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We review the distributional transform of a random variable, some of its ap-
plications, and some related multivariate distributional transformations. The dis-
tributional transform is a useful tool, which allows in many respects to deal with
general distributions in the same way as with continuous distributions. In particu-
lar it allows to give a simple proof of Sklar’s Theorem in the general case. It has
been used in the literature for stochastic ordering results. It is also useful for an
adequate definition of the conditional value at risk measure and for many further
purposes. We also discuss the multivariate quantile transform as well as the mul-
tivariate extension of the distributional transform and some of their applications.
In the final section we consider an application to an extension of a limit theorem
for the empirical copula process, also called empirical dependence function, to gen-
eral not necessarily continuous distributions. This is useful for constructing and
analyzing tests of dependence properties for general distributions.
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1 Introduction

With the emergence of a need for multivariate dependence modelling in math-
ematical finance Sklar’s Theorem from 1959 got a revival in the last ten years
or so, in particular in the literature on risk management and more generally
in mathematical economics and in mathematical finance modelling. The idea
of Sklar’s Theorem is to represent an n-dimensional distribution function F
in two parts, the marginal distribution functions Fi and the copula C, de-
scribing the dependence part of the distribution. Both of them are connected
by the formula

F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)). (1)

In the first part of this paper we give a simple proof of Sklar’s The-
orem. The proof is based on the distributional transform of real random
variables which is discussed in Section 2. This transform allows to treat
general distributions including discrete parts in much the same way as con-
tinuous distributions. It has been used in statistics for a long time for the
construction of randomized tests. An early source of this transform is the
statistics book by Ferguson (1967). This transform and its extensions were
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used a lot since the early eighties in connection with stochastic ordering, and
in several papers and talks the connection to Sklar’s Theorem was indicated
(see e.g. Rüschendorf (1981) or the recent survey paper Rüschendorf (2005).
It seems however useful to present this connection in more detail and explic-
itness. We also review some applications of the distributional transform to
stochastic ordering and to an adequate definition of the conditional value at
risk measure.

In the second part of the paper we introduce and discuss the multivari-
ate extension of the distributional transform and of the quantile transform.
These lead to regression type representations of random vectors and are use-
ful for identification problems and various statistical test problems. For the
detection of dependence properties, both transforms serve different purposes.

In the final section we discuss an application of the distributional trans-
form to extend limit theorems for the empirical copula process, also called
empirical dependence function or multivariate rank order process, to general
distributions. Several test statistics of dependence properties can be repre-
sented as functionals of this empirical copula process and thus their limiting
distribution can be obtained from this convergence theorem.

2 The distributional transform and Sklar’s
theorem

On a probability space (Ω, A, P ) let X be a real random variable with distri-
bution function F and let V ∼ U(0, 1) be uniformly distributed on (0, 1) and
independent of X. The modified distribution function F (x, λ) is defined by

F (x, λ) := P (X < x) + λP (X = x). (2)

We define the (generalized) distributional transform of X by

U := F (X, V ). (3)

An equivalent representation of the distributional transform is

U = F (X−) + V (F (X)− F (X−)). (4)

An early source for this transform is the statistics book of Ferguson (1967).
For continuous d.f.s F , F (x, λ) is identical to F (x) and it is well-known
that U = F (X) d= U(0, 1). This property holds true for the distributional
transform in general and the quantile transform is exactly the inverse of the
distributional transform. Here the inverse of a distribution function F is
defined as usual by

F−1(u) = inf{x ∈ R1 : F (x) ≥ u}, u ∈ (0, 1).

For the sake of completeness we give a proof of this simple but interesting
result.
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Proposition 2.1 (Distributional transform) Let U be the distributional
transform of X as defined in (3). Then

U
d= U(0, 1) and X = F−1(U) a.s. (5)

Proof: For 0 < α < 1 let q−α (X) denote the lower α-quantile, that is q−α (X) =
sup{x : P (X ≤ x) < α}. Then F (X,V ) ≤ α if and only if

(X, V ) ∈ {(x, λ) : P (X < x) + λP (X = x) ≤ α}.
If β := P (X = q−α (X)) > 0 and with q := P (X < q−α (X)) this is equivalent
to {X < q−α (X)} ∪ {X = q−α (X), q + V β ≤ α}. Thus we obtain

P (U ≤ α) = P (F (X, V ) ≤ α) = q + βP (V ≤ α− q

β
) = q + β

α− q

β
= α.

