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Abstract

Recent literature deals with bounds on the Value-at-Risk (VaR) of risky portfolios when only
the marginal distributions of the components are known. In this paper we study Value-at-Risk
bounds when the variance of the portfolio sum is also known, a situation that is of considerable
interest in risk management.

We provide easy to calculate Value-at-Risk bounds with and without variance constraint and
show that the improvement due to the variance constraint can be quite substantial. We discuss
when the bounds are sharp (attainable) and point out the close connections between the study
of VaR bounds and convex ordering of aggregate risk. This connection leads to the construction
of a new practical algorithm, called Extended Rearrangement Algorithm (ERA), that allows to
approximate sharp VaR bounds. We test the stability and the quality of the algorithm in several
numerical examples.

We apply the results to the case of credit risk portfolio models and verify that adding the
variance constraint gives rise to significantly tighter bounds in all situations of interest. However,
model risk remains a concern and we criticize regulatory frameworks that allow financial insti-
tutions to use internal models for computing the portfolio VaR at high confidence levels (e.g.,
99.5%) as the basis for setting capital requirements.
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1 Introduction

In this paper, we study bounds for the Value-at-Risk (VaR) of sums of risks with known marginal
distributions (describing the stand-alone risks) under the additional constraint that the variance of the
sum is known (which partially describes the dependence between risks). This setting is of significant
interest as in many practical situations it corresponds closely to the maximum information at hand
when assessing the VaR of a portfolio. For example, in the context of credit risk portfolio models one
usually has knowledge about the marginal risks (through so-called PD, EAD and LGD models) and
the variance of the aggregate risk (sum of the individual losses) is also often available (as obtained from
default correlation models or through statistical analysis of observed credit losses). The same setting
also appears in the context of risk aggregation and solvency calculations (Basel III and Solvency II).
Banks and insurers usually have models to estimate risk distributions and VaR per risk type (credit
risk, market risk, operational risk,. . . ) and per business line, and next they rely on a correlation
matrix to obtain the VaR of the aggregated portfolio. Taking into account this information we asses
how much model risk is left in the computation of VaR.

Bounds on Value-at-Risk in the unconstrained case (only the marginal distributions are fixed)
have been studied by Rüschendorf (1982) (in the case of two risks) and more recently by Denuit
et al. (1999), Embrechts and Puccetti (2006a), Puccetti and Rüschendorf (2012a,b), and Embrechts
et al. (2013). In particular, there exist several explicit results on VaR bounds when the marginals
are identically distributed. In the inhomogeneous case, however, the analysis becomes rapidly more
involved and explicit results are scarce. Puccetti and Rüschendorf (2012a) propose the rearrangement
algorithm (RA) as a practical way to approximate bounds on the Value-at-Risk of a sum of individual
risks when the marginal distributions are known; see also Embrechts et al. (2013). So far, numerical
experiments have shown that the RA presents very good accuracy.

There are already results regarding VaR bounds in the presence of partial information on the
dependence of the underlying risks in the sum; see e.g. Rüschendorf (1991), Embrechts and Puccetti
(2009), Embrechts et al. (2013) for results when some of the bivariate distributions are known. How-
ever, the bounds that are proposed in these papers are often hard to compute numerically, especially
for higher dimensions and in the inhomogeneous case. Moreover, in practice, bivariate distributions
are usually not known. In contrast, the variance of the entire portfolio sum can often be statistically
estimated with sufficient degree of accuracy or its value can be implied by the availability of the
correlations between risks. Intuitively, as the variance measures the average spread of the aggregate
portfolio loss around the mean, one could expect that its knowledge has a significant impact on the
maximum possible VaR. Hence, in this paper we study bounds on the Value-at-Risk of a sum with a
known maximum variance and with fixed marginals.

In Section 2 we give simple upper and lower VaR bounds in terms of the tail Value-at-Risk in
the unconstrained case when only marginal information is available. These unconstrained bounds are
also valid for the case of heterogeneous portfolios and several examples illustrate that they turn out
to be reasonably sharp. Some asymptotic sharpness results on these bounds are given in Puccetti
and Rüschendorf (2012d) in the homogeneous case and extended in Puccetti et al. (2013) to some
inhomogeneous cases. We find that the upper and lower bounds are sharp if it is possible to construct
random variables, which are mixing on the upper part resp. on the lower part of the distribution,
i.e. when their sum is constant. We state a general version of an asymptotic sharpness result in this
paper indicating that approximate sharpness of the unconstrained bounds can be expected for large
portfolios. In Section 2 we also obtain a connection between the problem of obtaining good VaR
bounds and results on convex ordering. This connection leads to further improved bounds in certain
cases.
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In Section 3, we consider an additional constraint on the variance of the joint portfolio and give
an analytical bound in this case. We show that these (constrained) VaR bounds can be significantly
tighter than the bounds in the unconstrained case. We describe conditions to ensure sharpness of
these bounds. To obtain sharp VaR bounds for the constrained case, we show that it is necessary to
make the distribution of the aggregate risk as flat as possible in the upper part as well as in the lower
part while considering at the same time the variance constraint.

This insight gives the intuition to develop in Section 4 a new algorithm to determine approximate
sharp bounds in the constrained case. This algorithm extends the rearrangement algorithm, which was
proposed to approximate sharp VaR bounds in the unconstrained case by Embrechts et al. (2013). We
simultaneously rearrange the upper and the lower part of the distribution of the sum and move in some
systematic way through the domain of the random sum in order to fulfill the variance constraint. A
series of examples show that the extended rearrangement algorithm (ERA) works well. In particular,
we see under which conditions the additional variance constraint leads to essentially improved bounds.
The development of this ERA seems to be an essential tool for applications.

Finally, in Section 5 we apply the results to the case of a credit risk portfolio. In this context, the
variance constraint significantly improves the unconstrained bounds. We also show that the models
that are used in the industry and regulatory frameworks underestimate risk. We criticize the way
internal models in regulatory frameworks are used for establishing capital requirements. In particular,
we do not recommend using them for computing portfolio VaR at high confidence levels (e.g., 99.5%)
as the basis for setting capital requirements. It seems more effective to impose additional restrictions
on the internal models used for setting the capital requirements, or even to enforce the use of a
single model to this purpose. By doing so, the capital requirements become better comparable across
different institutions, which also enhances fair competition. Final remarks are presented in Section 6.
Some proofs are given in the appendix.

1.1 Problem description

Consider a portfolio with n individual risks Xj with finite mean and variance. Assume that the
marginal distributions Fj of Xj for j = 1, . . . , n are also given: we write Xj ∼ Fj . Since the marginal
distributions are fixed, the mean of the aggregate portfolio loss, Sn = X1 +X2 + · · ·+Xn, is known
and equal to

μ := E(X1 +X2 + · · ·+Xn). (1.1)

In the main part of this paper we derive bounds on the Value-at-Risk of the sum Sn when its variance
stays below some level s2. The dependence between the different Xi that attain the VaR bounds in
the absence of a variance constraint may indeed give rise to a too high variance of the sum that is
compared to the observed variance of a portfolio. This feature will be confirmed later with several
examples.

Let us denote the Value-at-Risk of the portfolio sum Sn at q-confidence level (0 < q < 1) by
VaRq[Sn].

VaRq [Sn] = inf {x ∈ R | FSn(x) � q} , q ∈ (0, 1) ,

where FSn(x) is the distribution function of Sn. The VaR is thus defined as the left inverse of the
distribution function and we may also write that VaRq [Sn] = F−1

Sn
(q). Similarly, we define the upper

Value-at-Risk as an upper q-quantile, i.e.

