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Abstract

In this paper we consider the problem of optimal risk allocation or risk exchange
with respect to convex risk functionals, which not necessarily are monotone or cash
invariant. General existence and characterization results are given for optimal risk
allocations minimizing the total risk as well as for Pareto optimal allocations. We es-
tablish a general uniqueness result for optimal allocations. As particular consequence
we obtain in case of cash invariant, strictly convex risk functionals the uniqueness of
Pareto optimal allocations up to additive constants. In the final part some tools are
developed useful for the verification of the basic intersection condition made in the
theorems which are applied in several examples.

1 Introduction
In this paper we consider the optimal risk allocation resp. risk exchange problem defined
as follows. Let(Ω, A, P ) be a probability space and let %i : L∞(P ) → (−∞,∞], 1 ≤
i ≤ n, be convex, normed (i.e. %i(0) = 0), lower semicontinuous (lsc) risk functionals,
describing the risk evaluation of n traders in the market. For X ∈ L∞ define

A(X) :=
{

(ξi)1≤i≤n; ξi ∈ L∞,

n∑

i=1

ξi = X
}

(1.1)

to be the set of allocations of risk X to the n traders in the market endowed with risk
measures %i. Let

R := {(%i(Xi)); (Xi) ∈ A(X)} = R(X) (1.2)

denote the corresponding risk set. Our aim is to characterize Pareto-optimal (PO) alloca-
tions (ξi) ∈ A(X) i.e. allocations such that the corresponding risk vectors are minimal
elements of the risk set R in the pointwise ordering. A related optimization problem is
to characterize allocations (ξi) which minimize the total risk i.e.

∑
%i(ξi) = inf

{ ∑
%i(Xi); (Xi) ∈ A(X)

}
(1.3)

=: ∧%i(X).
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In fact, in the special case of cash invariance of the risk functionals equivalence of the
PO-property with total risk minimization in (1.3) holds true.

The optimal risk allocation is a classical problem in mathematical economics and
insurance and is of considerable practical and theoretical interest. The early contributions
to this problem go back to the treatment of risk sharing in insurance and reinsurance
contracts (see the papers of Borch (1962), Gerber (1979), Bühlmann and Jewell (1979),
Deprez and Gerber (1985), and Kaas et al. (2001). In more recent years this problem has
been studied also in the context of financial risks, risk exchange, assignment of liabilities
to daughter companies, individual hedging problems and many others (see the papers
of Heath and Ku (2004), Barrieu and El Karoui (2005a,b), Burgert and Rüschendorf
(2006, 2008), Jouini et al. (2005), Acciaio (2007), Filipović and Kupper (2007) and many
references therein.

In comparison to previous work we characterize optimal allocations in the case of
general convex lsc risk functionals %i, which are not necessarily monotone nor cash in-
variant. This generality allows to include into consideration some risk functionals of
practical interest like mean variance or standard deviation or related one-sided risk func-
tionals. We also investigate the question of uniqueness of solutions. For the case of cash
invariant risk functionals %i f.e. it is obvious that for any allocation (ξi) of X with min-
imal total risk (or which is PO) also all decompositions (ξi + ci) with constants (ci)
such that

∑
i ci = 0 minimize the total risk (or are PO). This nonuniqueness can be used

to re-balance an optimal allocation in order to satisfy some further criteria like fairness,
rationality, or some boundedness condition. Are there further optimal allocations? We
derive a general uniqueness result which implies that in the case that the risk functionals
are ‘strictly convex’ and cash invariant Pareto optimal risk allocations are unique up to
constants.

The structure of the paper is the following. In Section 2 we introduce some of the
basic notions on risk measures, convex duality and (weighted) infimal convolutions. We
characterize in Section 3 optimal allocations, connect the PO property with the problem
of minimizing total risk and establish an existence result. In Section 4 we prove a general
uniqueness result for optimal risk allocations. Finally we discuss applications to some
concrete risk allocation problems in Section 5 and establish some tools which are useful
in the applications in order to verify the assumptions made in the characterization and
existence theorems.

