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Abstract

Using daily returns of the S&P500 stocks from 2001 to 2011, we
perform a backtesting study of the portfolio optimization strategy
based on the extreme risk index (ERI). This method uses multivari-
ate extreme value theory to minimize the probability of large portfolio
losses. With more than 400 stocks to choose from, our study applies
extreme value techniques in portfolio management on a large scale.
We compare the performance of this strategy with the Markowitz ap-
proach and investigate how the ERI method can be applied most ef-
fectively. Our results show that the annualized return of the ERI
strategy is particularly high for assets with heavy tails. The com-
parison also includes maximal drawdown, transaction costs, portfolio
concentration, and asset diversity in the portfolio. In addition to that
we study the impact of an alternative tail index estimator.

JEL Classification: G11, C14

Keywords: portfolio optimization, heavy tails, extreme risk index, ex-
treme value theory,

∗corresponding author:
Phone: +49 761 203 5664, Fax: +49 761 203 5661, ruschen@stochastik.uni-freiburg.de

1



1 Introduction
In this paper we propose and test a portfolio optimization strategy that aims
to improve the portfolio return by stabilizing the portfolio value. Minimiz-
ing the probability of large drawdowns, this strategy can help to retrieve
the portfolio value as good as possible also in times of high risk in the mar-
kets. This intended performance is, of course, not a new aim in portfolio
management, and it became even more vital since the default of Lehman
Brothers in 2008. The following years of financial crisis have demonstrated
that the technical progress of financial markets and their globalization have
also brought up some new challenges. One of these challenges is the need for
diversification strategies that account for strong drawdowns and increasing
dependence of asset returns in crisis periods. This has raised the relevance
of non-Gaussian models, tail dependence, and quantile based risk measures
in portfolio optimization [23, 11, 5, 2, 4, 9, 21, 6, 13, 26, 18].

The industry standard of portfolio diversification goes back to Markowitz
[19], whose fundamental results shaped the modern portfolio theory and were
acknowledged with a Nobel prize in 1990. Approved and improved over
decades, the mean-variance approach of Markowitz is the natural benchmark
to any new development on in this field. However, despite its well-deserved
high reputation, some aspects of the mean-variance portfolio optimization
are worth an additional discussion. Measuring risk by variance and depen-
dence by correlation, this method relies on the assumption of multivariate
normal – or at least elliptical – distribution for the asset returns. This kind
of joint distribution implies that the dependence between the assets is the
same in benign and in turbulent market conditions. Unfortunately, there
are several reasons to question this assumption, such as panic sales in mar-
ket turmoils, structural dependence in some industries, and the procyclical
effect of financial regulation.

Another issue is the estimation of parameters used to calculate the Mar-
kowitz portfolio. It is well known that the estimation of covariance matrices
from historical market data can be difficult, and this bias can have a crucial
effect on the investment performance. To some extent, these technical diffi-
culties can be addressed by advanced estimation methods – see [22] and [14],
just to call a few. There is, however, a general issue that is persistent by
nature. With increasingly heavy tails, second moments of asset returns cease
to exist. In particular, this issue affects all non-Gaussian α-stable models,
which are often used to improve the modelling of return tails. In such cases,
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covariances estimates are not informative. Thus the mean-variance approach
tends to face its limitations especially in crisis periods, when financial returns
behave in extreme way. Several modifications addressing this issue have been
discussed; see, e.g., [23].

The present paper comprises an empirical study of the portfolio opti-
mization strategy proposed in [18]. It is based on the so-called Extreme
Risk Index (ERI), which quantifies the impact of heavy, dependent tails of
asset returns on the tail of the portfolio return. We apply this strategy to
the daily return data of the S&P500 stocks in the period from November
2007 to September 2011 and compare the investment performance with the
Markowitz approach. The computation of portfolio weights utilizes the data
from the six years prior to each trading day. In addition to the portfolio
value we also track some other characteristics related to portfolio structure,
degree of diversification, and transaction costs.

In the first round of our backtesting experiments we apply ERI optimiza-
tion to all S&P500 stocks with full history in our data set (444 out of 500).
In this basic setting the ERI based algorithm slightly outperforms Markowitz
in terms of annualized returns (6.8% vs. 5.8%). Both algorithms significantly
outperform the S&P500 index, which has the annualized return of −5.2%.

As next step we subdivide the stocks into three groups according to their
tail characteristics. Our results show that ERI optimization is particularly
useful for assets with heavy tails. On this asset group it clearly outperforms
Markowitz and yields an annualized return of 11.5%. This is impressive com-
pared to the 5.0% achieved with the Markowitz strategy, and even more so
because the backtesting period includes the recent financial crisis. Tracking
the portfolio turnover, we found that the ERI strategy tends to increase the
transaction costs. However, the turnover of the ERI optimal portfolio for the
group with heavy tails is lower than the turnover of the Markowitz portfolio
in the basic experiment without grouping.