VaR+
q [Sn] = sup{x ∈ R | FSn(x) � q}.
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In this paper, we are interested in finding the minimum possible VaR of the sum

m(s2) = inf VaRq[Sn]

subject to Xj ∼ Fj, var(Sn) � s2.
(1.2)

and the maximum possible VaR (in terms of the upper quantile)

M(s2) = supVaR+
q [Sn]

subject to Xj ∼ Fj , var(Sn) � s2.
(1.3)

Note that we allow for s2 = ∞ to include the absence of variance constraint. For ease of exposition
we sometimes write m and M instead of m(s2) and M(s2). In Section 2 we consider the unconstrained
case (thus without the constraint on the variance) and derive an upper bound for M(∞) and a lower
bound for m(∞). We also discuss conditions for sharpness of these bounds. In Section 3 we derive
bounds in the constrained case. We describe conditions that ensure sharpness of the bounds. All
these bounds are usually not sharp. In Section 4 we introduce an algorithm called ERA, which allows
to obtain approximations to sharp bounds in all circumstances.

In what follows we shall make extended use of the convex ordering, �cx between random variables
X, Y defined by

X �cx Y if E(f(X)) � E(f(Y ))

for all convex functions f(·) such that the expectation exists. Note that E(X) �cx X and X �cx Y
implies in particular that Y has the same mean as X and has larger variance than X. The convex
order is thus a device that allows comparing the variability of random variables. For details of this
ordering see Müller and Stoyan (2002) or Denuit et al. (2005).

2 VaR bounds of a portfolio with fixed marginal distribu-

tions

In this section we derive easy to calculate analytical VaR bounds for the portfolio sum, discuss their
sharpness and provide a connection with convex ordering.

2.1 Unconstrained bounds

The first theorem provides bounds on the Value-at-Risk of a sum of risks with given marginals without
considering a variance constraint on the portfolio sum (formally, solving Problems (1.2) and (1.3) with
s2 = ∞). The bounds in this section need finite first moments of the risks Xi but not necessarily
finite second moments.

For random variables Xi ∼ Fi, 1 � i � n and a random variable U ∼ U(0, 1), define Xc
i = F−1

i (U),
1 � i � n. Then Xc

i ∼ Fi and (Xc
1, . . . , X

c
n) is a comonotonic vector associated with F1, . . . , Fn. Let

Sc
n =

∑n
i=1X

c
i denote the comonotonic sum. For q ∈ (0, 1) we denote by TVaRq(Xi) the Tail Value-

at-Risk at level q,

TVaRq(Xi) =
1

1− q

∫ 1

q

VaRu[Xi]du,

and by LTVaRq(Xi) the left Tail Value-at-Risk

LTVaRq(Xi) =
1

q

∫ q

0

VaRu[Xi]du.
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In the following theorem we state simple upper and lower bound for VaR in terms of TVaR and
LTVaR. The upper bound can be found in the literature (see e.g. Puccetti and Rüschendorf (2012d,
Introduction to Section 2)) but has not been stated there in explicit form.

Theorem 2.1 (unconstrained bounds). Let q ∈ (0, 1), Xi ∼ Fi (i = 1, 2, . . . , n), Sn =
∑n

i=1Xi and
Sc
n =

∑n
i=1X

c
i . Then,

A :=
n∑

i=1

LTVaRq(Xi) = LTVaRq(S
c
n) � VaRq[Sn]

� VaR+
q [Sn] � B :=

n∑
i=1

TVaRq(Xi) = TVaRq(S
c
n).

Proof. By definition of TVaRq we have the well-known inequality

VaR+
q [Sn] � TVaRq(Sn). (2.1)

Furthermore, by the classical result of Meilijson and Nadas (1979), Sn �cx S
c
n, i.e. Sn is smaller than

the comonotonic sum Sc
n in convex order. Since TVaRq is a convex risk measure, this implies

TVaRq(Sn) � TVaRq(S
c
n) =

n∑
i=1

TVaRq(Xi) = B. (2.2)

This last conclusion is also a direct consequence of the sub-additivity of TVaRq.

For the lower bound we make use of the fact that for any random variable X

q LTVaRq(X) + (1− q) TVaRq(X) = E(X).

This implies as in the first part that VaRq[Sn] � LTVaRq(Sn) �
∑n

i=1 LTVaRq(Xi) = A. �

The bounds A and B are explicit and can be computed from the marginal distributions directly.
Note that they are also valid (and as easy to compute) for heterogeneous portfolios (i.e. when indi-
vidual risks do not have the same cdf). This feature contrasts with earlier results in the literature
in which the bounds are usually harder to compute and are not always available when portfolios
exhibit heterogeneity. The bounds A and B have been derived without considering a constraint on
the variance of the portfolio and are thus also bounds in the presence of such constraint. Hence, from
Theorem 2.1 it follows immediately that A � m � M � B.

The proof of Theorem 2.1 also allows to conclude under which conditions the bounds A and B are
sharp (attained). To this purpose it is useful to represent (without loss of generality) the risks Xi as
Xi = fi(U) (i = 1, 2, . . . , n) for some U ∼ U(0, 1) such that {Sn � VaRq[Sn]} = {U ∈ [q, 1]}, i.e. the
upper q-part of the distribution of Sn is given by the upper q-part {U � q} of the random variable U .
As fi(U) and F−1

i (U) have the same distribution we say that fi is a ‘rearrangement’ of F−1
i on [0, 1]

and write fi ∼r F
−1
i . Furthermore, if fi(V ) and F−1

i (V ) have the same distribution for some random
variable V that is uniformly distributed on a subset T of [0, 1], then we say that fi is a rearrangement
of F−1

i on T and we write fi|T ∼r F
−1
i |T .

Theorem 2.2 (Sharpness of the unconstrained bounds). Let Xi = fi(U) ∼ Fi, 1 � i � n and let
Sn =

∑n
i=1Xi be the portfolio sum. Then:

a) The upper bound B in Theorem 2.1 is attained by Sn if and only if the two following conditions
are satisfied:
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1) fi|[q,1] ∼r F
−1
i |[q,1], 1 � i � n, i.e. the fi are rearrangements of F−1

i on [q, 1]

2) X1, X2,. . . ,Xn are mixing on {U � q}, i.e. ∑n
i=1 fi(u) = c, ∀u ∈ [q, 1] for some c ∈ R.

b) The lower bound A in Theorem 2.1 is attained by Sn if and only if the two following conditions
are satisfied:

1) fi|(0,q) ∼r F
−1
i |(0,q), 1 � i � n

2) X1, X2,. . . ,Xn are mixing on {U < q}, i.e. ∑n
i=1 fi(u) = c, ∀u ∈ [q, 1] for some c ∈ R.

Proof. The upper boundB is sharp if and only if the inequalities in (2.1) and (2.2) are in fact equalities.
Equality in (2.2) is by definition of TVaRq equivalent to the fact that the fi are rearrangements of
F−1
i on [q, 1] (see for example Puccetti and Rüschendorf (2012b)). Furthermore, equality holds in

(2.1) if and only if Sn =
∑n

i=1 fi(u) = c on [q, 1], i.e. if and only if the random variables Xi = fi(U)
are mixing on [q, 1] (see also Figure 2.1). The argument for the sharpness in b) is similar. �

Note that the constant c is equal to B resp. A in statement a) resp. b) of the theorem. A geometric
interpretation of the bounds is given in Figure 2.1. The bound B – as an average of the upper VaRs

q
c

q 1

B:=TVaR  (S  )

u

cA:= LTVaR  (S  )q

Figure 2.1 Illustration of Theorem 2.1. Representation of Value-at-Risk VaRq as a function of the level
q ∈ (0, 1). Note that the VaR bounds at the level q corresponds to the TVaR and LTVaR of a comonotonic
sum: Sc := Xc

1 +Xc
2 + · · ·+Xc

n where (Xc
1 , X

c
2 , . . . , X

c
n) =d (F−1

1 (U), F−1
2 (U), . . . , F−1

n (U)).

(from level q onwards) in the comonotonic case – clearly dominates the VaR+
q of the comonotonic

sum. It is not possible that Sn has an (upper) quantile function that takes a value in q that is strictly
larger than B as this would imply that the corresponding TVaRq(Sn) would be larger than B, which
is not possible. Hence, B is a sharp bound if and only if the quantile function of Sn takes the value
B from q onwards.

