma 3 of Gill (1976), where some additional assumptionsare made. We omit the somewhat technical involved proof (cf. Holtrode(1990)), which consists in the proof of the following four steps:(a) " is Hadamard-di�erentiable in y tangentially to Ky [0; 1].10



(b) hn; h 2 G[0; 1]; hn ! h; yn; y 2 D[0; 1]; yn ! y and lim R 10 d(Var yn) <1 implies _R0hndyn ! _R0h dy in (D[0; 1]; k k1) (cf. Lemma 2 of Gill(1986)).(c) The conditions of (b) hold for yn = (y + tnkn)".(d) If hn ! h in G[0; 1] and kn ! k in D[0; 1]; tn ! 0, thenk 1tn [�(x+ tnhn; yn + tnkn)� �(x; y)� _Z0x d(tnkn)� _Z0tnhn dy]k1� k 1tn [(y + tnkn)" � y"]� knk1 kxk1+ k _Z0 1tn [(y + tnkn)" � y" � tnkn]dx k1+ k _Z0hn d(y + tnkn)" � _Z0hndyk1 ! 0;the �rst inequality follows from some calculations.2. T1;n = 1nNn is (by Proposition 4) asymptotically e�cient in P� for �1(P�) =E�N .3. T2;n = n�n 1f�n>0g is asymptotically e�cient in P� for �3(P�) = 1E�� .Proof. By Remark b, (3.11) ( 1n�n) is as. e�cient for �2(P�) = E�� in P�. Sincekpn 1n 1f�n=0gk1 � 1pn ! 0 also ~Tn = 1n�n+ 1n 1f�n=0g is as. e�cient. f(x) = 1xis Hadamard-di�erentiable in x on fx 2 G[0; 1];x > 0g with f 0x(h) = � hx2if k 1xk1 � �. Therefore, by C.4 �3 is Hadamard-di�erentiable in P� withderivative (�3)0P�(g) = �E�(�g)(E��)2 and f( ~Tn) is as. e�cient for �2 in P�. Since byC.3" kpnn 1f�n=0gk1 P��! 0, this implies a.s. e�ciency of T2;n.Since y = E�N is monotonically nondecreasing and 1E�� is of bounded vari-ation, we obtain by 1 that � is di�erentiable in ( 1E��; E�N) tangentially toG[0; 1]�Ky[0; 1]; y := E�N . So we next have to show that:4. The limit Z of pn( 1nNn � E�N) is concentrated on Ky[0; 1].Proof. For s � t : pn( 1nNn;t � E�Nt) � pn( 1nNn;s � E�Ns) D�! Zt � Zs. Ify = E�N is constant on [s; u), then for t 2 [s; u); Nt � Ns and E�Nt = E�Ns,i.e. Nt = Ns a.s. and so, Nn;t = Nn;s[P�] which implies Zt = Zs[P�]. Sincethere are at most countable many constancy intervals, this implies that Z 2Ky[0; 1] a.s.5. E�gN 2 Ky[0; 1];8g 2 T (P�). 11



Proof. If for g 2 T (P�); E�Nt = E�Ns; s � t, then 1[s;t](u)�(u) = 0[��1] andE�gNt = E� Z t0 g�(u)�udu= Z t0 �(u)E�(g�u)du = Z s0 �(u)E�(g�u)du= E�gNs:Therefore, E�gN 2 Ky [0; 1] a.s.By Theorem 4.11 of van der Vaart (1988), therefore, Tn = �(T1;n; T2n) is a.s.e�cient for � = �(�2; �1). 2Again we also can use the modi�ed conditions as in the remark after Proposition4. In the following example we establish the conditions of Theorem 5; for somedi�erent discussion of this example we refer to [24], [18], [5].Example 3.1 (Censoring Model)Let X be a real rv'e with df F , hazard rate h = f1�F caglad on fF < 1g. LetC be a positive censoring r.v. with continuous df G independent of X and Z =minfX;Cg; F (1) < 1; G(1) < 1 and � = 1fX�Cg known. Let Nt = 1fZ�t;�=1g, thenN has Ph-intensity �h(t) = h(t)1fZ�tg =: h(t)�t and Mh(t) = Nt�R t0 h(s)1fZ�sgds isa martingale. The Nelson-Aalen estimator estimates the cumulative hazard function� = _R0h(s)ds.We next establish the conditions of Theorem 5.C.1 linT (Ph) = L2�(Ph) for Ph 2 P.Proof. For g 2 L2�(Ph); c = 14 R g2dPh � 1 de�ne dPt = (12tg +p1� t2c)2dPh,which is a L2-di�erentiable path in P with tangent vector g if g is caglad. Sofg 2 L2�(Ph); g cagladg � T (Ph). By Lusin's theorem the caglad elements aredense in L2(Ph), which implies 1 (cf. also Wellner (1982)).C.20 For any hazard rate h,Z 10 h(s)ds = Z 10 g(s)1�G(s) � Z 10 g(s)1�G(1)ds� 11 �G(1) < 11 � F (1) + � <1 if V (PF ; PG) < ":C.200 is obvious, since �t = 1fZ�tg is bounded.C.300 Let Xt := 1fZ�tg �Ph(Z � t), then a(t; u) = Eh(Xu �Xt)2 = Varh 1ft�Z<ug �Ph(t � Z < u) and for s < t < u; b(s; t; u) = Eh(Xu � Xt)2(Xt � Xs)2 �12