2 Infimal convolution and convex conjugates
Throughout this paper we consider convex, lower semicontinuous (lsc), proper risk func-
tionals % : L∞(P ) → (−∞,∞], where proper means that dom % = {X ∈ L∞(P ); %(X)
∈ R} 6= Ø and that % is nowhere −∞. Lower semicontinuity is w.r.t. the norm topology
or equivalently w.r.t. the weak topology on L∞ = L∞(P ). Generally for a convex proper
function on a locally convex space E we denote by

f∗ : E∗ → R, f∗(x∗) = sup
x∈E

(〈x∗, x〉 − f(x)), x∗ ∈ E∗ (2.1)
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the convex conjugate and by

f∗∗(x) = sup
x∗∈E∗

(〈x, x∗〉 − f∗(x∗)), x ∈ E (2.2)

the bi-conjugate of f . Let further

∂f(x) = {x∗ ∈ E∗; f(y)− f(x) ≥ 〈x∗, y − x〉, ∀y ∈ E} (2.3)

denote the set of subgradients of f in x.
Then

∂f(x) = {x∗ ∈ E∗; ∀y ∈ E, 〈x∗, y〉 ≤ D(f, x)(y)}, (2.4)

where D(f, x)(y) is the right directional derivative of f in x in direction y. This connec-
tion is useful in the applications in order to calculate the subgradient.

For proper convex functions and ∂f(x) 6= Ø holds

x∗ ∈ ∂f(x) ⇔ 〈x∗, x〉 = f(x) + f(x∗)
⇔ 〈x, x∗〉 − f(x) ≥ sup

y∈E
(〈y, x∗〉 − f(y)). (2.5)

By the Fenchel–Moreau theorem this is for lsc functions f further equivalent to

x ∈ ∂f∗(x∗). (2.6)

For minimization problems of proper, convex, lsc functions f , as in our risk allocation
problem (1.3), the following extension of Fermat’s rule is of interest:

f(x) = inf
y∈E

f(y) ⇔ 0 ∈ ∂f(x). (2.7)

For all results on convex duality we refer to Rockafellar (1974) and Barbu and Precupanu
(1986).

The following proposition gives conditions which are needed to ensure properness of
the infimal convolution ∧%i.

Proposition 2.1 For %i convex, lsc and proper holds
⋂

dom %∗i 6= Ø ⇒ dom(∧%i) 6= Ø. (2.8)

Proof: For the proof we make use of the following results from convex analysis

1) As %i are proper, convex, and lsc it follows that %∗i are proper (see Barbu and Precu-
panu (1986, Cor. 1.4, Chapter 2)). For proper convex %i holds

(∧%i)∗ =
∑

%∗i . (2.9)

This implies that (∧%i)∗ is nowhere −∞.
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2) Properness of f∗ induces properness of f (see Barbu and Precupanu (1986, Cor. 1.4,
Chapter 2)).

As consequence we obtain

dom(∧%i)∗ 6= Ø 1)=⇒ (∧%i)∗ is proper
2)=⇒ (∧%i) is proper

=⇒ dom(∧%i) 6= Ø. 2

Remark 2.2 a) For continuous risk functionals %i on L∞ the infimal convolution (∧%i)
is continuous. Thus Barbu and Precupanu (1986, Cor. 1.4, Chapter 2) implies equiva-
lence in (2.8). Thus the risk allocation problem defined as above does not make sense
without the intersection condition (IS).

(IS)
n⋂

i=1

dom %∗i 6= Ø. (2.10)

which is in the following generally assumed to hold true. A senseful modification of
the risk allocation problem, in the continuous case, without assuming the intersection
condition (IS) has been introduced and discussed in Burgert and Rüschendorf (2006,
2008).

b) For the case of coherent risk measures %i with representations %i(X) = sup
µ∈Pi

Eµ(−X)

with sets of ‘scenario’ measures Pi ⊂ ba(P ) the conjugates are given by %∗i (µ) =
1Pi(µ) and thus the intersection condition in (2.10) is equivalent to the condition

n⋂

i=1

Pi 6= Ø, (2.11)

i.e. the traders have at least one scenario measure in common. In this case the result
is due to Heath and Ku (2004) and Burgert and Rüschendorf (2008). It has been
extended to convex risk measures in Jouini et al. (2005), Burgert and Rüschendorf
(2006) and Acciaio (2007).

c) The results in this paper are given for risk measures on L∞. Most of the results in
this paper also can be given on Lp for p ≥ 1. In this case the dual space is more
pleasant and one obtains σ-additive measures (instead of finite additive measures) in
the representation theorems (see Kaina and Rüschendorf (2008)). 2

For the existence of optimal allocations (ξi) ∈ A(X) minimizing the total risk, i.e.

∧%i(X) =
∑

%i(ξi) (2.12)

we need a strengthened version of the intersection condition IS.