The mixing property on [q, 1] may be too strong to achieve but a weakened form of asymptotic
mixability for large sample sizes (formally, for n → ∞) may hold true. This condition then implies
that our upper bound is asymptotically sharp. The idea of this result can be found in Theorems 2.3
and 2.5 of Puccetti and Rüschendorf (2012c). In the homogeneous case an asymptotic sharpness result
has been given in Puccetti and Rüschendorf (2012d); for some extensions see Puccetti et al. (2012).
Precisely, the following result says that in great generality one can expect approximative sharpness
of the unconstrained bounds A (for m) and B (for M) in the case of large portfolios.
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Theorem 2.3 (Asymptotic sharpness of unconstrained bound). Let Xi be integrable random variables,
Xi ∼ Fi. Assume that there exists Xn

i = fn
i (U) ∼ Fi, 1 � i � n such that for some sequences αn ↓ q,

βn ↑ 1 it holds

(AM)
n∑

i=1

Xn
i = cn +Rn on [αn, βn],

where cn are constants and Rn = rn(U) with Ern(U[q,1]) −→
n→∞

0, i.e. Sa
n :=

∑n
i=1X

n
i is ‘asymptotically

mixing’ on [q, 1].

Then
VaR+

q [S
a
n]

TVaRq(Sc
n)
−→ 1,

i.e. the upper tail Value-at-Risk bound is asymptotically sharp.

The proof of this result is similar as the proof of the sharpness under the mixing condition in
Theorem 2.2 and therefore omitted.

The asymptotic mixability condition (AM) can be verified in particular in the homogeneous case
with decreasing densities (see Wang and Wang (2011)) but also in cases where Fi can take only finitely
many distribution functions of this type say G1, . . . , Gm (see also Puccetti et al. (2012, 2013)).

2.2 VaR bounds and convex order

Sharpness of the unconstrained bounds requires that the portfolio sum is constant on the upper part
resp. on the lower part of the distribution. This feature suggests that there is a connection between
studying “the variability” of sums and finding VaR bounds. Specifically, in this subsection we describe
that the problem of obtaining good VaR bounds is closely related to the problem of determining lower
minimal elements for the portfolio sum on the upper respectively on the lower part with respect to
convex order. This connection is useful as it leads to improved bounds in certain cases.

In what follows we denote by F q
i the distribution of Fi when restricted to the upper q-part of Fi,

i.e. formally F q
i is the distribution of F−1

i (U), where U is uniformly distributed on [q, 1]. The VaR
upper bound problem can indeed be equivalently described by restricting to the upper q-part of the
distributions (see Puccetti and Rüschendorf (2012b)). The following theorem states that the problem
of obtaining a sharp upper bound for the Value-at-Risk of a sum is closely related to determine
minimal sums in convex order (for given marginal distributions). More precisely, an improvement of
a sum with respect to convex order leads to an improvement of the Value-at-Risk. Thus sharp upper
bounds for the Value-at-Risk of a sum are given by a sum minimal in convex order.

Theorem 2.4 (VaR bounds and convex order). Let Xi, Yi ∼ Fi and let Xq
i , Y

q
i ∼ F q

i be the restrictions
to the upper q-parts. If

Sq =
n∑

i=1

Y q
i �cx

n∑
i=1

Xq
i , (2.3)

then

VaR+
q

[
n∑

i=1

Xi

]
� VaR+

0 [Sq] � B.

For the proof see the Appendix.

As a consequence we get again sharpness in the case that the distributions are mixing on the upper
part.
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Corrolary 2.5. Assume there exist Y q
i ∼ F q

i with Sq =
∑n

i=1 Y
q
i = c. Then for all Xi ∼ Fi it holds

VaR+
q

[
n∑

i=1

Xi

]
� VaR+

0 [S
q] = B.

Remark 2.6.

(i) In general, as stated in (2.3) the worst value for VaRq[S] is attained for some minimal element
in the class F q of sums of the components of random vectors (Y1, . . . , Yn) such that Yi ∼ F q

i in
convex order. In dimension n = 2 a smallest element in convex order on the upper part exists
and is known to be the countermonotonic distribution, i.e.

Xcm
1 = F−1

1 (U), Xcm
2 = F−1

2 (1− U), (2.4)

where U = U[q,1] is uniformly distributed on [q, 1] (see Rüschendorf (1983)). The resulting VaR
bound is by Theorem 2.4 a sharp upper bound and is identical to the solution of this case in
Rüschendorf (1982).

(ii) It is well-known that the comonotonic sum is the largest possible element in F q in convex order
(Meilijson and Nadas (1979)),

S �cx S
c (2.5)

for S =
∑n

i=1 Yi, S
c =

∑n
i=1 Y

c
i , Yi ∼ F q

i . Hence, the comonotonic dependence does not yield a
valid solution of our VaR upper bound1.

(iii) Similarly to Theorem 2.4 we get an improved lower bound for VaRq[
∑n

i=1Xi]. Let Fi,q be the
distribution of F−1

i (U) for U ∼ U(0, q) and let for Xi, Yi ∼ Fi, Xi,q, Yi,q ∼ Fi,q be the restrictions
to the lower q-part. Then we get:
If Sq =

∑n
i=1 Yi,q �cx

∑n
i=1Xi,q, then

A � VaR1 Sq � VaRq

[
n∑

i=1

Xi

]
. (2.6)

Thus from convex ordering we get an improved lower bound for the Value-at-Risk given by the
upper bound of Sq. In particular, sharp lower bounds for the Value-at-Risk of a sum are given
by a sum minimal in convex order. If the Yi,q (i = 1, 2, . . . , n) can be chosen mixing on [0, q],
then obviously Sq =

∑n
i=1 Yi,q �cx S =

∑
Xi,q and we obtain as a consequence sharp lower

bounds (see Theorem 2.2).

3 VaR bounds with a variance constraint on the portfolio

sum

3.1 Variance-constrained bounds

We now propose to improve the bounds by constraining the variance of the sum X1+X2+ · · ·+Xn to
be below a maximum level s2. From the introduction we recall that this setting is highly relevant as
in many practical situations the use of historical data on observed portfolio losses allows to estimate
(a bound on) the variance of the portfolio sum. We first provide an example that gives some intuition
as to how we can deal with the constrained problem.

1An exception occurs when all risks are right bounded and the probability level q used for assessing the VaR is
sufficiently large.
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Example 3.1. Let X1 and X2 be both uniformly distributed on the unit interval and assume that
s2 � 3

16
(e.g., s2 = ∞). We are interested in finding VaR bounds for X1 +X2 with q = 0.75. From

Theorem 2.1, A = 3
4
, B = 7

4
. Next, consider Y1 and Y2, uniformly distributed random variables over

(0, 1) such that Y2 =
3
4
−Y1 if Y1 <

3
4
and Y2 =

7
4
−Y1 if Y1 � 3

4
. Note that Y1+Y2 =

3
4
= A for Y1 <

3
4

and Y1 + Y2 = 7
4
= B for Y1 � 3

4
. Thus, VaRq[Y1 + Y2] = A and VaR+

q [Y1 + Y2] = B. Furthermore,
var(Y1+ Y2) = q(A− 1)2+ (1− q)(B− 1)2 = 3

16
� s2, thus the variance constraint is satisfied. Hence,

for s2 � 3
16

we have that m = A and M = B and we have also shown that both m and M are attained
by (Y1, Y2).

The example shows that the unconstrained bounds A and B can also be sharp for the constrained
problems (1.2) and (1.3) respectively. More surprisingly, the dependence structures to attain the
upper resp. the lower bound are identical. When s2 < 3

16
, the bounds A and B will not be sharp for

the respective problems (1.2) and (1.3).

Inspired by Example 3.1 and Figure 2.1, we define a random variable X∗ that takes two possible
values corresponding to the bounds A and B that we derived in Theorem 2.1:

X∗ =

{
A with probability q,

B with probability 1− q.
(3.1)

Then, the cdf F of X∗ verifies F (x) = 0 if x < A, F (x) = q if A � x < B and F (x) = 1 if x � B. Note
that E(X∗) = μ whereas var(X∗) is given as var(X∗) = q(A−μ)2+(1− q)(B−μ)2. This distribution
is going to play a key role in solving the constrained problems (1.2) and (1.3).