2Ph(s � Z < t)Ph(t � Z < u). So with A(t) = B(t) = �2Ph(Z � t); � =� = 1 holds a(t; u) � (A(u)�A(t))�b(s; t; u) � (B(u)�B(t))�(B(t)�B(s))�;which implies the CLT for (�n) by Theorem 2 of Hahn (1978).C.4 IfH is the distribution function of Z, then 1�H = (1�F )(1�G) is continuous.Since 0 < F (1); G(1) < 1; 1Eh�s = 11�H(s) is monotonically nondecreasing andbounded.Alltogether, by Theorem 5 the Nelson-Aalen estimator is a.s. e�cient.4 L2-Di�erentiability of the Point Process ModelWith Multiplicative IntensitiesIn this section we establish the L2-di�erentiability condition for the model withmultiplicative intensities, and, therefore, condition C.1 of Section 3 for these models.Let � 2 I be a �xed element and let �t = �t(s) be elements of I with correspondingprobabilities (P�t)0�t�1 � P, a path in P through P�. ���1 denotes the measurewith density � w.r.t. Lebesgue measure ��1.Theorem 4 Let (Pt) = (P�t) satisfy the following conditions:Z 10 �(s)�(s)ds � K <1; kE��2k1 <1; (4.1)lim supt#0 k ��tk1 <1; lim supt#0 k�t� k1 <1 and lim supt#0 kEt�2k1 <1: (4.2)For some v 2 L2(���1) holdsZ 10 [1t (�t(s)�(s) � 1)� v(s)]2�(s)ds �!t#0 0: (4.3)For some p > 1 holds:lim supt#0 Z 10 [1t (�t(s)�(s) � 1)]2p�(s)ds <1; (4.4)then (Pt) is L2-di�erentiable in P� with tangent vector R 10 v(s)dM�(s).Proof: For the proof we establish conditions (2.5), (2.6) of Theorem 1 in severalsteps.Step 1. There exist At 2 IR1; lim supt#0At < 1, such that for caglad functionsft = ft(s) Et(Z 10 ftdN)2 � At Z 10 f2t (s)�(s)ds: (4.5)13



Proof. We shall omit integration variables if no problems arise. With Mt = M�t,Et(Z 10 ftdN)2 = Et[Z 10 ftdMt + Z 10 ft�t�]2� 2Et(Z 10 ftdMt)2 + 2Et(Z 10 ft�t�)2� 2Et(Z 10 f2t �t�ds) + 2Et(Z 10 f2t �t�ds)(Z 10 �t�ds)� 2k�t� k1(Z 10 f2t �ds)kEt�k1+ 2k�t� k21kEt�k1(Z 10 f2t �ds)(Z 10 �ds)Similarly, E�(Z 10 ftdN)2 � B Z 10 f2t �ds: (4.6)Step 2. Z (1t `t � Z 10 v dM�)2dP� �!t#0 0: (4.7)Proof. Let R(x) = log(1 + x)� x; x > �1, thenjR(x)j � x2 11 + x; x > �1: (4.8)By Liptser, Shiryayev (1978), we obtain from (4.2) that Pt and P� are equivalentfor small t with log likelihood function`t = Z 10 log(�t� )dN � Z 10 (�t � �)�ds (4.9)= Z 10 (�t� � 1)dN + Z 10 R(�t� � 1)dN � Z 10 (�t� � 1)��ds= Z 10 (�t� � 1)dM� + Z 10 R(�t� � 1)dN:We have to consider the convergence to zero of the second term normalized by 1t .E�[1t Z 10 R(�t� � 1)dN ]2 (4.10)� E�[Z 10 1t (�t� � 1)2 ��tdN ]2� B Z 10 1t2 (�t� � 1)4( ��t )2�ds by step 1� B(Z 10 1t2p (�t� � 1)2p�ds)1=p(Z 10 (�t� � 1)2q( ��t )2q�ds)1=q� B(Z 10 1t2p (�t� � 1)2p�ds)1=pfk ��tk2q1k�t� � 1k2q�21 Z 10 (�t� � 1)2�dsg1=q �!t#0 0;by assumptions (4.1) - (4.4). 14