(SIS) dom %∗1 ∩
n⋂

i=2

int(dom %∗i ) 6= Ø.
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Further we assume that at least one risk functional %k is monotone (i.e. X ≤ Y im-
plies %k(X) ≥ %k(Y )). This assumption implies monotonicity of the infimal convolution
(∧%i) (Acciaio (2007, Lemma 3.3, i))).

Theorem 2.3 (Existence of optimal allocations) Let %i be proper, convex, and lsc and
assume that at least one of the %i is monotone and that the strong intersection property
(SIS) holds. Then for all X ∈ int(dom∧%i) there exists an allocation (ξi) ∈ A(X)
which minimizes the total risk i.e.

∧%i(X) =
∑

%i(ξi) (2.13)

Proof: For proper, convex, and monotone functions f on a Banach lattice E holds
∂f(x) 6= Ø for all x ∈ int(dom f) (see Ruszczyński and Shapiro (2006, Corollary 3.1)).
Thus we obtain for all X ∈ int(dom∧%i) that ∂(∧%i)(X) 6= Ø. Let µ ∈ ∂(∧%i)(X) and
thus

X ∈ ∂(∧%i)∗(µ) = ∂
(∑

%∗i
)
(µ).

The strong intersection property (SIS) implies additivity of the subgradient mapping

∂
( ∑

%∗i
)

=
∑

∂%∗i (2.14)

(see Barbu and Precupanu (1986, Ch. 2, Cor. 2.5 and Rem. 2.8)). As consequence

X ∈
∑

∂%∗i (µ). (2.15)

Thus there exists an allocation (ξi) ∈ A(X) with ξi ∈ ∂%∗i (µ) which implies that (ξi)
minimizes the total risk (see Theorem 3.1).

Remark 2.4 (Cash invariant risk measure) If the %i in Theorem 2.3 are additionally
cash invariant, then under the intersection property (IS) dom∧%i = L∞ and existence
of optimal allocations (ζi) minimizing total risk does not need the stronger condition
(SIS) (see Jouini et al. (2005), Acciaio (2007)). By the comonotone improvement result
of Landsberger and Meijlison (1994) any allocation can be improved by a comonotone
allocation, i.e. where Xi = fi(X) are monotone functions of X . This property combined
with Dini’s theorem allows to dismiss with the stronger intersection property (for details
see Jouini et al. (2005)).

3 Characterization of optimal allocations
Risk allocations with minimal total risk are characterized by the following result which is
an extension of the classical Borch (1962) theorem in insurance (see e.g. Gerber (1979)).
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Theorem 3.1 (Characterization of minimal total risk allocations) Let %i be proper
convex, risk functionals. Then for X ∈ L∞ and (ζi) ∈ A(X) the following are equiva-
lent.

(i) (ζi) has minimal total risk, i.e. ∧ %i(X) =
∑

%i(ζi)

(ii) ∃µ ∈ ba(P ) : ζi ∈ ∂%∗i (µ), 1 ≤ i ≤ n (3.1)
(iii) ∃µ ∈ ba(P ) : µ ∈ ∂%i(ζi),∀i (3.2)

i.e.
⋂

∂%i(ζi) 6= 0.

Proof: In the case of convex risk measures Theorem 3.1 has been proved in Jouini et al.
(2005) and extended to nonmonotone risk measures in Acciaio (2007). The proof in these
papers however extends verbatim to the more general class of convex risk functionals
considered here. 2

(3.2) gives an important and very useful criterion for the calculation of optimal allo-
cations. In the classical case of differentiable risk functionals this amounts to the condi-
tion that the Gateaux gradients D%i(ζi) are independent of i. The following proposition
identifies this gradient with the subgradient of the infimal convolution.

Proposition 3.2 Let (ζi) ∈ A(X) minimize the total risk, ∧%i(X) =
∑

%i(ζi).

(a) ∀(ηi) ∈ A(X) holds
⋂

∂%i(ηi) ⊂ ∂ ∧ %i(X), (3.3)

(b) ∂ ∧ %i(X) =
⋂

∂%i(ζi). (3.4)

Proof:

a) For µ ∈ ⋂
∂%i(ηi) we obtain by the Fenchel inequality using (2.9)

∧%i(X) ≥ 〈µ,X〉 −
∑

%∗i (µ) =
∑

(〈µ, ηi〉 − %∗i (µ)) =
∑

%i(ηi).