If β = 0, then

P (F (X,V ) ≤ α) = P (X < q−α (X)) = P (X ≤ q−α (X)) = α.

By definition of U ,
F (X−) ≤ U ≤ F (X). (6)

For any u ∈ (F (x−), F (x)] it holds that F−1(u) = x. Thus by (6) we
obtain that F−1(U) = X a.s. 2

The distributional transform has a lot of interesting consequences. It
implies that in many respects the case of discrete or mixed type distributions
does not need some extra consideration compared to the case of continuous
distributions. In particular it implies a simple proof of Sklar’s Theorem.

Theorem 2.2 (Sklar’s Theorem) Let F ∈ F(F1, . . . , Fn) be an n-dimen-
sional distribution function with marginals F1, . . . , Fn. Then there exists a
copula C(i.e. an n-dimensional distribution function on [0, 1]n with uniform
marginals) such that

F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)). (7)

Proof: Let X = (X1, . . . , Xn) be a random vector on a probability space
(Ω, A, P ) with distribution function F and let V be independent of X and
uniformly distributed on (0, 1), V ∼ U(0, 1). Considering the distributional
transforms Ui := Fi(Xi, V ), 1 ≤ i ≤ n, we have by Proposition 2.1 Ui ∼
U(0, 1), and Xi = F−1

i (Ui) a.s., 1 ≤ i ≤ n. Thus defining C to be the
distribution function of U = (U1, . . . , Un) we obtain

F (x) = P (X ≤ x) = P (F−1
i (Ui) ≤ xi, 1 ≤ i ≤ n)

= P (Ui ≤ Fi(xi), 1 ≤ i ≤ n) = C(F1(x1), . . . , Fn(xn)),

i.e. C is a copula of F . 2
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Remark 2.3 a) Copula and dependence. From the construction of the
distributional transform it is clear that the distributional transform is not
unique in the case when the distribution has discrete parts. Different
choices of the randomizations V at the jumps or in the components, i.e.
choosing Ui = Fi(Xi, Vi), may introduce artificial local dependence be-
tween the components of a random vector on the level of the copula. From
the copula alone one does not see whether some local positive or negative
dependence is a real one or just comes from a choice of the copula. For
dimension n = 2 the copula in Figure 1 could mean a real switch of local
positive and negative dependence for the original distribution, but it might
also be an artefact resulting from the randomization in case the marginals
are e.g. both two point distributions while the joint distribution in this
case could be even comonotone. Thus the copula information alone is not
sufficient to decide dependence properties.

1
2

1
2

1

1

Figure 1: Copula of uniform distribution on line segments

b) Stochastic ordering. The construction of copulas based on the distribu-
tional transform as in the proof of Sklar’s theorem above has been used in
early papers on stochastic ordering. The following typical example of this
type of results is from Rüschendorf (1981, Proposition 7).

Let Fi, Gi be one-dimensional d.f.s with Fi ≤ Gi, 1 ≤ i ≤ n. Then
for any F ∈ F(F1, . . . , Fn) there exists an element G ∈ F(G1, . . . , Gn)
with G ≤st F and conversely for any G ∈ F(G1, . . . , Gn) there exists
an F ∈ F(F1, . . . , Fn) with F ≤st G. Here ≤st denotes multivariate
stochastic ordering.