(4.7) is now a consequence ofE�(1t Z 10 (�t� � 1)dM� � Z 10 vdM�)2 (4.11)= E�[Z 10 (1t (�t� � 1)� v)dM�]2= Z 10 (1t (�t� � 1) � v)2�E��ds� kE��k1 Z 10 [1t (�t� � 1)� v)]2�ds �!t#0 0by (4.4).Step 3. R `2tdPt �!t#0 0.Proof. Et[Z 10 1t jR( ��t � 1)jdN ]2� Et(Z 10 1t ( ��t � 1)2�t� dN)2� At Z 10 1t2 (�t� � 1)4( ��t )2�ds by Step 1which converges to zero by the proof of Step 2 and since lim supt#0At <1.With �`t = R 10 ( ��t � 1)dMt + R 10 R( ��t � 1)dN , Step 3 follows fromEt(Z 10 ( ��t � 1)dMt)2 = Et(Z 10 ( ��t � 1)2�t�ds)= Z 10 (�t� � 1)2 ��t�Et�ds� k ��tk1kEt�k1 Z 10 (�t� � 1)2�ds �!t#0 0:Step 4. lim supt#0 R 1t2 `2tdPt � R (R 10 vdM�)2dP:Proof. From Step 3 and Lemma 2,kEt� � E��k1 �!t#0 0: (4.12)Furthermore, Z 10 [1t ( ��t � 1)]2�tEt�ds (4.13)= Z 10 [1t ( ��t � 1)]2�tE��ds + Z 10 [1t ( ��t � 1)]2�t(Et�� E��)ds= Z 10 [1t (�t� � 1)]2f�E�� + ( ��t � 1)�E��+ ��t�(Et�� E��)gds=: C1 + C2 + C3: 15



Here jC2j = j Z 10 [1t (�t� � 1)]2( ��t � 1)�E��dsj� k ��tk1kE��k1 Z 10 1t2 j�t� � 1j3�ds� k ��tk1kE��k1fZ 10 1t2p (�t� � 1)2p�dsg1=pfZ 10 j�t� � 1jq�dsg1=q;which converges to zero as in the proof of Step 2. SinceC1 = Z 10 [1t (�t� � 1)]2�E��ds �!t#0 Z 10 v2�E��ds andjC3j � k ��tk1kEt� � E��k1 Z 10 [1t (�t� � 1)]2�ds �!t#0 0we obtain limt#0 Z 10 [1t ( ��t � 1)]2�tEt�ds = Z 10 v2�E��ds: (4.14)With �`t = R 10 ( ��t � 1)dMt + R 10 R( ��t � 1)dN and Et[R 10 jR( ��t � 1)jdN ]2 �!t#0 0from the proof of Step 3 we obtain Step 4 byEt[Z 10 1t ( ��t � 1)dMt]2 = Et Z 10 [1t ( ��t � 1)]2�t�ds (4.15)= Z 10 [1t ( ��t � 1)2�tEt�ds �!t#0 Z 10 v2�E��ds:From Theorem 1 we �nally obtain from Steps 2 and 4 the L2-di�erentiability of (Pt)in P� with tangent vector R 10 vdM�. 2The following corollary is immediate from Theorem 6.Corollary 4.1 If j�s(!)j � K <1; 8s 2 [0; 1]; ! 2 
 and v 2 L2(���1) such thatfor some (�t) � IL.1 lim supt#0 k�t� � 1k1 < 1 andL.2 lim supt#0 1t� R 10 [1t (�t(s)�(s) � 1)� v(s)]2�(s)ds <1 for some � > 0,then (P�t) is L2-di�erentiable in P� with tangent vector R 10 v(s)dM�(s).Remark: If �t = (1+ tv)� 2 I for 0 � t � 1; v caglad, kvk1 < 1, then L.1, L.2are ful�lled and so the closed linear hull of the tangent cone T (P�) established inCorollary 7 contains V = fR 10 v(s)dM�(s); v 2 L2(���1)g, since the caglad functionsare dense in L2[0; 1]. 2We next as consequence of Theorem 5 resp. Corollary 7 give more direct approachto the asymptotic e�ciency of the Nelson-Aalen estimator compared to the approachin Theorem 5. The assumptions used here are technically somewhat di�erent to theassumptions in Theorem 5 (no set of assumptions is implied by the other) but areclose to each other in a practical sense. 16