In the presence of an additional variance constraint on the portfolio sum, A and B (as in Theo-
rem 2.1) are still bounds for VaRq [X1 +X2 + · · ·+Xn] and they may still be attained in which case
they are best possible. For example, assume that the lowest value that X1 +X2 + · · ·+Xn takes is A
with probability q. In this case, X1+X2+· · ·+Xn has minimum variance2 if X1+X2+· · ·+Xn =d X

∗

and thus A may be attained depending on the value s2. Similarly, the upper bound for the Value-at-
Risk (with confidence q) is reached when B is the largest value that X1+X2+ · · ·+Xn can take (with
probability 1 − q). Thus, when the variable X∗ satisfies the variance constraint, i.e., var(X∗) � s2,
then the bounds A and B cannot be readily improved. However, if var(X∗) > s2, then A and B are
generally too wide and better bounds are to be constructed. It is then intuitive that better bounds
can be found by constructing a variable Y taking two values a (larger than A) and b (smaller than B)
with respective probabilities q and 1 − q in such a way that the variance constraint of the portfolio
sum is satisfied.

Pursuing this idea further, let us define the function

B(α) :=
1

1− q

∫ 1−α

q−α

VaRu [S
c] du (3.2)

on the interval [0, q] and note that B(0) = B. Let us also define the variable X∗
α taking the values

A(α) and B(α),

X∗
α =

{
A(α) with probability q,

B(α) with probability 1− q,
(3.3)

in which A(α) := μ−B(α)(1−q)
q

. Note that A(0) = A and thatX∗
0 =d X

∗.We have the following property.

2It is easy to prove that X∗ is of minimum variance among all the random variables Z that take the value A with
probability q and that satisfy E(Z) = μ.
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Proposition 3.2. There exists 0 < β < q such that α→var(X∗
α) := q(A(α)−μ)2+(1−q)(B(α)−μ)2

is continuously decreasing on [0, β] with minimum value given by var(X∗
β) = 0 and with maximum

value given by var(X∗
0 ) = q(A− μ)2 + (1− q)(B − μ)2.

The following theorem shows that the construction as outlined above gives bounds on Value-at-
Risk in the presence of a variance constraint.

Theorem 3.3. Let q ∈ (0, 1), Xi ∼ Fi (i = 1, 2, . . . , n), Sn =
∑n

i=1Xi satisfying var(Sn) � s2. Then
we have

a) a := A(α∗) � m � VaRq [Sn] � VaR+
q [Sn] � M � b := B(α∗).

where α∗ is defined as

α∗ := min
{
α | 0 � α � q, var(X∗

α) � s2
}
, (3.4)

b) If s2 � q(A− μ)2 + (1− q)(B − μ)2 then a = A and b = B.

Otherwise, a = μ− s

√
1− q

q
and b = μ+ s

√
q

1−q
. (3.5)

The proof of Theorem 3.3 is given in the Appendix.

The presence of the variance constraint does not always strengthen the bounds A and B. Indeed,
the variable X∗ (= X∗

0 ), taking two values A and B may also satisfy the variance constraint, i.e.
var(X∗) � s2 and in this case a = A and b = B. Hence, we conclude that if s2 is not too large (i.e.
when s2 � q(A−μ)2+(1− q)(B−μ)2) then the bounds a and b that are obtained for the constrained
case strictly outperform the bounds in the unconstrained case.

The question thus rises what is meant with “too large”. This aspect pertains to the characteristics
of the problem and the data at hand. However, a few observations are of interest. When all risks
are identically distributed then the bounds A and B grow linearly with the size of the portfolio
but on the other hand, as the standard deviation of a portfolio is sub-additive, the condition s2 �
q(A − μ)2 + (1 − q)(B − μ)2 becomes harder to satisfy, meaning that it becomes more likely that
the bounds a and b are better than A and B. For example, when the risks (e.g. in a life insurance
context) are approximately independent, then the bounds a and b will strictly improve upon A and B
for moderate portfolio sizes. On the other hand, when all risks are positively and equally correlated,
then when n gets large a new risk Xn+1, that is added to an existing portfolio loss Sn, becomes
perfectly correlated with this portfolio, thus resulting in standard deviations that add up meaning
that a and b may be identical to A and B again.

Remark 3.4. (i) When there is no information on the dependence available we are still able to
conclude

μ−
n∑

i=1

σi

√
q

1− q
� VaRq

[
n∑

i=1

Xi

]
� VaR+

q

[
n∑

i=1

Xi

]
� μ+

n∑
i=1

σi

√
q

1− q
. (3.6)

where σ2
i = var(Xi), 1 � i � n. Indeed, as the standard deviation is sub-additive it is clear that

s �
∑n

i=1 σi. Thus (3.6) is a consequence of Theorem 3.3.
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(ii) Sometimes one knows some of the correlations between the risks Xi. This partial information
can then be used to give an upper bound on the variance of the portfolio sum, which may or
may not sharpen the unconstrained Value-at-Risk bounds that we derived in Theorem 3.3. For
example, assume that var(X1 +X2 + · · ·+Xi) � s21 and var(Xi+1 +X2 + · · ·+Xn) � s22. Then,

μ− (s1 + s2)

√
q

1− q
� VaRq

[
n∑

i=1

Xi

]
� VaR+

q

[
n∑

i=1

Xi

]
� μ+ (s1 + s2)

√
q

1− q
. (3.7)

Note however that
√

var(X1 +X2 + · · ·+Xn) = s � s1 + s2 implying that the knowledge of
some correlations does not readily allow to improve upon the bounds in Theorem 3.3.

3.2 Sharpness and convex order

By Theorem 3.3 b), the bounds in the variance-constrained case are given by a two-point distribution
in a, b for small variance respectively A, B for large variance. Similarly as in Theorem 2.2 for the
unconstrained case we show that the constrained bounds are sharp if and only if risks X1, X2, . . . , Xn

have a mixing property.

Theorem 3.5 (Sharpness of variance-constrained bounds). Let Xi = fi(U) ∼ Fi, 1 � i � n where U
is uniformly distributed on (0, 1), and Sn =

∑n
i=1Xi satisfies the variance constraint, i.e. var(Sn) � s2.

Without loss of generality let {Sn � VaRq[Sn]} = {U � q}. Then, the upper bound b in Theorem 3.3
b) is attained if and only if the lower bound a is attained and equivalently, if

Sn = b on {U � q} and Sn = a on {U < q}, (3.8)

i.e. Sn is mixing on the upper q-part {U � q} and on the lower q-part {U < q} with mixing constants
b, a.

In general, the bounds proposed in Theorem 3.3 are not sharp. Theorem 3.5 however suggests
how to obtain sharp VaR bounds when there is a constraint on the variance of the sum. Loosely
speaking, the outcomes of the variables should be rearranged to produce a dependence between the
risks such that the outcomes for the sum are as concentrated as possible around the two values a
and b that occur with respective probabilities 1 − q and q. This idea is concordant with the aim of
finding convex order bounds. Indeed, the improvement result in Theorem 2.4 based on convex order
that was valid for the unconstrained case extends in a similar way also to the variance-constrained
case. Let Yi = fi(U) ∼ Fi, i = 1, 2, . . . , n, and let Sn =

∑n
i=1 Yi with var(Sn) � s2, be an admissible

solution for the constrained VaRq upper bound problem. Let the upper q-part of the distribution of
Sn, {Sn � VaRq[Sn]}, be without lost of generality identical to {U � q}.

Then we get the following generalization of Theorem 3.5 saying that optimal solutions of the
constrained problem should be as flat as possible on their upper and on their lower q-part. In what
follows, for given random variables X, Y and subset T of Ω, X|T �cx Y |T denotes that the conditional
distribution of the restriction X|T is smaller in convex order than Y |T .
Theorem 3.6 (Variance-constrained bounds and convex order). If Xi ∼ Fi and Sn =

∑n
i=1Xi satisfy

Sn|U�q �cx Sn|U�q and Sn|U<q �cx Sn|U<q, (3.9)

then Sn is admissible, var(Sn) � s2, and Sn is an improvement of Sn in the sense that

VaR+
q [Sn] � VaR+

q [Sn] and VaRq[Sn] � VaRq[Sn].
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The proof of Theorem 3.6 is given in the Appendix. Theorem 3.6 says that in order to get
sharp upper bounds of VaR+

q [Sn] and sharp lower bounds for VaRq[Sn] one should try to rearrange
the random variables Yi on the upper q-part T = {U � q} of Sn and also on their lower q-part
T c = {U < q} such that the distribution is as flat as possible (in convex order) on T and on T c. In
particular this holds true for an optimal solution of the variance-constrained problem. Both flattenings
can be done separately or simultaneously.