Another remarkable detail is that the ERI optimization is a strategy that
ignores expected returns and constructs the portfolio only from the objective
of risk minimization. Thus there may be even more space for improvement
in ERI based strategies. Since there are also various improvements to the
implementation of the Markowitz approach, we consider it as fair to choose
very basic implementations of both methods for the first comparison. Our
results suggest that ERI optimization can be a useful alternative for portfolio
selection in risky asset classes. In some sense, this strategy seems to earn
the reward that the economic theory promises for the higher risk of heavier
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tails.
The paper is organized as follows. The alternative portfolio optimization

algorithm and its technical backgrounds are introduced in Section 2. In
Section 3 we give an outline of the data used in the backtesting study, define
the estimator for the optimal portfolio, and introduce all additional portfolio
characteristics to be tracked. Detailed results of the backtesting experiments
are presented and discussed in Section 4. Conclusions are given in Section 5.

2 Theoretical backgrounds

2.1 Asset and portfolio losses
Let Si(t) denote prices of assets Si, i = 1, . . . , N , at times t = 0, 1, . . . , T .
Focusing on the downside risk, let Xi(t) denote the logarithmic losses of the
assets Si,

Xi(t) := − log
(

Si(t)
Si(t− 1)

)
= logSi(t− 1)− logSi(t), (1)

and let X̃i(t) denote the corresponding relative losses:

X̃i(t) := Si(t− 1)− Si(t)
Si(t)

= Si(t− 1)
Si(t)

− 1.

For daily stock returns, Xi and X̃i are almost identical because X̃i is the
first-order Taylor approximation to the logarithmic loss Xi.

This approximation also extends to asset portfolios. Consider an invest-
ment strategy (static or one-period) diversifying a unit capital over the assets
S1, . . . , SN . It can be represented by a vector w of portfolio weights, w ∈
H1 := {x ∈ RN : ∑N

i=1 xi = 1}. Excluding short positions, the portfolio set
can be restricted to the unit simplex ∆N := {w ∈ [0, 1]N : ∑N

i=1wi = 1}. This
is the portfolio set we will work with from now on. Each component wi ≥ 0
corresponds to the fraction of the total capital invested in Si, and the relative
portfolio loss is equal to the scalar product wT X̃(t) := ∑N

i=1wiX̃i(t) of the
portfolio vector w and the relative loss vector X̃(t) = (X̃1(t), . . . , X̃N(t)):

N∑
i=1

wi
Si(t− 1)(Si(t− 1)− Si(t)) = wT X̃(t). (2)
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Thus the scalar product wTX(t) for the logarithmic loss vector X(t) :=
(X1(t), . . . , XN(t)) is the first-order Taylor approximation to wT X̃. This
kind of approximation is also relevant to the Markowitz approach, which is
typically applied to logarithmic returns.

2.2 Multivariate regular variation
To define the Extreme Risk Index (ERI) of the random vector X(t), we
recollect the notion ofmultivariate regular variation (MRV). A random vector
X = (X1, . . . , XN) is MRV if the joint distribution of its polar coordinates
R := ‖X‖1 := ∑N

i=1 |Xi| and Z := ‖X‖−1
1 X satisfies

L(r−1R,Z|R > r) w→ ρα ⊗Ψ, r →∞, (3)

where Ψ is a probability measure on the 1-norm unit sphere SN1 and ρα is the
Pareto distribution: ρα(s,∞) = s−α, s ≥ 1. The symbol w→ in (3) represents
the weak convergence of probability measures. Besides (3), there are several
other equivalent definitions of MRV; for more details we refer to [24]. The
parameter α > 0 is called tail index. It separates finite moments of R from
infinite ones in the sense that ERβ < ∞ for β < α and ERβ = ∞ for
β > α. In the non-degenerate case, same moment explosion occurs for all
components Xi of the random vector X. The measure Ψ is called spectral (or
angular) measure of X and describes the asymptotic distribution of excess
directions for the random vector X.

Intuitively speaking, MRV means that the radius R has a polynomial tail
and is asymptotically (i.e., for large R) independent of the angular part Z.
Moreover, if a measurable set A ⊂ RN is sufficiently far away from the origin,
i.e., if ‖x‖1 ≥ t for all x ∈ A with some large t, then

P (X ∈ sA) ' s−αP (X ∈ A) (4)

for s ≥ 1 and sA := {sx : x ∈ A}. The scaling property (4) allows to
extrapolate from large losses to extremely large ones, which even may be
beyond the range of the observed data. Approximations of this kind are the
key idea of the Extreme Value Theory (cf. [8]).

Many popular models are MRV. In particular, this is the case for mul-
tivariate t and multivariate α-stable distributions (cf. [12, 1]). In the latter
case, the stability index α is also the tail index, and the spectral measure
characterizing the multivariate stability property is a constant multiple of
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Ψ from (3). In all these models, the components Xi are tail equivalent
in the sense that P (Xi > r)/P (Xj > r) → ci,j > 0 as r → ∞ for all
i, j ∈ {1, . . . , N}. This is equivalent to the following non-degeneracy condi-
tion for the angular measure Ψ:

Ψ{x ∈ SN1 : xi = 0} < 1
for i = 1, . . . , N .