By definition of the infimal convolution therefore equality holds and thus µ ∈ ∂ ∧
%i(X).

b) If µ ∈ ∂ ∧ %i(X), then
∑

(〈µ, ζi)− %i(µ)) = (µ, X)−
∑

%∗i (µ)

= 〈µ, X〉 − (∧%i)∗(µ) = ∧%i(X) =
∑

%i(ζi).

Therefore, again from the Fenchel inequality we conclude that

〈µ, ζi〉 − %i(µ) = %i(ζi)

for all i and thus µ ∈ ⋂
∂%i(ζi). This implies that ∂ ∧ %i(X) ⊂ ⋂

∂%i(ζi). So (3.4)
is a consequence of a).



1006 Characterization of optimal risk allocations

2

To obtain a connection to Pareto optimality we need a property which we call non-
saturation property (NS). We say that % has the non-saturation property if

(NS) inf
X∈L∞

%(X) is not attained (3.5)

(NS) is a weak property on risk measures. It is implied in particular by the cash invariance
property.

Under the non-saturation condition (NS) Pareto optimality is related to the problem
of minimizing the total weighted risk. This is described by the weighted minimal convo-
lution (∧%i)γ(X), defined for weight vectors γ = (γi) ∈ Rn by

(∧%i)γ(X) := inf
{ ∑

γi%i(Xi); (Xi) ∈ A(X)
}

. (3.6)

This connection between Pareto optimality and minimizing total weighted risk goes back
in more special situations to the early papers in insurance (see Gerber (1979)).

Theorem 3.3 (Characterization of Pareto optimal allocations) Let %i be convex, lsc,
proper risk functionals on L∞ satisfying the non-saturation condition (NS). Then for
X ∈ L∞ and (ζi) ∈ A(X) the following are equivalent:

i) (ζi) is PO

ii) ∃γ = (γi) ∈ Rn
>0 such that

∑
γi%i(ζi) = (∧%i)γ(X),

iii) ∃γ ∈ Rn
>0 and ∃µ ∈ ba(P ) such that µ ∈ γi∂%i(ζi), ∀i (3.7)

or equivalently
⋂

γi∂%i(ζi) 6= Ø

iv) ∃µ ∈ ba(P ) and ∃γ ∈ Rn
>0 : ζi ∈ ∂(γi%i)∗(µ), ∀i. (3.8)

Proof: The equivalences of ii)–iv) follow from Theorem 3.1 applied to the convex risk
functionals γi%i using lsc and the property ∂(γi%i) = γi∂%i.

i) ⇔ ii) For the proof of this equivalence we use the Hahn–Banach separation argu-
ment (cp. the proof of Theorem 3.1 in Jouini et al. (2005)) separating B := R + Rn

+

from C := (%i(ζi)) − (Rn
+ \ {0}). By construction the vector λ ∈ Rn describing the

separating hyperplane i.e. λ> · x ≤ λ> · y for all x ∈ C, y ∈ B has non-negative coor-
dinates, λj ≥ 0. Now the (NS) condition is enough to imply that all components of λ are
positive. For the proof assume that λj = 0 for some j. We assume w.l.g. j = n. Then
(ζi) minimizes

∑n−1
i=1 λi%i(ηi) over (ηi) ∈ A(X). Thus since λn = 0 (ζi) minimizes∑n−1

i=1 λi%i(ηi) over all ηi ∈ L∞. By the (NS) condition this leads to a contradiction.

The direction ii) ⇒ i) is obvious. 2
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Remark 3.4 a) Using Proposition 3.2 Condition iii) in Theorem 3.3 can be reformu-
lated as

iii’) ∃γ ∈ Rn
>0 : ∂(∧%i)γ(X) 6= Ø

b) The value of the optimal total weighted risk (∧%i)γ(X) is given by

(∧%i)γ(X) = 〈µ, X〉 − Σγi%
∗
i (µ), (3.9)

where µ is as in (3.7) or in (3.8) a solution of the dual problem.

For cash invariant convex risk functionals this characterization result implies by a
rebalancing argument (see Jouini et al. (2005), Burgert and Rüschendorf (2006; 2008),
Acciaio (2007)) that it is enough to consider the optimal risk allocation problem for the
weight vector γ = (1, . . . , 1).

Corollary 3.5 If %i are convex, lsc, proper cash invariant risk functionals on L∞, then
for X ∈ L∞, (ζi) ∈ A(X) the following are equivalent:

i) (ζi) is PO

ii) (ζi) minimizes the total risk, i.e.
∑

%i(ζi) = ∧%i(X). (3.10)

iii)
⋂

∂%i(ζi) 6= Ø

iv) ∃µ ∈ ba(P ) : ζi ∈ ∂%∗i (µ), ∀i
v) ∃µ ∈ ba(P ) : µ ∈ ∂%i(ζi), ∀i.