The proof in that paper uses the distributional transform Ui = Fi(Xi, V )
of a random vector X ∼ F ∈ F(F1, . . . , Fn). The distribution function of
U = (U1, . . . , Uk) is a copula of F . Then the vector Y is defined by the
quantile transforms of the components Y = (G−1

1 (U1), . . . , G−1
n (Un)). By

construction Y ∼ G ∈ F(G1, . . . , Gn) and from the assumption we obtain
Y ≤ X pointwise and thus G ≤st F .
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c) Conditional value at risk. A recent application of the distributional
transform is to risk measures. It is well-known that the conditional tail
expectation

TCEα(X) := −E(X | X ≤ qα), (8)

where qα is the lower α-quantile of the risk X, does not define a coherent
risk measure except when restricted to continuous distributions. This de-
fect can be overcome by using the distributional transform U = F (X, V )
and defining the modified version, which we call conditional value at risk
(CVRα)

CVRα(X) = −E(X | U ≤ α). (9)

By some simple calculations (see Burgert and Rüschendorf (2006) one
sees that

CVRα(X) = − 1
α

[EX1(X < qα) + qα(α− P (X < qα)] = ESα(X). (10)

Thus the more natural definition of CVRα coincides with the well estab-
lished expected shortfall risk measure ESα(X) which is a coherent risk
measure. As consequence the expected shortfall is represented as condi-
tional expectation and our definition in (9) of the conditional value at risk
seems to be appropriate for this purpose.

3 The multivariate distributional transform
and the quantile transform

The distributional transform F (X, V ) as well as the inverse quantile trans-
form F−1(U) have been generalized to the multivariate case. Let X =
(X1, . . . , Xd) be a random vector with distribution function F and let
V1, . . . , Vd be iid U(0, 1)-distributed random variables. Then the multivariate
quantile transform Y := τ−1

F (V ) is defined recursively as

Y1 := F−1
1 (V1)

Yk := F−1
k|1,...,k−1(Vk | Y1, . . . , Yk−1), 2 ≤ k ≤ d,

(11)

where Fk|1,...,k−1 denote the conditional distribution functions.
The multivariate quantile transform was introduced in O’Brien (1975),

Arjas and Lehtonen (1978), and Rüschendorf (1981). The basic result is that

Y = τ−1
F (V ) is a random vector with d.f. F. (12)

This construction method has immediate applications to stochastic ordering
results. If F and G are two d-dimensional d.f.s, then

τ−1
F ≤ τ−1

G [λ\d] implies F ≤st G. (13)
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(see Rüschendorf (1981). Pointwise ordering of the coupling construction by
the multivariate quantile transform implies stochastic ordering. (13) implies
many of the sufficient conditions known for stochastic ordering ≤st.

In contrast to the one-dimensional case there are however many differ-
ent coupling constructions which are natural and useful. The construction
in (11) depends on the ordering of the coordinates. Choosing a different
ordering according to some permutation yields a different stochastic order-
ing condition in (13). The quantile transform (11) implies in particular a
regression representation of the random vector Y ∼ F as

Y2 = f2(Y1, V2), Y3 = f3(Y1, Y2, V3)), . . . , Yd = fd(Y1, . . . , Yd−1, Vd)
(14)

representing Yk as function of the past Y1, . . . , Yk−1 and of some innovation
Vk. A classical subject of probability theory is to establish a functional
characterization as in (14) of various subclasses of stochastic processes like
Markov chains, m-dependent sequences etc. (see Rüschendorf and de Valk
(1993) for some of these directions).

The multivariate distributional transform was introduced in the general
case in Rüschendorf (1981). The special case of absolutely continuous condi-
tional distribution functions was already established much earlier by Rosen-
blatt (1952). Let X be a d-dimensional random vector and let V1, . . . , Vd be
iid U(0, 1)-distributed random variables, V = (V1, . . . , Vd). Then define for
λ = (λ1, . . . , λd) ∈ [0, 1]d

τF (x, λ) := (F1(x1, λ1), F2(x2, λ2 | x1), . . . , Fd(xd, λd | x1, . . . , xd−1)), (15)

where

F1(x1, λ1) = P (X1 < x1) + λ1P (X1 = x1),

Fk(xk, λk | x1, . . . , xk−1) = P (Xk < xk | Xj = xj , j ≤ k − 1)
+ λkP (Xk = xk | Xj = xj , j ≤ k − 1)

(16)

are the distributional transforms of the one-dimensional conditional distri-
butions. Finally the multivariate distributional transform of X is defined
as

U := τF (X, V ) (17)

Its basic properties are:

a)
U ∼ U

(
(0, 1)d

)
(18)

b) τ−1
F is the inverse of τF (x, λ), i.e.