It should be noted that the MRV assumption (3) is of asymptotic na-
ture and that it is also quite restrictive. MRV models are often criticized
for excluding even slightly different tail indices αi for the components Xi.
However, this criticism also affects the multivariate t and multivariate α-
stable models, which are widely accepted in practice despite the resulting
restriction to equal αi. It is indeed true that, estimating the tail index αi for
each component Xi separately, one would hardly ever obtain identical values
for different i. But on the other hand, the confidence intervals for αi often
overlap, so that a MRV model may be close enough to reality and provide a
useful result.

The major reason why MRV models can be useful in practice is that
the practical questions are non-asymptotic. In fact, it is not the restrictive
asymptotic relation (3) that matters, but the scaling property (4). If (4) is
sufficiently close to reality in the range that is relevant to the application,
the eventual violation of (3) further out in the tails does not influence the
result too much.

Practical applications often involve heuristics of this kind. In particular,
if Si are stock prices and hence non-negative, then the relative losses X̃i are
bounded by 1. Going sufficiently far out into the tail, one must observe quite
different behaviours for the relative portfolio loss wT X̃ and the logarithmic
approximation wTX. However, with typical daily return values in the low
percentage area and values around 10% occurring only in crisis times, relative
asset losses do exhibit polynomial scaling of the type

P (X̃i > rs)
P (X̃i > r)

' s−α. (5)

Hence we are lucky to remain in the area where X and X̃ can be treated as if
they both were MRV, and the approximation wT X̃ ' wTX works reasonably
well. Thus, even though the scaling property (5) eventually breaks down if
rs gets too close to 1, it has some useful consequences in the application
range. This is confirmed by our backtesting results.
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2.3 Portfolio optimization via Extreme Risk Index
The MRV assumption (3) implies that

lim
r→∞

P (wTX > r)
P (‖X‖1 > r) = γw :=

∫
SN

1

max(0, wT z)α dΨ(z) (6)

(cf. [18] and [16, Lemma 2.2]). This implies that for any portfolio vectors
v, w ∈ ∆N and large r > 0

P (vTX > r)
P (wTX > r) '

γv
γw
. (7)

Moreover, for λ ≤ 1 close to 1 one obtains that

VaRλ(vTX)
VaRλ(wTX) '

(
γv
γw

)1/α

(8)

(cf. [18] and [17, Corollary 2.3]). Motivated by (7) and (8), the functional
γw = γw(Ψ, α) is called Extreme Risk Index (ERI). Minimizing the function
w 7→ γw, one obtains a portfolio that minimizes the loss for large ‖X‖,
i.e., in case of crisis events. In precise mathematical terms, one minimizes
VaRλ(wTX) for λ → 1. The practical meaning of this procedure is the
utilization of the scaling property (4) to obtain a portfolio that minimizes
the downside risk during a market crash. This approximate result is not
perfect, but it can be a step into the right direction.

Based on the integral representation (6), the following portfolio optimiza-
tion approach was proposed in [18]:

• Estimate γw by plugging appropriate estimates for α and Ψ into (6);

• Estimate the optimal portfolio by minimizing the resulting estimator
γ̂w with respect to w.

The general properties of the optimization problem are discussed in [18],
[15], and [17]. In particular, it is known that the function w 7→ γ̂w is convex
for α > 1. Thus, given that the expectations of Xi are finite, a typical
optimal portfolio would diversify over multiple assets. The consistency of
the plug-in estimator γ̂w and of the resulting estimated optimal portfolio w∗
in a strict theoretical sense is studied in [18, 15, 16].
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3 Outline of the backtesting study

3.1 The data
The contribution of the present paper is a backtesting study of the ERI based
portfolio optimization approach on real market data. Our data set comprises
all constituents of the S&P500 market index that have a full history for
the period of 10 years back from 19-Oct-2011. These are 444 stocks out of
500. For each date of the backtest period 19-Oct-2007 to 19-Oct-2011 the
estimation of the optimal portfolio is based on the 1500 foregoing observations
– approximately 6 years of history – for all stocks back in time. For example,
the optimal portfolio for 19-Oct-2007 is estimated from the stock price data
for the period (19-Oct-2001 to 18-Oct-2007).

Our computations are based on the logarithmic losses Xi(t) as defined
in (1). As already mentioned above, we exclude short positions. This basic
framework is most natural for the comparison of portfolio strategies. The
asset index i varies between 1 and N = 444, and the time index t takes
values between 1 and T = 2509 (1500 days history + 1009 days in the
backtest period) To estimate α and Ψ, we transform the (logarithmic) loss
vectors X(t) into polar coordinates

(R(t), Z(t)) = (||X(t)||1, ||X(t)||−1
1 X(t)), t = 1, . . . , T.

3.2 The estimators and the algorithms
We estimate α by applying the Hill estimator to the radial parts R(t):

α̂ = k∑k
j=1 log(R(j),t/R(k+1),t)

(9)

where t > 1500 and R(1),t ≥ . . . ≥ R(1500),t is the descending order statistic
of the radial parts R(t− 1500), . . . , R(t− 1) and k = 150. That is, out of the
1500 data points in the historical observation window t− 1500, . . . , t− 1 we
use the 10% with largest radial parts. Going back to [10], the Hill estimator
is the most prototypical approach for the estimation of the tail index α. The
choice of k determines which observations are assumed to describe the tail
behaviour. Another important criterion for the choice of k is the trade-off
between the bias, which typically increases for large k, and the variance of
the estimator, which increases for small k. In addition to the static 10%-rule
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we also consider the adaptive approach proposed in [20]. See [25, 7, 3] for
further related methods.