Theorem 5 Let j�s(!)j � K <1; 8s; 8! and assume:E.1 V = fR 10 v(s)dM�(s); v 2 L2(���1)g is contained in the tangent cone estab-lished in Corollary 7;E.2 1E�� is bounded;E.3 k 1n�n � E��k1 �!n!1 0 in P�-probability,then � : P ! (D[0; 1]; k k1); �(P�) = _R0�(s)ds is di�erentiable in P� (w.r.t. thecone V ) and the Nelson-Aalen estimator Tn = _R0 1�n(s) 1f�n(s)>0gdNn;s is asymptoti-cally e�cient for � in P� (w.r.t. V ).Proof: Step 1. � is di�erentiable in P� w.r.t. V with canonical gradient~��t(P�) = Z t0 1E��dM�: (4.16)Proof. Let R 10 vdM� 2 V and let �t 2 I satisfy R 10 [1t (�t� � 1) � v]2�ds �!t#0 0 (whichexist by E.1 and L.1) such that (P�t) has tangent vector R 10 v(s)dM�(s) in P�. Thenk1t (�(P�t)� �(P�))� _Z0v�dsk1� Z 10 j1t (�t� � 1)� vj�ds� f(Z 10 �ds) Z 10 (1t (�t� � 1)� v)2�dsg1=2 �!t#0 0;i.e.�0P�(Z 10 vdM�) = _Z0v�ds:Furthermore, �t � �0P�(Z 10 vdM�) (4.17)= Z t0 v�ds = E�(Z t0 1E��v��ds)= E� Z t0 1E��dM� Z t0 vdM�= Z _��t(P�)(Z t0 vdM�)dP�;where _��t(P�) = R t0 1E��dM� is a gradient. By assumption 1E�� 2 L2(���1) and so_��t(P�) = ~��t(P�) = Z t0 1E��dM� (4.18)is the canonical gradient.Step 2. kpn(Tn � �(P�))� n�1=2 _R0 1E��dMn;�k1 P��!n!1 0, where Mn;� =Pni=1M (i)� .17



Proof. kpn[ _Z0 1�n 1f�n>0gdNn � _Z0�ds]� n�1=2 _Z0 1E��dMn;�k1� kn�1=2 _Z0( n�n 1f�n>0g � 1E��)dMn;�k1 +pn Z 10 1f�n=0g�ds:The second term converges to zero, since k 1n�n �E��k1 P��! 0. From the Lenglart-inequality we obtain for "; � > 0P�( sup0�t�1 jn�1=2 Z t0 ( n�n 1f�n>0g � 1E��)dMn;�j > ") (4.19)� �"2 + P�(Z 10 1n [ n�n 1f�n>0g � 1E�� ]2��nds > �)� �"2 + P�(k�k1k�nn k1 k n�n 1f�n>0g � 1E��k21 > �)� �"2 + P�(k�k1Kk n�n 1f�n>0g � 1E��k21 > �):Since k 1E��k1 <1; E��s � � for all s 2 [0; 1] and some � > 0. Therefore, for " > 0P�(k 1�n 1f�n>0g � 1E��k1 � ")� P�(k n�n � 1E��k1 � "; k�nn � E��k1 < �2)+P�(k�nn �E��k1 � �2)� P�(k n�n k1 k 1E��k1 kE��� �nn k1 � "; k�nn � E��k1 < �2)+P�(k�nn �E��k1 � �2)� P�( 2�2kE��� �nn k1 � "; k�nn � E��k1 < �2)+P�(k�nn �E��k1 � �2)� P�(kE��� �nn k1 � 12�2") + P�(k�nn � E��k � �2) �!n!1 0;which implies Step 2 by (4.20). For a related derivation cf. Greenwood and We-felmeyer (1989).Step 3. pn(Tn � �(P�)) D�! Y , a process with continuous path's (w.r.t. P�).Proof. By Step 2 it is enough to check convergence of (n�1=2 _R0 1E��dMn;�) by the CLTof Rebolledo. For the predictable variation< n�1=2 _Z0 1E��dMn;� >t = Z t0 ( 1E�� )2��nn ds (4.20)P��!n!1 Z t0 1E��ds =: �(t) cf. also (3.9)):18