X = τ−1
F (U) a.s. (19)
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Remark 3.1 a) Standard representation. The multivariate distribution-
al transform standardizes a random vector X by a random vector U uni-
formly distributed on [0, 1]d. In comparison to the copula it also normal-
izes the marginals but ‘forgets’ all dependence information. In consequence
this transformation serves different purposes compared to the copula con-
struction. It gives in (19) a regression representation called ‘standard
representation’ or ‘innovation representation’ of a process X of the form

Xk = fk(U1, . . . , Uk), k = 1, 2, . . . (20)

regressing on an independent innovation sequence U1, U2,. . .

At the same time (19) implies a regression representation for the sequence
(Xn) itself:

Xk = fk(X1, . . . , Xk−1, Uk) a.s.

while in (14) we get only a distributional variant of this regression repre-
sentation. In fact this type of regression representation was first given for
n = 2 by Skorohod (1976).

b) Identification and statistical tests. For the construction of a goodness
of fit test for the hypothesis H0 : F = F0 the multivariate distributional
transform allows to construct simple test statistics by checking whether the
transformed random vectors Yi = τF0(Xi, V

i), 1 ≤ i ≤ n, are uniformly
distributed on the unit cube [0, 1]d. The problem however for the practical
application is the calculation of conditional d.f.s.

This principle of standardization is also useful for various other kinds of
identification problems and for statistical tests as for example for the test
of the two sample problem H0 : F = G. Here using the empirical version
of the distributional transform based on the pooled sample, we have again
to check whether the transformed sample is a realization of an U([0, 1]d)-
distributed variety.

c) Temporal dependence of vectors. If X1, . . . , Xn describes the devel-
opment of a d-dimensional portfolio vector over time, then to describe
the development of dependence over time it may be useful to transform
X1, . . . , Xn to U1, . . . , Un by the multivariate distributional transform ap-
plied to the Xi (or its empirical counterpart). The dependence of the time
evolution is preserved by this transformation and should be easier detected
in the transformed form. On the other hand if one wants to see the de-
velopment of dependencies within the portfolio vector it is more useful
to use the copula transformation Ũ1, . . . , Ũn of X1, . . . , Xn which retains
important aspects of the dependence within the portfolio. Thus both trans-
formations serve different aspects of statistical inference in this problem.
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4 Empirical copula process and empirical de-
pendence function

In this section we consider the problem of testing or describing dependence
properties of multivariate distributions based on a sequence of observations.
Some basic tools for the construction of test statistics which typically are
based on some classical dependence measures like Kendall’s τ or Spearman’s
% (see Nelsen (1999)) or related dependence functionals are the reduced em-
pirical process, the empirical copula function and the normalized empirical
copula process. The distributional transform allows to extend some limit
theorems known for the case of continuous distributions to more general dis-
tribution classes.

Let Xj = (Xj,1, . . . , Xj,k), 1 ≤ j ≤ n be k-dimensional random vectors
with d.f. F ∈ F(F1, . . . , Fk). For the statistical analysis of dependence
properties of F a useful tool is the reduced empirical process (which one
might also call copula process) defined for t ∈ [0, 1]k by

Vn(t) :=
1√
n

n∑

j=1

(I(Uj,1 ≤ t1, . . . , Uj,k ≤ tk)− C(t)), (21)

where Uj = (Uj,1, . . . , Uj,k) is the distributional transform of Xj , Uj,i =
Fi(Xj,i, V

j), and C is the corresponding copula C(t) = P (Uj ≤ t).
The construction of the distributional transforms Uj,i is based on knowing

the marginal d.f.s Fi. If Fi are not known it is natural to use empirical
versions of them. Let

F̂i(xi) =
1
n

n∑

j=1

1(−∞,xi](Xj,i) (22)

denote the empirical d.f.s of the i-th components of X1, . . . , Xn. Then in the
case of a continuous d.f. F the empirical counterparts of the distributional
transforms are