As proposed in [18], we estimate Ψ by the empirical measure of the an-
gular parts from observations with largest radial parts. More specifically,
we use the same 10% data points (the so-called tail fraction) in the moving
observation window that were used to obtain α̂. The resulting estimator γw
is

γ̂w(t) = 1
k

k∑
j=1

max(0, wTZ(ij,t))α̂,

where ij,t is the sample index of the order statistic R(j),t in the full data set:

R(j),t = R(ij,t), j = 1, . . . , 1500, t = 1501, . . . , T.

The resulting estimate of the optimal portfolio w∗(t) on the trading day
t is the portfolio vector w ∈ ∆N that minimizes γ̂w(t):

γ̂w∗(t) = min
w∈∆N

γ̂w(t).

Finally, the estimated optimal portfolio w∗(t) is used to compose the
portfolio for the trading day t. The resulting (relative) portfolio return is
calculated by substituting w∗(t) in (2).

The procedure outlined above is repeated for all trading days t > 1500.
For instance, the optimal portfolio for 22-Oct-2007 is based on the observa-
tion window from 29-Oct-2001 to 21-Oct-2007, whereas for 23-Oct-2007 we
use the observation window from 30-Oct-2001 to 22-Oct-2007, and so on.

The benchmark for this portfolio optimization algorithm is the Markowitz
approach applied to logarithmic asset returns, with the same moving obser-
vation window of 1500 points and empirical estimators for the covariance
matrix. Similarly to the ERI approach, our implementation of the Markowitz
approach chooses the portfolio with minimal risk, i.e. with minimal variance.
There are two reasons for this choice. On the one hand, ERI minimization
is also a pure risk minimization procedure, so that ignoring estimates of the
expected return in the Markowitz benchmark increases the fairness of com-
petition. On the other hand, computation of a “real” Markowitz efficient
portfolio would require some target return, target risk, or target risk-return
ratio. Thus the performance of this portfolio and the comparison results can
be strongly influenced by the target parameters.
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4 Empirical results

4.1 Basic setting without sub-groups
We start with the most crude application of the ERI minimization strat-
egy, estimating the tail index from the radial parts of the random vector
(X1, . . . , X444) of all stock retruns involved in our study. The resulting es-
timate α̂ = α̂(t) varies in time, but it is applied to all N = 444 stocks as
if their joint distribution were MRV. This is a very courageous assumption,
but even in this case we see some useful results. A first impression of these
results is given in Figure 1, where the value of the ERI optimal portfolio is
compared to the performance of the Markowitz approach and to the S&P500
index. The graphic suggests that the value of the ERI based portfolio is more
stable during market crashes. On the other hand, the Markowitz portfolio
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Portfolio Optimization Backtest

 

 

ERI

S&P 500

Markowitz

Figure 1: Portfolio optimization backtest for the ERI minimization strategy
under the assumption that all all stock returns have the same tail index α.
The resulting portfolio value of the ERI strategy and its peers (Markowitz
approach and S&P500) is scaled to 100 for the first date of the backtest
period.

seems to catch up again during recovery periods. This may be explained by
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the fact that the ERI approach only looks at the potential losses, whereas
the Markowitz approach also tries to assess potential gains. Surprisingly,
the overall result is similar, and it seems that the ERI strategy – even in its
crudest implementation – has a potential to stabilize the portfolio value in
crises.

ERI Markowitz S&P500

CR = Cumulative Return 30.07 % 25.48% -19.38%

AR = Annualized Return 6.76 % 5.81% -5.22%

AS = Annualized Sharpe 0.4715 0.3469 -0.0462

AST = Annualized STARR0.95 0.1926 0.1410 -0.0187

MD = Max Drawdown 46.61 % 58.61% 56.34%

AC = Average Concentration Coefficient 8.69 127.22 444

AT = Average Turnover 0.0400 0.0272 N/A

PCA= First PCA factor Explained Variance 31.32% 35.48% N/A

Table 1: Backtest statistics for the ERI minimization strategy in the basic
setting (applied to all stocks at once) vs. Markowitz approach and S&P500.

Further characteristics of the basic ERI approach compared to Markowitz
and S&P500 are shown in Table 1. The numbers show that the ERI strategy
indeed outperforms Markowitz in many respects. In particular, the ERI
optimal portfolio gives higher cumulative returns and a higher Sharpe ratio,
whereas the maximal drawdown is lower than with the Markowitz strategy.
An extension of the Sharpe ratio based on the Expected Shortfall (ES) is the
STARR ratio (cf. [23]):

STARRλ(Z) := E(Z − rf )
ESλ(Z − rf )

where rf is the risk-free interest rate and λ is a confidence level close to 1. The
backtested STARR is also higher for the ERI strategy than for the Markowitz
approach. The computation of the Sharpe and STARR ratios is based on
empirical estimators for the expectation and for the Expected Shortfall. In
particular, the estimate of ES0.95 over the backtesting period of 1009 days is
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based on 51 largest observations of the portfolio loss. Since a risk free rate
on a daily scale is both difficult to determine and negligibly small, we set
rf = 0.