The Lindeberg type condition� 1pn Z t0 1E��dMn� = 1pn 1E��(t)�Nn;t P��!n!1 0is shown as in the proof of Proposition 4.By Step 3 the sequence (pn(Tn � �(P�))) is tight (on (D[0; 1]; k k1)) and (Tn)is asymptotically linear as in (3.2) which implies asymptotic e�ciency. 25 LAN and Di�erentiabilityIn this section we extend the relation between di�erentiability and e�ciency as usedin Section 3 in the case of i.i.d. models to the general case of LAN models.Let Pn = fPn;#;# 2 �g be an asymptotic model and let V � H be a cone ina Hilbert space H with norm k k = k k#. For each v 2 V let (#n;v) � � be asequence in � with #n;v ! # (typically an(#n;v � #) ! av 6= 0 for some sequencean !1). Then (Pn) is LAN in # (with rate (an)) if for some linear process Zn onlin V log dPn;#nvdPn;# = Zn(v)� 12kvk2 + oPn;#(1) (5.1)and PZn(v)n;# D�! N(0; kvk2); v 2 V .In the case of iid models V = T (P#) � L2(P#) = H and for g 2 T (P#); Zn(g) =n�1=2Pni=1 g(Xi). Let � : � ! B be a di�erentiable functional, i.e. an(�(#n;v ��(#)) ! �0#(v); v 2 V , where �0# : linV ! B is continuous linear. While in iidmodels (as in Section 3) it is natural to consider the estimation of functionals �de�ned directly on the basic model of underlying distributions, for the more generalcase of LAN models it seems to be more natural to consider the functionals �de�ned on a parameter space � (e.g. in the case of point processes with intensities�n;� as functionals of �). Note also that the di�erentiability postulated here isan asymptotic form of di�erentiability. It is di�erent from the di�erentiability ofa functional in a �xed model � as in Section 3 (in the situation of iid models).For b� 2 B�� (B�� denotes the class of all continuous linear functionals w.r.t. theunderlying topology � ) let _�b�(�; #) 2 V be a gradient in direction b�, i.e.b� � �0#(v) =< v; _�b�(�; #) >; v 2 V; (5.2)and let ~�b�(�; #) be the projection of _�b�(�; #) on lin(V ), the canonical gradient indirection b�.Assume the existence of a probability measure N 2 M1(B;B) with separablesupport, such that for all B-measurable b� 2 B�� ; b�(N) = N(0; k~�b�(�; #)k2). Anestimator sequence (Tn) is called asymptotically e�cient for � in # ifP an(Tn��(Pn;#))n;# D�! N (5.3)19