Ûj,i := F̂i(Xj,i), Ûj = (Ûj,1, . . . , Ûj,k). (23)

For continuous d.f. Fi we have that

nÛj,i = nF̂i(Xj,i) = Rn
j,i (24)

are the ranks of Xj,i in the n-tuple of i-th components X1,i, . . . , Xn,i of
X1, . . . , Xn and the ranks R1,i, . . . , Rn,i are a.s. a permutation of 1, . . . , n.
The empirical copula function is then given by

Ĉn(t) =
1
n

n∑

j=1

I(Ûj ≤ t), t ∈ [0, 1]k (25)
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which induces the normalized empirical copula process

Ln(t) :=
√

n(Ĉn(t)− C(t))

=
1√
n

n∑

j=1

{I(Rn
j,1 ≤ nt1, . . . , R

n
j,k ≤ ntk)− C(t)}, t ∈ [0, 1]k.

(26)

This normalized empirical copula process was introduced in Rüschendorf
(1976, Section 3) (see also Rüschendorf (1974)) under the name multivariate
rank order process. In fact in that paper more generally the sequential version
of the process

Ln(s, t) =
1√
n

[ns]∑

j=1

{I(Ûj ≤ t)− C(t)}, s ∈ [0, 1], t ∈ [0, 1]k (27)

was introduced and analyzed for nonstationary and mixing random variables.
The empirical copula function Ĉn was also introduced somewhat later by

Deheuvels (1979) under the name empirical dependence function. Based on
limit theory for the reduced empirical process it is shown in Rüschendorf
(1974, 1976) and also in a series of papers of Deheuvels starting with De-
heuvels (1979) that the normalized empirical copula process converges to a
Gaussian process. Several nonparametric measures of dependence like Spear-
man’s %ho or Kendall’s τau have corresponding empirical versions which can
be represented as functionals of Ln. As consequence one obtains asymptotic
distributions for these test statistics for testing dependence properties.

The distributional transform in Section 2 suggests to consider an extension
of the emprical copula process to the case of general d.f.s F . The empirical
versions of the Uj,i are now defined as

Ûj,i = F̂i(Xj,i, V
j) (28)

which are exactly U(0, 1) distributed. In order to avoid artificial dependence
as described in Section 2 it is natural to let the copula Cj(t) = P (Uj ≤ t),
t ∈ [0, 1]k, be based on the same randomization V j in all components of
the j-th random vector such that Cj(t) = C(t), 1 ≤ j ≤ n. We define the
normalized empirical copula process by

Ln(t) =
√

n(Ĉn(t)− C(t)), t ∈ [0, 1]k. (29)

The copula C has bounded nondecreasing partial derivatives a.s. on [0, 1]k

(see Nelsen (1999, p. 11)). Now the proof of Theorem 3.3 in Rüschendorf
(1976) extends to the case of general distribution.

The basic assumption of this theorem is convergence of the reduced se-
quential empirical process, the sequential version of Vn in (21) (defined as
in (27) for Ln). This assumption has been established for various classes of
independent and mixing sequences of random vectors.
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A) Assume that the reduced sequential process Vn(s, t) converges weakly to
an a.s. continuous Gaussian process V0 in the Skorohod space Dk+1.

Note that the additional assumptions on V0 in Rüschendorf (1976) served
there to obtain stronger convergence results or to deal with more general
assumptions on the distributions.

Theorem 4.1 Under condition A) the sequential version Ln(s, t) of the nor-
malized empirical copula process converges weakly to the a.s. continuous
Gaussian process L0 given by

L0(s, t) = V0(s, t)− s

n∑

i=1

∂C(t)
∂ti

V0(1, . . . , 1, ti, . . . , 1) (30)

Based on this convergence result asymptotic distributions of test statistics
testing dependence properties can be derived as in the continuous case. The
proofs are based on representations or approximations of these statistics by
functionals of Ln. For examples of this type see Rüschendorf (1974, 1976)
and Deheuvels (1979, 1981).
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