Further for any µ as above holds

∧%i(X) = 〈µ,X〉 − Σ%∗i (µ). (3.11)

4 Uniqueness of optimal allocations
In this section we investigate the question under which conditions optimal allocations
which minimize total risk are unique. This question leads naturally to the consideration
of strictly convex risk measures. Then in the second part of this section we connect this to
the characterization of PO-risk allocations and obtain as an interesting consequence, that
PO-risk allocations in the case of strictly convex cash invariant risk measures are unique
up to rebalancing. A function is called strictly convex if the inequality in the definition
of convexity is strict for any X , Y ∈ E, X 6= Y , i.e. it holds f(αX + (1 − α)Y ) <
αf(x)+ (1−α)f(Y ) ∀α ∈ (0, 1). For the preparation of this uniqueness result we need
some properties of subdifferentials.

Lemma 4.1 Let % be a finite strictly convex risk functional on L∞.

a) ∀µ ∈ ba(P ) holds |∂%∗(µ)| ≤ 1
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b) For X , Y ∈ L∞, X 6= Y holds |∂%(X) ∩ ∂%(Y )| = 0

Proof:

a) The conjugate of % is defined by

%∗(µ) = sup
X∈L∞

(〈µ, X〉 − %(X)), µ ∈ ba(P ).

Strict convexity of % implies that for any µ ∈ ba(P ) there is at most one maximizer
Xµ of 〈µ,X〉 − %(X), i.e. |∂%∗(µ)| ≤ 1.

b) If µ ∈ ∂%(X) ∩ ∂%(Y ), then by (2.6) X, Y ∈ ∂%∗(µ) in contradiction to a). 2

The following property of subdifferentials is crucial for the uniqueness result.

Proposition 4.2 If % is convex, then for all µ ∈ ∂%(X) and ν ∈ ∂%(Y ) by definition of
the subgradient

〈ν, X − Y 〉 ≤ %(X)− %(Y ) ≤ 〈µ,X − Y 〉. (4.1)

The inequalities in (4.1) are strict if % is strictly convex and X − Y 6= const .

Proof: Based on the Fenchel inequality and (2.5) we have

%(X) + %∗(µ) = 〈µ,X〉 and %(Y ) + %∗(µ) ≥ 〈µ, Y 〉
as well as

%(Y ) + %∗(ν) = 〈ν, Y 〉 and %(X) + %∗(ν) ≥ 〈ν, X〉.
(4.2)

As consequence we obtain

%(X)− %(Y ) ≤ 〈µ,X − Y 〉 and %(X)− %(Y ) ≥ 〈ν,X − Y 〉. (4.3)

In the case that X − Y = c 6= 0 the expressions in (4.3) depend on 〈µ, 1〉 resp. 〈ν, 1〉
which may be different. If X −Y 6= c for all c ∈ R by the assumption of strict convexity
the inequalities in (4.3) are strict. To show this assume that one of the inequalities in (4.2)
would be an equality. Then this assumption would imply that ∂%(X) ∩ ∂%(Y ) 6= Ø in
contradiction to Lemma 4.1. 2

As consequence we get for strictly convex risk functionals uniqueness of γ-infimal
convolution allocations as defined in (3.6) up to rebalancing. We call (ζi) a γ-optimal
allocation if it minimizes the weighted total risk

∑
γi%i(Xi) over (Xi) ∈ A(X).

Theorem 4.3 Let %n be strictly convex and for some γ ∈ Rn
>0 let (ζi) ∈ A(X) be a

γ-optimal allocation, i.e.

(∧%i)γ(X) =
∑

i

γi%i(ζi). (4.4)

If (ηi) is a further γ-optimal allocation, then ηn = ζn + cn for some constant cn.
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Proof: Assume that ηn − ζn 6= c for any c ∈ R. By Theorem 3.1 applied to the risk
functionals γi%i there exists some µ ∈ ⋂

∂(γi%i)(ζi). As consequence of Proposition 4.2
we thus obtain

λn%n(ζn) < 〈µ, ζn − ηn〉+ λn%n(ηn)
λi%i(ζi) ≤ 〈µ, ζi − ηi〉+ λi%i(ηi), i ≤ n− 1.