or, equivalently, (an(Tn � �(Pn;#))) (5.4)is tight, and an(b� � Tn � b� � �(Pn;#)) D�! N(0; k~�b�(�; #)k2) (5.5)for all B-measurable b� 2 B�� . In order to obtain a sharp bound for the as. variance ofestimators and the possibility of constructing e�cient estimators one has to choosea su�ciently large tangent cone.(5.4) and (5.5) are equivalent to the condition that b� � Tn is asymptoticallye�cient for the real functional b� ��, which in turn is wellknown to be equivalent toa stochastic expansionan(b� � Tn � b� � �(Pn;#)) = Zn(~�b�(�; #)) + oPn;#(1): (5.6)In the case that B = (D[0; 1]; k k1), (5.4), (5.5) are equivalent to:�t � Tn is asymptotically e�cient for �t � �; t 2 [0; 1]: (5.7)An estimator sequence (Tn) is called regular if for some L 2M1(B;B)P b�(an(Tn��(Pn;#n;v )))n;#n;v ! Lb�; b� 2 B�� ; b� B �measurable: (5.8)Again in the case of B = D[0; 1] one can restrict to b� = �t; t 2 [0; 1]. Thefollowing version of the convolution theorem can be proved analogously to the proofof Theorems 3.14, 3.7 in van der Vaart (1988). This theorem justi�es the notion ofasymptotic e�ciency in (5.3). Let for B 0 � B�; R(B 0) := SA�B0 ; A �nite �A denotethe cylinder �-algebra on B (�A the �-algebra generated by A).Theorem 6 If V is convex, � : �! B is di�erentiable in # with canonical gradient~�b�(�; #) in direction b� 2 B�, then:a) For any limit point L of a regular estimator sequence (Tn); L = N � Mis the convolution of two cylinder measures on (B;R(B�)) with b�(N) =N(0; k~�b�(�; #)k2); b� 2 B�.b) If L is � (B�)-tight, then there exist extensions of N; M to probability measureson (B;�B�).B� can be replaced by a separating subspace B 0 � B�. The tightness conditionin b) is ful�lled generally, if (B; � ) is a polish top. vectorspace and B 0 = B�, or ifB = (D[0; 1]; k k1) and B 0 =< f�t; t 2 [0; 1]g > or if B = A�; (A; k k) a normedspace with B 0 = A; so e.g. in the reexive banach spaces, `1; L1. Similarly, also theversion of the minimax theorem (cf. Theorem 3.17 in [21]) extends to the generalcase.Let for B 0 � B�� and N 2M1(B;B); L(B 0; N) denote the class of all measurableloss functions ` : B ! IR1 such that for some sequence (`k) of cylinder functions`k � ` and `k " `[N ]. In particular if B is a metrisable, locally convex topologicalvectorspace and ` : B ! IR1 is subconvex (i.e. `(0) = 0 � `(b); `(b) = `(�b) andfb 2 B : `(b) � cg is convex and � -closed for c 2 IR+), then ` 2 L(B�; N).20



Theorem 7 If V is convex, � : �! B is di�erentiable in # and if there exists N 2M1(B;�B0) with b0(N) = N(0; k~�b0(�; #)k2);8 b0 2 B 0, a point separating subspace ofB�, then for all ` 2 L(B 0; N) and for all estimator sequences (Tn) holds:limc!1 lim sup#n2Bn(c)E#n`(pn(Tn � g(#n))) � Z `(b)dN(b); (5.9)where Bn(c) = f#n = #n;v; kvk � cg:De�ne � : B1 ! B2 to be a Hadamard di�erentiable function, tangentially to S,if for b 2 B1; hn 2 B1; hn ! h 2 S; tn ! 0, there exists a continuous linearfunction �0b : B1 ! B2 such that1tn (�(b+ tnhn)� �(b))! �0b(h): (5.10)The following result extends Theorem 4.11 of van der Vaart (1988). Let S denotethe separable support of N.Theorem 8 If � : � ! B1 is di�erentiable in # and if � : B1 ! B2 is Hadamard-di�erentiable in �(#) tangentially to linfS; �0#(V )g with B1 �B2-measurable deriva-tive, then � � � is di�erentiable in #. If (Tn) is asymptotically e�cient for � in #and Ppn(Tn��(#))n;# ! N and � � Tn is B2-measurable, then (� � Tn) is asymptoticallye�cient for � � � in #.In the next step we apply these results to models with multiplicative intensities(which are however not necessarily iid models). The following LAN theorem is dueto Dzapharidze (1985), for a simpli�ed proof cf. also Greenwood and Wefelmeyer(1989).Theorem 9 Let for � 2 I there exist a bounded function � : [0; 1] ! IR1 andan ! 1, such that 1a2n�n ! � uniformly in Pn;� probability. Let v 2 L2(���1) and�n;v 2 I satisfy Z 10 [an((�n;v(s)�(s) )1=2 � 1)� 12v(s)]2�(s)ds! 0; (5.11)thenlog(dPn;�n;vdPn� ) = 1an Z 10 v(s)dMn�(s)� 12 Z 10 v2(s)�(s)�(s)ds + oPn�(1) (5.12)and P 1an R 10 v(s)dMn;�(s)n;� D�! N(0; Z 10 v(s)2�(s)�(s)ds; (5.13)i.e. we have LAN with central sequenceZn(v) = 1an Z 10 v(s)dMn�(s): (5.14)21