To measure the portfolio stock concentration, we compute the Concen-
tration Coefficient (CC). It is defined as

CC(t) :=
(

n∑
i=1

w2
i (t)

)−1

(10)

where wi(t) is the relative weight of the asset i in the investment portfolio at
time t. Conceptually, this approach is well known in measures of industrial
concentration, where it is called as the Herfindahl–Hirschman index (HHI).
Brandes Institute introduced the concentration coefficient by inverting the
HHI.

The CC of an equally weighted portfolio is identical with the number
of assets. As the portfolio becomes concentrated on fewer assets, the CC
decreases proportionally. The numbers in Table 1 indicate that the ERI
strategy is quite selective, whereas the number of stocks in the Markowitz
portfolio is on the same scale with the total number of assets.

To assess the level of diversification provided by each optimization algo-
rithm, we performed Principal Component Analysis (PCA) over the returns
of all stocks relevant to the corresponding portfolios. We defined relevance
via portfolio weights assigned by the algorithms and restricted PCA to the
stocks with portfolio weights higher than 0.01%. Then we estimated the por-
tion of the sample variance explained by the first PCA factor and averaged
these daily estimates over the backtesting period. The lower the average
portion of sample variance explained by the first PCA factor, the higher is
the portfolio diversification. The numbers in Table 1 are quite surprising:
despite the significantly higher concentration, the diversification level of the
ERI based portfolio is higher than that of the Markowitz strategy.

The only performance characteristic where ERI stays behind Markowitz is
the portfolio turnover, which is a proxy to the transaction costs of a strategy.
We use a definition of portfolio turnover that is based on the absolute values
of the rebalancing trades:

τ(t) :=
n∑
i=1
|wi(t)− wi(t−)|

where wi(t) is the (relative) portfolio weight of the asset i after rebalancing
(according to the optimization strategy) at time t, and wi(t−) is the portfolio
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weight of the asset i before rebalancing at time t, i.e., at the end of the trading
period t − 1. Averages of τ(t) over all t in the backtesting period are given
in Table 1. The average turnover of the ERI optimal portfolio (0.0400) is
higher than that of the Markowitz portfolio (0.0272).

Some technical details. For calculation of the portfolio value we used the
relative returns and do not expect much difference when using logarithmic
approximations. In the calculation of STARR and Sharpe ratio we do not
use risk free rates since these are on a daily scale very small and thus not
influence the ratio calculations. For the estimation of ES in STARR we use
the average of all sample values smaller than 95% of the VaR of the sample.
Our backtest period is of length 1009 and thus n = 51.

4.2 Grouping the stocks with similar α
In the previous section we treated all stocks as if their (logarithmic) returns
Xi had the same tail index α. This simplification can influence the quantita-
tive and qualitative results. To obtain a better insight, we divide the stocks
into three different groups with respect to their individual α and compare the
performance of the portfolio optimization strategies on each of these groups.
Figure 2 shows the histogram of the estimates of the tail index α for different
stocks on the first day of the backtesting period (t = 1501).

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2
0
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α

Figure 2: Estimated values of the tail index α for different stocks on the first
day of the backtesting period
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We consider the following groups:

1. all stocks with α ≤ 2.2

2. all stocks with α ∈ (2.2, 2.6)

3. all stocks with α ≥ 2.6

The first group contains 134, the second 243, and the third one 67 stocks.
These groups remained static during the backtesting period. That is, the
estimated α on the first day of the backtesting period determines in which
group each stock is placed.

Selection from the set of stocks with α ≤ 2.2
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Figure 3: Portfolio optimization backtest. Stocks with α ≤ 2.2

The backtesting results on stocks with tail index α ≤ 2 are summarized in
Figure 3 and Table 2. In this case ERI minimization clearly outperforms the
Markowitz approach and yields an impressive annualized return of 11.48%.
This is more than the double of the 4.99% achieved with the Markowitz
portfolio. The Sharpe and STARR ratios of the ERI strategy are also clearly
higher than with Markowitz. The concentration of both portfolios is on the
same scale, but still a bit higher for the ERI based one. Similarly to the
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ERI Markowitz S&P500

CR = Cumulative Return 54.70% 21.58% -19.38%

AR = Annualized Return 11.48% 4.99% -5.22%

AS = Annualized Sharpe 0.6623 0.3546 -0.0462

AST = Annualized STARR0.95 0.2695 0.1430 -0.0187

MD = Max Drawdown 53.67% 48.03% 56.34%

AC = Average Concentration Coefficient 7.4499 10.9712 134

AT = Average Turnover 0.0269 0.0154 N/A

PCA= First PCA factor Explained Variance 35.02% 33.33% N/A

Table 2: Backtest statistics. Stocks with α ≤ 2.2

basic backtesting set-up on all S&P500 stocks, the ERI strategy produces a
higher portfolio turnover (0.0269 vs. 0.0154 with Markowitz). However, both
values are lower than the average turnover of the Markowitz portfolio in the
basic setting (0.0272).