This implies

(∧%i)γ(X) = Σγi%i(ζi) <
∑

λi%i(ηi)

and thus (ηi) is not a γ-optimal allocation. 2

Corollary 4.4 If %1, . . . , %n are strictly convex lsc risk functionals satisfying the NS con-
dition as well as the strong intersection condition

⋂
int(dom(γi%

∗
i )) 6= Ø for some

γ ∈ Rn
>0. Then there exists up to additive constants ci a unique γ-optimal allocation

rule.

In fact by Theorem 4.3 it is enough to postulate strict convexity only for %1, . . . , %n−1.
Theorem 4.3 does not imply a uniqueness result for cash invariant risk functionals %i

since for any X ∈ L∞(P ), %i are not strictly convex on the affine supspace X + R. To
include this interesting case we define

L∞0 := {X ∈ L∞ : EX = 0} (4.5)

to be the class of equivalence classes of L∞ modulo addition of constants. Cash invari-
ance of % implies for all X ∈ L∞, c ∈ R1

∂%(X) = ∂%(X + c). (4.6)

Therefore, we can extend Lemma 4.1 to the case where %i are cash invariant and strictly
convex on L∞0 . We obtain for cash invariant risk measures strictly convex on L∞0 the fol-
lowing strong uniqueness property. As noted before (see Remark 2.4) for cash invariant
risk functionals the intersection property (IS) is necessary and sufficient for the existence
of Pareto optimal allocations.

Corollary 4.5 (Uniqueness of PO-allocations) Let %1, . . . , %n be strictly convex on L∞0 ,
cash invariant, lsc, finite risk functionals and assume the intersection condition

⋂
dom %∗i

6= Ø. Then for any X ∈ L∞ there exists an up to additive constants unique Pareto opti-
mal allocation (ζi) of X .

Again it is enough that %1, . . . , %n−1 are strictly convex.
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5 Applications and remarks
For the existence and characterization of Pareto optimal allocations the intersection prop-
erty

(IS)γ
⋂

dom(γi%i)∗ 6= Ø

for some γ ∈ Rn
>0 as well as the corresponding strong intersection property (SIS)γ are

important. To investigate this property in examples the following rules are useful.

Lemma 5.1 Let % be convex, lsc, then for α ∈ R>0

i) (α%)∗(µ) = α%∗
(

µ
α

)

ii) dom(α%)∗ = α dom %∗

iii) ∂(α%)∗(µ) = ∂%∗
(

µ
α

)

iv) ∂(α%)(X) = α∂%(X).

(5.1)

Proof:

i) (α%)∗(µ) = supX∈L∞(〈µ,X〉 − α%(X))
= α supX∈L∞

(〈µ
α , X〉 − %(X)) = α%∗(µ

α )

ii) dom(α%)∗ = {µ ∈ ba; (α%)∗(µ) < ∞} = {µ ∈ ba; α%∗(µ
α ) < ∞}

= {αµ ∈ ba; α%∗(µ) < ∞} = α dom %∗

iii) ∂(α%)∗ = {X ∈ L∞; α%(X) ≤ 〈µ,X〉 − (α%)∗(µ)}
= {X ∈ L∞; %(X) ≤ 〈µ

α , X〉 − %∗(µ
α )} = ∂%∗(µ

α )

iv) is analogously to iii). 2

The following proposition gives sufficient conditions to check the intersection prop-
erty.

Proposition 5.2 The intersection property (IS)γ is fulfilled under any of the following
two conditions:

a) ∃X ∈ L∞ : ∂(∧%i)γ(X) 6= Ø (5.2)

b) ∃(ηi) ∈ A(X) such that
⋂

γi∂%i(ηi) 6= Ø. (5.3)

Proof: By Proposition 3.2 and Lemma 5.1 holds for any (ηi) ∈ A(X)
⋂

γi∂%i(ηi) ⊂ ∂(∧%i)γ(X).

Thus b) is a consequence of a). For proper convex functions f holds (see Barbu and
Precupanu (1986, p. 101)):

If X ∈ int dom f, then ∂f(X) 6= Ø.