This basic idea is developed in the next section into an algorithm that allows to approximate sharp
VaRq bounds in the variance-constrained case.

4 The extended rearrangement algorithm (ERA)

This section extends the rearrangement algorithm (RA) of Puccetti and Rüschendorf (2012a) and
Embrechts, Puccetti and Rüschendorf (2013) for finding approximate sharp bounds on the distribution
of a function of n dependent random variables having fixed marginal distributions. The basic idea
of the ERA algorithm is based on Section 3.2 and aims at making the distribution of Sn as flat as
possible on the upper and lower part by applying the RA algorithm on both parts and by moving in
a systematic way through the domains in order to satisfy the variance constraint.

The algorithm requires random variables that are discretely distributed. Let d be the number
of points used to discretize the random variables and assume that each risk Xj (j = 1, 2, . . . , n) is
sampled into d equiprobable values.

To avoid confusion, when we compute the bounds A,B resp. a, b for the discretized (sampled)
risks, then we use the notations Ad, Bd resp. ad, bd.

Bd =

n∑
j=1

1

d− k

d∑
i=k+1

xij , Ad =

n∑
j=1

d∑
i=1

xij − d− k

k
Bd. (4.1)

Denote by μd the mean of the sum of the discretized risks. We first describe briefly the RA and
next describe in detail the extended rearrangement algorithm that we propose as a suitable way to
compute numerical VaR bounds of portfolios in the presence of a variance constraint. We point out
that unlike the theoretical VaR bounds the algorithm does not require that the risks have finite mean
(unconstrained bounds) or variance (constrained bounds).

4.1 The Rearrangement Algorithm (RA)

The rearrangement algorithm (RA) can be seen as a method to construct dependence between vari-
ables Xj (j = 1, 2, . . . , n) such that the distribution of Sn becomes as small as possible in convex order.
For each j, define xij := F−1

j ( i
d+1

) (i = 1, . . . , d; j = 1, 2, . . . , n) to obtain a d × n matrix X = (xij),
corresponding to a multivariate vector (X1, X2, . . . , Xn) that is comonotonic. Let us denote the ma-
trix after rearrangement by X∗= (x∗

ij). In order to make the distribution of S∗
n = X∗

1 +X∗
2 + · · ·+X∗

n

as small as possible in convex order, one needs to rearrange the elements within each column j
(j = 1, 2, . . . , n) the d values xij (i = 1, . . . ., d) such that the function i → ∑n

i=1 x
∗
ij is “as flat as

possible” corresponding to the objective of making the distribution of S∗
n = X∗

1 +X∗
2 + · · · +X∗

n as
small as possible in convex order. Note that as the rearrangements are only done within columns, Xj

and X∗
j will have the same distribution. Of course, when the distribution is Sn is the smallest possible

in the sense of convex order it must also have minimum variance. Hence, it must hold that for all
� = 1, 2, . . . , n, X� is anti-monotonic with

∑n
k=1,k �=�X

∗
k (Puccetti and Rüschendorf (2012a, Theorem
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2.1)). This observation is at the core of their rearrangement method: The subsequent columns of the
matrix are rearranged such that they become anti-monotonic with the sum of all other columns until
convergence is reached.

This algorithm was successfully used to compute (approximate) VaR bounds on the sum of n
dependent risks with given marginal distributions. Indeed, to maximize the Value-at-Risk of a sum of
dependent risks, Embrechts et al. (2013) applies the RA on the last rows of the matrix (corresponding
to the highest values for each risk), accounting for a probability 1− q. To fix the ideas let us assume
that there exists k ∈ {0, 1, . . . , d}, such that

q =
k

d
.

Embrechts, Puccetti and Rüschendorf (2013) then apply the RA on a (d−k)×n sub-matrix consisting
of the rows k + 1, . . . , d of the original matrix X and accounting for a probability 1− q. By doing so
the quantile function of S∗

n becomes “as flat as possible” on [q, 1] while preserving the distributions
of Xj . Then, in the ideal situation where the quantile function is constant on [q, 1], one obtains
a sum S∗

n with a VaR (at confidence level q) that is equal to the TVaR of the comonotonic sum
X1 +X2 + · · ·+Xn and thus it is the maximum possible. It is clear that the minimum VaR can be
obtained approximately by applying the RA on a k × n sub-matrix consisting of the rows 1, . . . , k of
the original matrix X.

As suggested by Theorem 3.6, for the solution of the constrained VaR bound problem it is necessary
to minimize the distributions of Sn in convex order on the upper and on the lower q-part while
satisfying the variance constraint. The following extension of the RA algorithm is consistent with this
idea by choosing in a suitable way rearrangements that are admissible for the variance constraint and
applying then the RA algorithm to the corresponding upper and lower q-parts separately.

4.2 Extended Rearrangement Algorithm

Based on Theorems 3.5 and 3.6, it is natural to modify the rearrangement algorithm used by Em-
brechts et al. (2013) and Puccetti and Rüschendorf (2012a) to construct numerically the minimum
and maximum bounds.

• Step 1: For each j ∈ {1, . . . , n} and i ∈ {1, . . . , d}, define xij := F−1
j ( i

d+1
). Let μd =

1
d

∑d
i=1

∑n
j=1 xij

• Step 2: Calculate Ad and Bd as in (4.1) (Theorem 2.1) and bd (Theorem 3.3) for the sampled
variables.

• Step 3: If q(Ad − μd)
2 + (1 − q)(Bd − μd)

2 � s2 then go directly to step 4 and the mixing
constants3 are Ad and Bd. Otherwise,

– Step 3a: for all m = 1, 2, . . . , k compute bd(m) :=
∑d−m

i=k+1−m

∑n
j=1 xij

d−k
.

– Step 3b: m∗ = min{m|bd(m) � bd}.
3We know that Ad and Bd are also going to be the constrained bounds in this case and that the variance constraint

is satisfied automatically (see the second part of Theorem 3.3).
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– Step 3c: replace M by a new matrix

M := (mij)ij ←

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(d−m∗+2)1 x(d−m∗+2)2 · · · x(d−m∗+2)n

x(d−m∗+3)1 x(d−m∗+3)2 · · · x(d−m∗+3)n

...
...

...

xd1 xd2 · · · xdn

x11 x12 · · · x1n

...
...

...

x(d−m∗+1)1 x(d−m∗+1)2 · · · x(d−m∗+1)n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Note that when m∗ = 1 then mij = xij , for all i = 1, . . . , d and j = 1, . . . , n.

• Step 4: Initiate r ← 0 and v−1 ← +∞.

• Step 5: Apply the RA on (I) := {(mij)i=1,...,k,j=1,...,n}, and obtain (x∗
ij)i=1..k,j=1..n.

• Step 6: Apply the RA on (II) := {(mij)i=(k+1),...,d,j=1,...,n}, and obtain (x∗
ij)i=(k+1)..d,j=1..n.

• Step 7: Compute S∗
i =

∑
j x

∗
ij for each i = 1, . . . , d.

• Step 8: Compute vr :=
1
d

∑
i (S

∗
i )

2 − (
∑

i
S∗
i

d
)2.

– If vr < s2 then the approximate solutions to Problems (1.2) and (1.3) have been found; the
lower bound is given by maxi�k(x

∗
i1 + · · · + x∗

in) and the upper bound by mini�k+1(x
∗
i1 +

· · ·+ x∗
in). The algorithm must stop here.

– If vr > vr−1 the variance starts to increase and the algorithm will not converge (as the
variance bound can not be satisfied). The algorithm must stop here.