These results suggest that the ERI optimal strategy is particularly useful
for optimizing portfolios of stocks with heavy tails, in our case of 134 out of
444 stocks. This is to be expected since the ERI methodology was developed
for heavy-tailed MRV models. Beyond that, there is also a statistical reason
for the inferior performance of the Markowitz approach in the present setting.
Estimation of covariances becomes increasingly difficult for heavier tails, and
for α < 2 the covariances (and hence correlations) do not even exist. Thus
empirical covariances in the Markowitz portfolio can push the investor into
the wrong direction.

Selection from the set of stocks with α ∈ (2.2, 2.6)

If the stock selection is restricted to those with α between 2.2 and 2.6, the
annualized return of the ERI based portfolio (7.93%) is somewhat above the
Markowitz benchmark (6.96%). While the returns are on the same scale, the
volatility of the Markowitz portfolio is much higher. Thus ERI optimization
clearly outperforms Markowitz in terms of Sharpe ratio, STARR (both higher

15
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Figure 4: Portfolio optimization backtest. Stocks with α ∈ (2.2, 2.6)

ERI Markowitz S&P500

CR = Cumulative Return 35.87% 31.00% -19.38%

AR = Annualized Return 7.93% 6.96% -5.22%

AS = Annualized Sharpe 0.5448 0.3711 -0.0462

AST = Annualized STARR0.95 0.2306 0.1517 -0.0187

MD = Max Drawdown 45.56% 57.70% 56.34%

AC = Average Concentration Coefficient 7.3987 1.0000 243

AT = Average Turnover 0.0249 0.0000 N/A

PCA= First PCA factor Explained Variance 32.78% 100.00% N/A

Table 3: Backtest statistics. Stocks with α ∈ (2.2, 2.6)
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for ERI), and maximal drawdown (lower for ERI). It is somewhat astonish-
ing that the PCA of Markowitz is 100% i.e. the Markowitz min variance
algorithm selects only one stock.

Selection from the set of stocks with α ≥ 2.6
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Figure 5: Portfolio optimization backtest. Stocks with α ≥ 2.6

For stocks with α > 2.6 (and hence lightest tails), the performance of the
ERI minimization strategy stays behind Markowitz in terms of annualized
return, Sharpe ratio, STARR, and turnover. The maximal drawdown and the
diversification level in terms of PCA is similar for both competing strategies.
The portfolio concentration is on the same level, and slightly higher for the
ERI optimal portfolio.

Thus the impressive advantage of the ERI minimization strategy seems to
be restricted to stocks with pronounced heavy-tail behaviour. This advantage
turns into near parity for stocks with moderately heavy tails. For light-tailed
stocks the Markowitz strategy yields much better results. These findings per-
fectly accord with model assumptions underlying these two methodologies:
Markowitz uses covariances, and ERI minimization is particularly applicable
in cases when covariances do not exist or cannot be estimated reliably. On
the other hand, ERI minimization strongly relies on the estimation of the
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ERI Markowitz S&P500

CR = Cumulative Return 3.47% 13.62% -19.38%

AR = Annualized Return 0.85% 3.23% -5.22%

AS = Annualized Sharpe 0.1397 0.2636 -0.0462

AST = Annualized STARR0.95 0.0581 0.1114 -0.0187

MD = Max Drawdown 42.58% 43.43% 56.34%

AC = Average Concentration Coefficient 3.4817 4.4715 67

AT = Average Turnover 0.0165 0.0091 N/A

PCA= First PCA factor Explained Variance 54.92% 52.43% N/A

Table 4: Backtest statistics. α ≥ 2.6

tail index α, which is known to become increasingly difficult for lighter tails
– see, e.g., [8].

4.3 Backtesting with an alternative estimator for α
To assess the suitablity of the estimator we used for α, we repeated our back-
testing experiments with another estimation approach. The Hill estimator
in (9) uses the tail fraction size k as a parameter. The foregoing results are
based on a static 10% rule, i.e. k = 150. It is well known that the choice
of the tail fraction size k can have a strong influence on the resulting esti-
mates – see, e.g., [8]. Thus, as an alternative to the static 10% rule, we tried
the recent adaptive approach by Nguyen and Samorodnitsky [20], which in-
volves sequential statistical testing for polynomial tails. The results of this
backtesting study are outlined below.