If ∂f(X) 6= Ø, then X ∈ dom f.
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This implies that

range ∂f := {X : ∂f(X) 6= Ø} ⊂ dom f∗. (5.4)

As consequence we obtain for any (ηi) ∈ A(X) the relation

range(∂(∧%i)γ) ⊂ dom(∧%i)∗γ =
⋂

γi dom %∗i . (5.5)

Thus a) follows. 2

5.1 Expected risk
Let % be an expected risk functional

%(X) = Er(X), (5.6)

where r is a convex, strictly decreasing, differentiable function r : R→ R. This is the
typical case considered in the calculation of convex principles in premium calculation
(see Deprez and Gerber (1985)). Then % is Gateaux differentiable and

∂%(X) = r′ ◦X (5.7)

is given by the Gateaux-gradient of %. As consequence we obtain from Theorem 3.3 a
classical result of Borch (1962), see also Deprez and Gerber (1985) and Barrieu and
Scandolo (2007):

(ξi) is a PO-allocation ⇔ ∃γ ∈ Rn
> : γir

′
i ◦ ξi = γjr

′
j ◦ ξj , ∀i, j. (5.8)

5.2 Dilated risk functionals
Let % be a convex risk functional and define the class of dilated risk functionals %λ for
λ > 0 by

%λ(X) = λ%
(X

λ

)
. (5.9)

Then as in Lemma 5.1 one obtains

i) dom %λ = λ dom %

ii) %∗λ = λ%∗

iii) ∂%λ(X) = ∂%
(

X
λ

)

iv) ∂%∗λ(µ) = λ∂%∗(µ).

(5.10)

As consequence we obtain from the characterization Theorem 3.3 (see also Proposi-
tion 3.5 of Barrieu and El Karoui (2005a) for the case of convex risk measures).
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Theorem 5.3 (Dilated risk functionals) Let % be a convex, lsc, proper risk functional
on L∞ satisfying condition NS and let %i = %λi

, 1 ≤ i ≤ n, corresponding dilated
risk functionals, λi > 0. Let ∧ :=

∑
λi and let X ∈ L∞ with X

∧ ∈ int(dom %), then
ξi := λi

∧ X defines a PO-allocation of X .

Proof: For the proof it is enough to check condition iii) of Theorem 3.1. Using (5.10)
and (5.3) we obtain

⋂
∂%i(ξi) =

⋂
∂%

( ξi

λi

)
=

⋂
∂%

(X

∧
)

= ∂%
(X

∧
)
6= Ø.

Thus by Theorem 3.1 and Remark 5.5 (ξi) is a PO allocation of X . 2

5.3 Mean variance vs. standard-deviation
The mean variance principle %mv

δ is defined for δ > 0 by

%mv
δ (X) := E(−X) + δ Var(X). (5.11)

The parameter δ reflects the degree of risk aversion. %mv
δ is a convex, lsc, cash invariant

risk measure but %mv
δ is not monotone. The following lemma describes the conjugate

(%mv
δ )∗ =: vmv

δ and the subgradient. We identify P continuous measures with their den-
sities. The subgradients were already given in Acciaio (2007) for the essentially equiv-
alent utility formulation. Some related calculations of subdifferentials are also given in
Ruszczyński and Shapiro (2006). We include a sketch of the proof since it shows some
typical arguments for the calculation of subgradients useful also for related applications.

Lemma 5.4 i) vmv
δ (µ) = Var µ

4δ for all µ ∈ dom(vmv
δ ) = {µ ∈ L1;E(−µ) = 1}∩L2

ii) ∂%mv
δ (X) = {2δ(X − EX)− 1}, ∀X ∈ L∞

iii) ∂vmv
δ (µ) = { µ

2δ + c; c ∈ R}, ∀µ ∈ dom(vmv
δ )

Proof:

ii) %mv
δ is easily seen to be Gateaux differentiable with Gateaux gradient ∇%mv

δ (X) =
2δ(X − EX)− 1. This implies ii).

iii) By lsc of %mv
δ we have µ ∈ ∂%mv

δ (X) is equivalent to X ∈ ∂vmv
δ (µ). Since, for

X ∈ L∞ with EX = 0, ∂%mv
δ (X + c) = ∂%mv

δ (X) = {2δX − 1} by Corollary 4.1
in Aubin (1993) we obtain ∂vmv

δ (µ) = (∂%mv
δ )−1(µ) = { µ

2δ + c; c ∈ R} for all
µ ∈ dom(vmv

δ ).
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i) Using that ∂vmv
δ (µ) = arg max(〈µ,X〉 − %mv

δ (X), X ∈ L∞) we obtain for X0 ∈
∂vmv

δ (µ) using iii)

vmv
δ (µ) = 〈µ,X0〉 − %mv

δ (X0)
= EµX0 − E(−X0)− δ Var(X0)
= EX0(1 + µ)− δ Var(X0)

= E
µ

2δ
(1 + µ) + cE(1 + µ)− δ Var

( µ

2δ

)

= − 1
2δ

+
1
2δ

Eµ2 − 1
4δ

Eµ2 +
1
4δ

=
Varµ

4δ
.