– Otherwise, r ← r + 1 and go back to step 5 with the following new matrix M

M := (mij)ij ←

⎡
⎢⎢⎢⎢⎢⎢⎣

md1 md2 · · · mdn

m11 m12 · · · m1n

...
...

...

m(d−1)1 m(d−1)2 · · · m(d−1)n

⎤
⎥⎥⎥⎥⎥⎥⎦
.

At each step 5 and 6, the algorithm makes the quantile function of the sum as flat as possible to
the left (respectively to the right) of the cutoff point corresponding to desired probability level q, used
to assess the VaR. By construction, one expects the first value obtained for v to be slightly larger
than s2. As r increases, the average value on the left increases but the average value on the right
decreases. Hence the new value v will decrease and may become smaller than s2. If s2 is a “feasible”
variance constraint, then the algorithm will usually stop. However, due to the discretization and the
fact that there is no formal guarantee that the algorithm provides the true solution, it may happen
that v never becomes smaller than s2 or that the values for v start increasing again. The algorithm
stops as soon as one of these two events happens.

To further improve the quality of the algorithm, it appears very useful (especially when risks are
heavily tailed) to compute an upper bound (as an approximation for bd) and a lower bound (as an
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approximation for ad) separately. To this end, one can use the property that for any random variable
X it holds that

−VaR+
1−q[−X ] = VaRq[X ].

Hence, one runs the extended RA twice: one time as it is described above and one time with X
replaced by −X and q replaced by 1 − q. Next one takes the best upper and lower bounds among
the two algorithms. Typically the algorithm as described above works better for obtaining an upper
bound whereas replacing the role of X by −X and q by 1 − q allows to get a better approximation
for the lower bound. Finally, note that by setting the constraint s >

∑n
i=1 σi the ERA behaves as the

RA and thus allows to determine numerical unconstrained bounds.

The bounds that are obtained by running the algorithm are within the interval (ad, bd). If the
obtained values are close to the boundary values ad and bd then this means that the algorithm is
indeed able to identify a dependence that gives rise to (almost) sharp VaR bounds for the portfolio
sum. In the next section we assess the performance of the ERA using some examples. These examples
suggest that the algorithm that we propose to compute approximate VaR bounds is performing very
well.

4.3 Example with normally distributed risks

Assume that (X1, X2, . . . , Xn) is a vector of dependent standard normally distributed random variables
with a correlation matrix (ρij) such that ρii = 1 for i = 1, . . . , n and ρij = ρ for all i �= j. Note that
the dependence structure of (X1, X2, . . . , Xn) is only partially specified (through the knowledge of the
pairwise correlations) so that we cannot compute the VaR of the portfolio sum Sn = X1+X2+· · ·+Xn

precisely. Hence, we apply the ERA to compute numerical upper and lower bounds and we compare
them with the theoretical bounds of Theorem 2.1 and Theorem 3.3.

In Table 4.1, we assess the VaRs at 95%, 99%, 99,5% for three levels of correlation ρ = 0, ρ = 0.15
and ρ = 0.3 and the portfolio sizes n = 10 and n = 100. Panel A gives the constrained lower and
upper VaR bounds using the ERA for different discretization levels, namely d = 1, 000, d = 10, 000
and d = 100, 000. We denote these constrained lower and upper bound by md and Md, respectively.
Panel B gives the corresponding constrained bounds ad and bd as an application of Theorem 3.3,
whereas Panel C gives the unconstrained bounds Ad and Bd using Theorem 2.1. The last line in
Panel B and C gives the values for a∞ := a and b∞ := b, respectively A∞ := A and B∞ := B. These
bounds are based on the original (non discretized) distributions and are explicitly given as

A = −nφ(Φ
−1(q))

q
, B = n

φ(Φ−1(q))

1− q

and

a = max

(
−s
√

1− q

q
, A

)
, b = min

(
s

√
1− q

q
, B

)
,

where φ and Φ denote the standard normal density and distribution function and where s2 = n+n(n−
1)ρ is the variance of Sn. Finally, Panel D assumes that (X1, X2, . . . , Xn) is multivariate normally
distributed (the dependence is thus assumed to be Gaussian) in which case the VaR numbers of the
portfolio sum can be computed exactly.

There are several interesting observations. First, when comparing the results of Panel A and
Panel B, we observe that the ERA is performing remarkably well. The obtained numerical bounds
md and Md are very close to their theoretical counterparts ad and bd, showing that the ERA is able
to construct the dependence between the risks such that the sum is (almost exactly) concentrated on
two values ad and bd.
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Panel A: Approximate sharp bounds obtained by the ERA as presented in Section 4.2

(md,Md) n = 10 n = 100

ρ = 0 ρ = 0.15 ρ = 0.3 ρ = 0 ρ = 0.15 ρ = 0.3

VaR95%, d = 1, 000 (−0.709; 13.69) (−1.073; 20.43) (−1.073; 20.43) (−2.284; 43.15) (−9.131; 172.3) (−10.75; 204.4)

VaR99%, d = 1, 000 (−0.260; 26.00) (−0.260; 25.99) (−0.260; 26.00) (−0.993; 98.49) (−2.627; 260.2) (−2.627; 260.2)

VaR99.5%, d = 1, 000 (−0.136; 27.86) (−0.136; 27.85) (−0.136; 27.85) (−0.695; 139.9) (−1.400; 278.9) (−1.400; 278.9)

VaR95%, d = 10, 000 (−0.721; 13.77) (−1.084; 20.60) (−1.084; 20.60) (−2.293; 43.58) (−9.133; 173.3) (−10.84; 206.0)

VaR99%, d = 10, 000 (−0.268; 26.56) (−0.268; 26.56) (−0.268; 26.56) (−1.003; 99.40) (−2.683; 265.6) (−2.683; 265.6)

VaR99.5%, d = 10, 000 (−0.144; 28.76) (−0.144; 28.76) (−0.144; 28.76) (−0.706; 141.0) (−1.445; 287.6) (−1.445; 287.6)

VaR95%, d = 100, 000 (−0.725; 13.78) (−1.085; 20.62) (−1.085; 20.62) (−2.294; 43.58) (−9.133; 173.5) (−10.85; 206.2)

VaR99%, d = 100, 000 (−0.269; 26.64) (−0.269; 26.64) (−0.269; 26.64) (−1.005; 99.50) (−2.691; 266.4) (−2.691; 266.4)

VaR99.5%, d = 100, 000 (−0.145; 28.90) (−0.145; 28.90) (−0.145; 28.90) (−0.709; 141.1) (−1.452; 289.0) (−1.452; 289.0)

Panel B: Constrained bounds as obtained in Theorem 3.3

(ad, bd) n = 10 n = 100

ρ = 0 ρ = 0.15 ρ = 0.3 ρ = 0 ρ = 0.15 ρ = 0.3

VaR95%, d = 1, 000 (−0.721; 13.70) (−1.076; 20.44) (−1.076; 20.44) (−2.280; 43.33) (−9.079; 172.5) (−10.76; 204.4)

VaR99%, d = 1, 000 (−0.263; 26.02) (−0.263; 26.02) (−0.263; 26.02) (−0.999; 98.90) (−2.628; 260.2) (−2.628; 260.2)

VaR99.5%, d = 1, 000 (−0.140; 27.89) (−0.140; 27.89) (−0.140; 27.89) (−0.705; 140.2) (−1.402; 278.9) (−1.402; 278.9)

VaR95%, d = 10, 000 (−0.725; 13.77) (−1.084; 20.60) (−1.084; 20.60) (−2.292; 43.55) (−9.126; 173.4) (−10.84; 206.0)

VaR99%, d = 10, 000 (−0.268; 26.56) (−0.268; 26.56) (−0.268; 26.56) (−1.004; 99.42) (−2.683; 265.6) (−2.683; 265.6)

VaR99.5%, d = 10, 000 (−0.144; 28.76) (−0.144; 28.76) (−0.144; 28.76) (−0.708; 141.0) (−1.445; 287.6) (−1.445; 287.6)