Optimization over the entire set of stocks

Figure 6 and Table 5 represent the basic setting without grouping the stocks
according to the estimated tail index α. It is a bit surprising that the adap-
tive choice of the tail fraction size k does not improve the performance of the
ERI based strategy. The annualized return is significantly lower than with
the static 10% rule. The overall result clearly stays behind the Markowitz

18
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Figure 6: Alternative estimator α̂: portfolio optimization backtest in the
basic set-up (on all S&P500 stocks)

ERI Markowitz S&P500

CR = Cumulative Return 11.76% 25.48% -19.38%

AR = Annualized Return 2.81% 5.81% -5.22%

AS = Annualized Sharpe 0.2360 0.3469 -0.0462

AST = Annualized STARR0.95 0.0939 0.1410 -0.0187

MD = Max Drawdown 51.39% 58.61% 56.34%

AC = Average Concentration Coefficient 64.33 127.22 444

AT = Average Turnover 0.0381 0.0272 N/A

PCA= First PCA factor Explained Variance 46.48% 35.48% N/A

Table 5: Alternative α̂: backtest statistics in the basic set-up.
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benchmark. The only aspect where ERI is still better is the maximal draw-
down, but it cannot compensate for the lower overall return. The reason for
this outcome is the lower value of the tail fraction size k that is selected by
the adaptive approach. Typical values are about 25, and all values are lower
than 150 that come from the static 10% rule. Thus the adaptive approach
looks too far in the tail, where the scaling of excess probabilities may already
be different from the scaling in the application range.

Grouping the stocks according to the estimated α

As next step, we grouped the stocks according to their estimates. On av-
erage, the Nguyen–Samorodnitsky estimator gave higher values of α, i.e., it
indicated lighter tails than the static 10% rule. Therefore we chose a dif-
ferent grouping of the α values: α ≤ 2.7, α ∈ (2.7, 4.5), and α ≥ 4.5. The
backtesting results are presented in Table 6.

In all three cases the annualized return of the ERI strategy is lower than
that of the Markowitz portfolio. Interestingly, the worst performance of the
ERI based strategy occurs in the middle group, and not in the group with
lightest tails. Possible explanations here may be the different composition
of the three groups (heavy, moderate, or light tails) and also the different
values of α used in the portfolio optimization algorithm.

All in all we can conclude that the adaptive choice of the tail fraction
size k can be problematic in real applications. This can be explained by the
tail orientation of the Nguyen–Samorodnitsky approach. Roughly speaking,
it tests for polynomial tails and chooses the largest value of k for which the
test is still positive. While this is perfectly reasonable for data from an exact
MRV model, there are at least two reasons why this method can fail on real
data. First, if the data fails to satisfy the MRV assumption far out in the
tail, the subsequent testing for small values of k can be misleading. The
second reason was already discussed in Section 2.2: If the polynomial scaling
changes for different severities, then the scaling behaviour of the distribution
in the application area can differ from what is suggested by the true, but
too asymptotic tail index. Our backtesting results show that these issues are
highly relevant in practice.
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ERI Markowitz S&P 500
CR 11.33% 18.75% -19.38%
AR 2.71% 4.37% -5.22%
AS 0.2317 0.3260 -0.0462
AST 0.0958 0.1351 -0.0187
MD 47.76% 45.79% 56.34%
AC 9.0194 10.0857 107
AT 0.0385 0.0148 N/A
PCA 43.65% 30.87% N/A

(a) α ≤ 2.7
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ERI Markowitz S&P 500
CR 17.67% 31.97% -19.38%
AR 4.14% 7.15% -5.22%
AS 0.3015 0.4578 -0.0462
AST 0.1202 0.1852 -0.0187
MD 46.26% 49.93% 56.34%
AC 48.1646 28.0871 252
AT 0.0384 0.0201 N/A
PCA 48.29% 32.56% N/A

(b) α ∈ (2.7, 4.5)
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ERI Markowitz S&P 500
CR 15.23% 17.02% -19.38%
AR 3.59% 3.99% -5.22%
AS 0.2699 0.2991 -0.0462
AST 0.1155 0.1233 -0.0187
MD 46.43% 48.29% 56.34%
AC 6.7252 3.9777 85
AT 0.0326 0.0113 N/A
PCA 58.04% 45.34% N/A

(c) α ≥ 4.5

Table 6: Alternative α̂: backtest statistics on stocks (CR = Cumulative
Return; AR = Annualized Return; AS = Annualized Sharpe; AST = An-
nualized STARR0.95; MD = Max Drawdown; AC = Average Concentration
Coefficient; AT = Average Turnaover; PCA = First PCA factor Explained
Variance)
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4.4 Behaviour of portfolio characteristics over time
We conclude our analysis by a comparison of the ways the competing port-
folios behave over time. This allows for deeper insight and allows to discover
some more points of difference.

Concentration and portfolio composition

We start with the development of the concentration coefficient (CC) intro-
duced in (10). Its behaviour over time in the basic set-up (no grouping of
stocks according to α) is shown in Figure 7. This graphic shows that the
number of stocks in the Markowitz portfolio is permanently about 10 times
higher than in the ERI optimal portfolio. The CC oscillation pattern sug-
gests that the ERI based portfolio is more volatile in the crisis and much less
volatile in benign periods.
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Figure 7: Concentration Coefficient in the backtesting experiment on all
S&P500 stocks. Total set of stocks with 10% threshold alpha estimation.