Since %mv
δ is law invariant and thus Fatou continuous we can restrict above to P -

continuous measures and any µ ∈ dom vmv
δ must satisfy Varµ < ∞ and thus

µ ∈ L2. 2

The standard deviation principle %sd
δ is defined for δ > 0 by

%sd
δ (X) = E(−X) + δ

√
VarX. (5.12)

Compared to the mean variance principle it is less sensitive concerning the variance.
Similarly to Lemma 5.4 one obtains the subgradients (see also Acciaio (2007)).

Lemma 5.5 For the standard deviation principle %sd
δ and the corresponding conjugate

vsd
δ holds (again we identify µ ∈ M(P ) with its density)

1) ∂%sd
δ (X) =

{
dom vsd

δ if X = const .

δ X−EX
‖X−EX‖2 − 1 else

(5.13)

2) ∂vsd
δ (µ) = R ∪

{
X ∈ L∞ : µ = δ

X − EX

‖X − EX‖2 − 1
}

. (5.14)

In the following we determine all Pareto optimal allocations between an SDP %1 (with
δ1 > 0) and an MVP %2 (with δ2 > 0) and conjugates v1, v2.

Proposition 5.6 (SDP vs. MVP) Let %1 be an SDP and %2 an MVP with δi > 0. Then
for any X ∈ dom(%1 ∧ %2), X 6≡ const . there exists a up to constants unique Pareto
optimal allocation (ξ1, ξ2) which is given by:

1) If 0 < δ1
2δ2σ(X) < 1, then

ξ1 =
(
1− δ1

2δ2σ(X)

)
X + c, ξ2 =

δ1

2δ2σ(X)
X − c (5.15)

and the optimal dual measure µ is given by µ = δ1
X−EX
σ(X) − 1.
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2) If δ1
2δ2σ(X) ≥ 1, then the allocation (0, X) is up to constants the unique PO-allocation.

Proof: Both risk functionals %1, %2 are convex, lsc, cash invariant and law invariant. Thus
the intersection property is fulfilled and for all X ∈ dom(%1 ∧ %2) and δ1, δ2 > 0 there
exists a Pareto optimal allocation.

To construct a PO-allocation, we use the characterization result finding (ξ1, ξ2) ∈
A(X) and a measure µ (identified with its density) such that µ ∈ ∂%1(ξ1)∩ ∂%2(ξ2), i.e.
by Lemmas 5.4 and 5.5

{
δ1

ξ1 − Eξ1

‖ξ1 − Eξ1‖2 − 1
}

= ∂%1(ξ1) = ∂%2(ξ2) = {2δ2(ξ2 − Eξ2)− 1}. (5.16)

In case 1) one finds a nontrivial solution as given in (5.15). In case 2) the following
argument leads to the conclusion. Let η1, η2 ∈ A(X) be an allocation of X , then

%1(η1) + %2(η2) = E(−X) + δ1σ(η1) + δ2 Var(η2)

≥ E(−X) + δ2 Var(η2) + 2δ2σ(X)σ(η1) (as δ1 ≥ 2δ2σ(X))

≥ E(−X) + δ2 Var(η2) + 2δ2 Cov(X, η1)

= E(−X) + δ2 Var(X − η1) + 2δ2 Cov(X, η1)

= E(−X) + δ2(Var(X) + Var(η1))

≥ E(−X) + δ2 Var(X) = %2(X).

Thus (0, X) is an optimal allocation. Uniqueness follows from our uniqueness result in
Corollary 4.5. 2

The characterization and uniqueness result allows to deal in a similar way with fur-
ther convex risk functionals without assuming the monotonicity or the cash invariance
property. One can e.g. consider risk functionals of the form

%1(X) = E(−X) + δE((X − qα(X))p
−, p ≥ 1,

where qα(X) is the α-quantile of X . % is convex and monotone but not cash invariant.
Similarly,

%2(X) = E(−X) + δE|X − qα(X)|p, p ≥ 1,

which is neither monotone nor cash invariant. For some explicit further examples in the
case of nonmonotone risk measures we refer to Acciaio (2007). There some more cases
are considered which have as solutions the typical insurance contracts (stop-loss con-
tracts). Many examples of this type are to be found in the relevant insurance literature.
We refer to the classical literature Gerber (1979), Deprez and Gerber (1985), Kaas et al.
(2001), and the references therein.
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version of this paper.
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