Let V (�) := fv 2 L2(�); v is a tangent vector of a sequence in Ig � L2(��).The following result extends Example 4.8 of Greenwood and Wefelmeyer (1988)who considered the estimation of real functionals.Let Ân = _R0 1�n(s) 1f�n(s)>0gdNn(s) be the Nelson-Aalen estimator for the inte-grated intensity �; �(�)t = R t0 �(s)ds, and let � : D[0; 1] ! B2 be Hadamard-di�erentiable with B �B2-measurable derivative and assume that � � Ân is measur-able. We give here a direct proof of the e�ciency of Ân for the estimation of �. Themethod of this proof is the same as in the proof of Theorem 8. We, therefore, onlyindicate the necessary changes due to the di�erent assumptions and frame work.Our functional version of this e�ciency result then by Theorem 11 immediatelyimplies the e�ciency of � � Ân for the functional � � �.Theorem 10 Additional to the assumptions in Theorem 12 assume that lin V (�) =L2(�) and that 1� is bounded. Then (�(Ân)) is asymptotically e�cient for � � �,where �(�) = R �0 �(s)ds is the integrated intensity.Proof: Step 1. �(�) = _R0�(s)ds is di�erentiable in � with canonical gradient~��t(�; �) = 1[0;1] 1� .Proof. For t 2 [0; 1]; v 2 V (�) holds:jan(�t(�n;v)� �t(�))� < v; 1[0;t] 1� >�� j= j Z t0 (an(�nv � �) � v�)dsj � Z t0 jan(�nv � �)� vdjds= Z t0 jan[(�nv� )1=2 � 1]2�+ 2an[(�nv� )1=2 � 1]�� v�jds� 1an Z t0 a2n[(�nv� )1=2 � 1]2�ds + 2 Z t0 jan[(�nv� )1=2 � 1]� 12vj�ds= o(1) by (5.10) uniformly in t:Step 2. an[R t0 1�n1f�n>0gdNn � R t0 �ds] = 1an R t0 1�dMn� + oPn;�(1).Proof. an[Z t0 1�n 1f�n>0gdNn � Z t0 �ds]= an Z t0 1�n 1f�n>0gdMn� � an Z t0 �1f�n=0gds= 1an Z 10 1[0;t] 1�dMn� + 1an Z t0 (a2n�n 1f�n>0g 1�)dMn� � an Z t0 �1f�n=0gds= 1an Z 10 1[0;t] 1�dMn� + oPn� (1) uniformly in t:The last equality can be proved as in the proof of Step 2 of Theorem 8 usingboundedness of 1� .Step 3. an(Ân��(P�)) D�! Y a continuous Gaussian martingale. This follows fromStep 2 and the CLT of Rebolledo. 22



Together from Steps 1 - 3, Ân is e�cient for �(�). The asymptotic e�ciency of� � Ân is a consequence of Theorem 11. 2We next consider general point process models which are not necessarily withmultiplicative intensities. Let for � 2 I; �n� be the intensity of Nn w.r.t. Pn�. Thefollowing LAN result is due to Dzapharidze (1985). We give a simpli�ed proof ofthis result which is a modi�cation of the proof of Greenwood and Wefelmeyer (1989)for the case of multiplicative intensities.Theorem 11 Let for � 2 I there exist a bounded function �� : [0; 1] ! IR1 and(an) � IR1; an !1 such that1. 1a2n�n� ! �� uniformly in Pn�-probability;2. for some v 2 L2(��ds) and (�n;v) � I holds:Z 10 [an((�n;�n;v (s)�n;�(s) )1=2 � 1) � 12v(s)]2��(s)ds = oPn;�(1);thenlog dPn;�n;vdPn;� = 1an Z 10 v(s)dMn�(s)� 12 Z 10 v2(s)��(s)ds+ oPn;� (1) (5.15)and 1an Z 10 v(s)dMn;�(s) D�! N(0; Z v2(s)��(s)ds): (5.16)Proof: Let R(x) = log(1 + x)� x+ x22 , then by some calculations with �n = �n;vlog dPn;�n;vdPn;� = 2 Z 10 [(�n;�n�n;� )1=2 � 1]dMn;�� 2 Z 10 [(�n;�n�n;� )1=2 � 1]2�n;�ds� Z 10 [(�n;�n�n;� )1=2 � 1]2dMn;� + 2 Z 10 R((�n;�n�n;� )1=2 � 1)dNn:Step 1. For any " > 0 :Z 10 1fj(�n;�n�n;� )1=2�1j>"g�n;�ds = oPn;�(1); (5.17)Z 10 [((�n;�n�n;� )1=2 � 1]2 1fj(�n;�n�n;� )1=2�1j>"g�n;�ds = oPn;� (1): (5.18)Proof. Let An := ((�n;�n�n;� )1=2 � 1], thenZ 10 1fjAn j>"g�n;�ds � 1"2 Z 10 A2n 1fjAnj>"g�n;�ds= 1"2 Z 10 (anAn)2 1fjAnj>"g��ds + oPn;�(1)= 1"2 Z 10 14v2 1fjAn j>"g��ds+ oPn;� (1)= oPn;� (1): 23