This impression is confirmed by Figure 8. The dynamics of the Markowitz
Portfolio in Figure 9 is similar, but the difference between the crisis and
recovery period is somewhat weaker. All in all it seems that the Markowitz
portfolio undergoes many small changes, whereas the changes in the ERI
optimal portfolio are less but much stronger.
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Figure 8: ERI optimal weights in backtesting on all S&P500 stocks
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Figure 9: Weights of the Markowitz portfolio in backtesting on all S&P500
stocks
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Turnover

The impression about stronger changes in the ERI portfolio accords with
the findings on the average portfolio turnover in Sections 4.1 and 4.2. The
development of the turnover coefficient over time is shown in Figure 10. The
larger the spikes in the turnover pattern, the greater the instantaneous port-
folio shift. The difference between the ERI minimization and the Markowitz
portfolio in the crisis period is remarkable. The turnover pattern of the
Markowitz portfolio points to a lot of small portfolio changes that lead to
permanent, but moderate trading activity. The pattern of the ERI based
portfolio has a lower level of basic activity, but much greater spikes corre-
sponding to large portfolio shifts. Thus, if carried out immediately, the re-
structuring of the ERI optimal portfolio requires more liquidity in the market.
This disadvantageous feature can be tempered by splitting the transactions
and distributing them over time. The tradeoff between fast reaction to events
in the market and liquidity constraints is an interesting topic for further re-
search.
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Figure 10: Portfolio turnover

Diversification measured by PCA

The development of the first PCA factor over time is shown in Figure 11.
The amount of portfolio variance that can be explained by the first PCA
factor increases in the months after the default of Lehman Brothers to a new
level. This shows that the recent financial crisis has changed the perception
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Figure 11: Variance explained by the first PCA factor

of dependence in the market and thus increased the dependence between the
stocks. Ranging below 25% before the crisis, the first PCA factors of both
strategies are typically above 35% afterwards. This chart indicates a change
in the intrinsic market dynamics. The stronger co-movements of S&P500
stocks reflect the new perception of systemic risk. As a consequence, the
diversification potential in the after-crisis period is lower than in the time
before the crisis.

Most of the time, the first PCA factor of the ERI optimal portfolio ranges
somewhat below that of the Markowitz portfolio. Thus we can conclude that
ERI optimization brings more diversity into the portfolio than the mean-
variance approach. To the use of PCA: There is one exception to this rule:
in February 2009, the first PCA factor of the ERI optimal portfolio peaks out
to 100%. It corresponds to a single day when the ERI strategy selects only
one stock for the investment portfolio. On this remarkable day, the first PCA
factor is obviously identical with the investment portfolio. Recalculations let
to slightly different weights but to almost identical portfolio returns. Results
of this kind can be avoided in practice by appropriate bounds on portfolio
restructuring.

Tail index estimates

In addition to the backtesting studies where the tail index α is estimated
for the radial part of the random vector X, we also estimated α for each
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Figure 12: Estimated tail index α for the radial part of S&P500 stocks and
three subgroups
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Figure 13: Estimated tail index α for the S&P500 stocks
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stock separately. The estimated values of α for the radial parts are shown in
Figure 12, and the development of α estimates for single stocks is shown in
Figure 13. Beginning in summer 2008, there is a common downside trend for
all stocks, i.e. all return tails become heavier in the crisis time. This trend
stops in spring 2009. The missing recovery since then can be explained by
the width of the estimation window. Based on the foregoing 1500 trading
days, our estimators remain influenced by the crisis for 6 years. This effect
is visibile in both figures. In addition to that, Figure 12 shows that after
the crisis the estimated values of α in all three sub-groups are very close to
each other and even change their ordering compared to the pre-crisis period:
the group with lowest α before crisis does not give the lowest α after the
crisis. These effects may be explained by the strong influence of extremal
events during the crisis on the estimates in the after-crisis period. As the
historical observation window includes 1500 days, the crisis events do not
disappear from this window until the end of the backtesting period. It seems
that the estimated values of α tend to ignore the recovery of the stocks in
the after-crisis period. This may be one more explanation to the different
performance of the ERI strategy in the different stock groups. This effect
can be tempered by downweighting the observations in the historical window
when they move away from the present time. The choice of this weighting
rule goes beyond the scope of this paper and should be studied separately.

5 Conclusions
Our backtesting results suggest that the Extreme Risk Index (ERI) could
be useful in practice. Comparing very basic implementations of the ERI
methodology and the Markowitz approach, we obtained very promising re-
sults for stocks with heavy tails. Tailored to such assets, the ERI optimal
portfolio not only outperforms Markowitz, but it also yields an annualized
return of 11.5% over 4 years including the crisis. This should outweigh the
higher transaction costs caused by the ERI based approach. Thus, taking
into account the special nature of diversifications for heavy-tailed asset re-
turns, the ERI strategy may increase the reward for the corresponding risks.

Our study also shows that the Markowitz approach can catch up with
ERI optimization in some cases, especially when applied to stocks with lighter
tails. Therefore a combined algorithm switching between Markowitz and ERI
depending on the volatility of the assets may also be a good choice. Other
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improvements of the ERI methodology may be achieved by downweighting
the crisis events when they reach the far end of the historical observation win-
dow and by smoothing the pattern of trading activities. All these questions
should be subject to further research.
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