VaR95%, d = 100, 000 (−0.725; 13.78) (−1.085; 20.62) (−1.085; 20.62) (−2.294; 43.58) (−9.133; 173.5) (−10.85; 206.2)

VaR99%, d = 100, 000 (−0.269; 26.64) (−0.269; 26.64) (−0.269; 26.64) (−1.005; 99.49) (−2.691; 266.4) (−2.691; 266.4)

VaR99.5%, d = 100, 000 (−0.145; 28.9) (−0.145; 28.90) (−0.145; 28.90) (−0.709; 141.1) (−1.452; 289.0) (−1.452; 289.0)

VaR95%, d = +∞ (−0.725; 13.78) (−1.086; 20.63) (−1.086; 20.63) (−2.294; 43.59) (−9.134; 173.5) (−10.86; 206.3)

VaR99%, d = +∞ (−0.269; 26.65) (−0.269; 26.65) (−0.269; 26.65) (−1.005; 99.50) (−2.692; 266.5) (−2.692; 266.5)

VaR99.5%, d = +∞ (−0.145; 28.92) (−0.145; 28.92) (−0.145; 28.92) (−0.709; 141.1) (−1.453; 289.2) (−1.453; 289.2)

Panel C: Unconstrained bounds as obtained in Theorem 2.1

(Ad, Bd) n = 10 n = 100

ρ = 0 ρ = 0.15 ρ = 0.3 ρ = 0 ρ = 0.15 ρ = 0.3

VaR95%, d = 1, 000 (−1.076; 20.44) (−1.076; 20.44) (−1.076; 20.44) (−10.76; 204.4) (−10.76; 204.4) (−10.76; 204.4)

VaR99%, d = 1, 000 (−0.262; 26.02) (−0.263; 26.02) (−0.263; 26.02) (−2.628; 260.2) (−2.628; 260.2) (−2.628; 260.2)

VaR99.5%, d = 1, 000 (−0.140; 27.89) (−0.140; 27.89) (−0.140; 27.89) (−1.402; 278.9) (−1.402; 278.9) (−1.402; 278.9)

VaR95%, d = 10, 000 (−1.084; 20.60) (−1.084; 20.60) (−1.084; 20.60) (−10.84; 206.0) (−10.84; 206.0) (−10.84; 206.0)

VaR99%, d = 10, 000 (−0.268; 26.56) (−0.268; 26.56) (−0.268; 26.56) (−2.683; 265.6) (−2.683; 265.6) (−2.683; 265.6)

VaR99.5%, d = 10, 000 (−0.145; 28.76) (−0.144; 28.76) (−0.144; 28.76) (−1.445; 287.6) (−1.445; 287.6) (−1.445; 287.6)

VaR95%, d = 100, 000 (−1.085; 20.62) (−1.085; 20.62) (−1.085; 20.62) (−10.85; 206.2) (−10.85; 206.2) (−10.85; 206.2)

VaR99%, d = 100, 000 (−0.269; 26.64) (−0.269; 26.64) (−0.269; 26.64) (−2.691; 266.4) (−2.691; 266.4) (−2.691; 266.4)

VaR99.5%, d = 100, 000 (−0.145; 28.90) (−0.145; 28.90) (−0.145; 28.90) (−1.452; 289.0) (−1.452; 289.0) (−1.452; 289.0)

VaR95%, d = +∞ (−1.086; 20.63) (−1.086; 20.63) (−1.086; 20.63) (−10.86; 206.3) (−10.86; 206.3) (−10.86; 206.3)

VaR99%, d = +∞ (−0.269; 26.65) (−0.269; 26.65) (−0.269; 26.65) (−2.692; 266.5) (−2.692; 266.5) (−2.692; 266.5)

VaR99.5%, d = +∞ (−0.145; 28.92) (−0.145; 28.92) (−0.145; 28.92) (−1.453; 289.2) (−1.453; 289.2) (−1.453; 289.2)

Panel D: Exact VaR numbers when the risks are multivariate normally distributed

n = 10 n = 100

ρ = 0 ρ = 0.15 ρ = 0.30 ρ = 0 ρ = 0.15 ρ = 0.30

VaR95% 5.201 7.974 10.005 16.449 65.485 91.137

VaR99% 7.357 11.277 14.151 23.263 92.617 128.897

VaR99.5% 8.145 12.487 15.668 25.758 102.549 142.720

Table 4.1 Bounds on Value-at-Risk of sums of normally distributed risks

Second, the distance between the upper and lower bounds as reported in the different Panels A,
B and C is usually significant. For example, Panel B shows that the true 95%-VaR of a portfolio of
100 uncorrelated (but not independent) normally distributed risks is in the interval (−2.294; 43.59).
Considering that the given portfolio has zero mean and a standard deviation of 10, this interval
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appears to be rather wide. Note indeed that when the risks are independent then the true 95%-VaR
can be computed and is given by 16.449. In other words, when the risks are known to be independent
the 95%-VaR is approximately 3 times smaller than the reported upper bound (i.e. 43.59) that is valid
when we only know that the correlations are equal to zero. When we ignore the variance constraint,
then the upper bound is as high as 206.3. We also observe that the distance between the bounds
becomes wider when increasing the level of the probability q used to assess VaR. These observations
already suggest that misspecification of models is a significant concern, especially when the VaRs are
assessed at high probability levels (which is the case in solvency frameworks such as Solvency II and
Basel III where q = 99.5%).

Third, when comparing the results of Panel B and Panel C, we observe that adding a variance
constraint may have a significant impact on the unconstrained bounds. When the portfolio exhibits
low to moderate correlation, then the constraint bounds a and b that we propose improve upon the
unconstrained ones, A and B. It is straightforward to show that

a > A, b < B ⇔ ρ � ρ̂(n, q) :=
n (φ(Φ−1(q)))

2

q(1− q)(n− 1)
− 1

n− 1
(4.2)

The relation (4.2) allows us to derive the critical correlation values ρ̂(n, q) as a function of portfolio
size and probability level q. If the correlation ρ of the portfolio is lower than the critical value
then the constrained bounds improve upon the unconstrained ones. We report some values here:
ρ̂(10, 0.95) = 0.138, ρ̂(10, 0.995) = −0.0644, ρ̂(100, 0.95) = 0.216, and ρ̂(100, 0.995) = 0.0324.

4.4 Examples with Pareto distributed risks

We assume that (X1, X2, . . . , Xn) is an homogeneous portfolio of dependent Pareto distributed random
variables (of type II). Hence, Fi(x) = 1−(1+x)−θ (i = 1, 2, . . . , n) with x > 0 and with a tail parameter
θ > 0. The correlation matrix (ρij) is such that ρii = 1 for i = 1, . . . , n and ρij = ρ for all i �= j.

We first consider the case θ = 3 so that the first two moments exist, which allows us to compute
the different VaR bounds that we discussed in the previous sections. We first calculate,

E(Xi) =
1

θ − 1
, var(Xi) =

2

(θ − 1)(θ − 2)
− 1

(θ − 1)2
, F−1

Xi
(p) = (1− p)−1/θ − 1,

TVaRq(Xi) =
(1− q)−1/θ

(1− 1
θ
)
− 1, LTVaRq(Xi) =

1

q
(E(Xi)− (1− q)TVaRq(Xi)).

When applying Theorem 2.1, we find that the absolute unconstrained bounds are

B = n
(1− q)−1/θ

(1− 1
θ
)
− n, A =

n

q

1

θ − 1
− B

(1− q)

q
.

and from Theorem 3.3,

a = max

(
−s
√

1− q

q
, A

)
, b = min

(
s

√
1− q

q
, B

)
,

where s2 = (n+ n(n− 1)ρ) ( 2
(θ−1)(θ−2)

− 1
(θ−1)2

).