Step 2. 2 Z 10 AndMn;� � 1an Z 10 vdMn;� = oPn;�(1): (5.19)Proof. Consider the predictable variation< _Z0(An � van )dMn;� >1= 1a2n Z 10 (anAn � 12v)2�n;�ds= Z 10 (anAn � 12v)2��ds+ oPn;� (1) = oPn;� (1):Therefore, (5.18) follows from the Lenglart-inequality.Step 3. 2 Z 10 A2n�n�ds � 12 Z 10 v2��ds = oPn;� (1): (5.20)Proof. j Z 10 A2n�n;�ds � 14 Z 10 v2��dsj� Z 10 (anAn)2j�n�a2n ���jds+ Z 10 ((anAn)2 � 14v2)��ds= oPn;� (1):Step 4. Z 10 R(An)dNn = oPn;�(1): (5.21)Proof. By (5.16) with Lenglarts inequalityZ 10 1fjAn j>"gdMn;� = oPn;� (1):With dNn = dMn;� + �n;�ds, therefore, again using (5.16)Pn;�(Z 10 1fjAnj>"gdNn � 1)! 0: (5.22)This implies Z 10 R(An) 1fjAnj>"gdNn = oPn;� (1)and, therefore, also for some sequence "n ! 0Z 10 R(An) 1fjAnj>"ngdNn = oPn;� (1):Since for jxj � 12; R(x) � 2jxj3,Z 10 R(An) 1fjAnj�"ngdNn� 2"3n Z 10 1fjAn j�"ngdMn;�+ 2"3n Z 10 1fjAn j�"ng�n;�ds = oPn;�(1)24



by (5.16) and Lenglarts inequality.Step 5. Z 10 A2ndMn;� = oPn;� (1): (5.23)Proof. From (5.21): R 10 A2n 1fjAnj>"gdNn = oPn;� (1) and so by (5.18)R 10 A2n 1fjAn j>"gdMn;� = oPn;�(1): On the other hand< _Z0A2n 1fjAn j�"ngdMn;� >1= Z 10 A4n 1fjAn j�"ng�n;�ds� "2n Z 10 A2n 1fjAnj�"ng�n;�ds= oPn;� (1) by (5.18).Step 6. 1an Z 10 vdMn;� ! N(0; Z 10 v2��ds): (5.24)Proof. This follows from the CLT of Rebolledo, since the predictable variation con-verges < 1an _Z0vdMn;� >t= Z t0 v2�n;�a2n ds! Z t0 v2��ds:Also the Lindeberg condition is satis�edj Z 10 van 1fj van j>"g�n;�dsj = oPn;�(1): 2Again as consequence one obtains asymptotic optimality of martingale estimatorsTn = 1an _Z0h dNn for E� _Z0h��ds = �(�)if the tangent cone V (�) is big enough (as in Theorem 13). By Theorem 11 this alsoimplies the asymptotic e�ciency of di�erentiable functionals �(Tn) as estimators of���. An interesting application is to kernel type estimators of a smoothed intensityas considered by Ramlau-Hansen (1983). The intensity � itself is not a di�erentiablefunctional of the integrated intensity �(�) = R �0 �(s)ds and so we cannot obtain ane�cient estimator for � as consequence of Theorems 11 and 14.Acknowledgement. We thank the referees for their contructive comments onthe paper. The improved version of part 1 of Lemma 2 is due to the comments of areferee. 25
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