We present the results of our calculations in Tables 4.2 in a similar way as in the previous example.
Panel A shows the numerical sharp lower and upper bounds obtained by using the ERA (note that the
discretization involves the computation of xij = (1−i/(d+1))−1/θ−1 for i = 1, . . . , d; j = 1, 2, . . . , n).
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Panel A: Approximate sharp bounds obtained by the ERA as presented in Section 4.2

(md,Md) n = 10 n = 100

ρ = 0 ρ = 0.15 ρ = 0.3 ρ = 0 ρ = 0.15 ρ = 0.3

VaR95% d = 1, 000 (4.387; 14.57) (4.118; 19.93) (3.894; 24.24) (47.47; 80.69) (42.55; 174.0) (39.99; 222.7)

VaR99%, d = 1, 000 (4.883; 26.69) (4.594; 38.25) (4.472; 48.40) (48.40; 121.2) (46.22; 336.4) (45.10; 447.5)

VaR99.5% , d = 1, 000 (5.960; 36.56) (4.868; 53.99) (4.616; 63.88) (48.61; 151.4) (47.07; 457.6) (46.61; 550.4)

VaR95%, d = 10, 000 (4.401; 15.72) (4.091; 21.85) (3.863; 26.19) (47.96; 84.72) (42.48; 188.9) (39.61; 243.3)

VaR99%, d = 10, 000 (5.486; 28.69) (4.591; 43.45) (4.492; 53.22) (48.99; 129.5) (46.61; 366.0) (45.36; 489.5)

VaR99.5% , d = 10, 000 (6.820; 39.48) (5.471; 59.60) (4.850; 73.11) (49.23; 162.8) (47.54; 499.1) (46.68; 671.5)

Panel B: Variance-constrained bounds as obtained in Theorem 3.3

(ad, bd) n = 10 n = 100

ρ = 0 ρ = 0.15 ρ = 0.3 ρ = 0 ρ = 0.15 ρ = 0.3

VaR95%, d = 1, 000 (4.383; 14.98) (4.100; 20.35) (3.893; 24.28) (47.45; 80.97) (42.45; 175.9) (39.84; 225.5)

VaR99%, d = 1, 000 (4.680; 27.90) (4.557; 40.15) (4.466; 49.12) (48.39; 121.8) (46.20; 338.5) (45.06; 451.9)

VaR99.5% , d = 1, 000 (4.749; 37.50) (4.662; 54.87) (4.615; 64.06) (48.61; 152.2) (47.06; 459.4) (46.26; 620.1)

VaR95%, d = 10, 000 (4.398; 16.03) (4.089; 21.92) (3.861; 26.23) (47.96; 84.74) (42.48; 188.9) (39.61; 243.4)

VaR99%, d = 10, 000 (4.725; 30.20) (4.589; 43.64) (4.490; 53.50) (48.99; 129.6) (46.59; 367.3) (45.33; 491.7)

VaR99.5% , d = 10, 000 (4.800; 40.74) (4.705; 59.80) (4.634; 73.77) (49.23; 162.9) (47.54; 500.0) (46.65; 676.3)

VaR95%, d = +∞ (4.372; 16.94) (4.037; 23.30) (3.791; 27.96) (48.01; 87.75) (42.09; 200.3) (38.99; 259.2)

VaR99%, d = +∞ (4.725; 32.25) (4.578; 46.77) (4.470; 57.41) (49.13; 136.2) (46.53; 393.1) (45.18; 527.4)

VaR99.5% , d = +∞ (4.806; 43.63) (4.702; 64.22) (4.634; 77.72) (49.39; 172.2) (47.56; 536.4) (46.60; 726.9)

Panel C: Unconstrained bounds as obtained in Theorem 2.1

(Ad, Bd) n = 10 n = 100

ρ = 0 ρ = 0.15 ρ = 0.3 ρ = 0 ρ = 0.15 ρ = 0.3

VaR95%, d = 1, 000 (3.642; 29.05) (3.642; 29.05) (3.642; 29.05) (36.42; 290.5) (36.42; 290.5) (36.42; 290.5)

VaR99%, d = 1, 000 (4.435; 52.22) (4.435; 52.22) (4.435; 52.22) (44.35; 522.2) (44.35; 522.2) (44.35; 522.2)

VaR99.5%, d = 1, 000 (4.615; 64.06) (4.615; 64.06) (4.615; 64.06) (46.15; 640.6) (46.15; 640.6) (46.15; 640.6)

VaR95%, d = 10, 000 (3.646; 30.33) (3.646; 30.33) (3.646; 30.33) (36.46; 303.3) (36.46; 303.3) (36.46; 303.3)

VaR99%, d = 10, 000 (4.447; 57.76) (4.447; 57.76) (4.447; 57.76) (44.47; 577.6) (44.47; 577.6) (44.47; 577.6)

VaR99.5%, d = 10, 000 (4.633; 74.11) (4.633; 74.11) (4.633; 74.11) (46.33; 741.1) (46.33; 741.1) (46.33; 741.1)

VaR95%, d = +∞ (3.647; 30.72) (3.647; 30.72) (3.647; 30.72) (36.47; 307.2) (36.47; 307.2) (36.47; 307.2)

VaR99%, d = +∞ (4.448; 59.62) (4.448; 59.62) (4.448; 59.62) (44.48; 596.2) (44.48; 596.2) (44.48; 596.2)

VaR99.5%, d = +∞ (4.635; 77.72) (4.635; 77.72) (4.635; 77.72) (46.35; 777.2) (46.35; 777.2) (46.35; 777.2)

Table 4.2 Bounds on Value-at-Risk of sums of Pareto distributed risks (θ = 3)

Panel B gives the corresponding absolute constrained bounds and Panel C gives the absolute bounds
in the unconstrained case. The results are in line with the results that we obtain in the case of
normally distributed risks. Also in this case the ERA gives rise to numerical bounds that are close to
ones that were obtained theoretically. In other words, the absolute bounds are “nearly sharp” in this
case. The Pareto distribution has heavy tails and hence one observes a significant difference between
Ad (given by (4.1)) and A (respectively Bd and B) for small values of d as it appears in Table 4.2.
Note also that the difference between upper and lower bounds is again significant, confirming that in
the case when there is no or limited information on the dependence, the model risk that goes along
with a particular model is an issue. Note also that the impact of the variance constraint is more
significant than in the normal case. For example, when q = 99.5%, n = 100 and ρ = 0.15 we find
a numerical sharp bound m10,000 = 499.1, (close to the absolute bound b10,000 = 500.01) whereas the
unconstrained bound amounts to B10,000 = 741.1.

5 VaR bounds of credit risk portfolios

The financial crisis has increased the pressure on financial institutions and regulators to continuously
assess the adequacy of risk management models. As credit risk is a significant concern for the stability
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of the financial system, it is clear that credit risk portfolio models are in the scope of such critical
review. In this section we apply the theory on VaR bounds to the case of credit risk portfolios and
we discuss the results in the context of model risk assessment. Here, we merely define model risk as
the risk that the computed portfolio-VaR is incorrect as a result of using a misspecified model. Note
that a related issue concerns the risk of using model parameters that are estimated, a concern that
arises because of the statistical uncertainty on these estimations.

First, we show that the theoretical set-up of the paper is of particular relevance to the case of credit
risk. Next, we discuss credit portfolio models that are used in practice and we compare their VaR
numbers with the unconstrained and constrained bounds. These results show that adding the variance
constraint significantly improves the unconstrained bounds. Nevertheless, model risk remains an issue
that is hard to avoid. We provide some guidelines that can be useful for improving the regulation
regarding the way capital requirements are to be established by financial institutions.

5.1 Credit Risk Portfolio models

5.1.1 Description

Let us consider a portfolio (X1, X2, . . . , Xn) containing non-negative risks Xi = viB(pi) ∼ Fi, (i =
1, 2, . . . , n). Here, each Xi can be seen as a representation of the risk the bank runs when providing
a loan to company “i”. Specifically, pi is the probability that the i-th company defaults and in the
case of a default the loss incurred is equal to vi. We denote by pij the pairwise default probability
that both company i and company j default. The pairwise default correlation ρDij (i, j = 1, 2, . . . , n)
is then given as

ρDij =
pij − pipj√

pi(1− pi)
√

pj(1− pj)
. (5.1)

The variance of the portfolio sum S = X1 + X2 + · · · + Xn thus depends on the exposures vi
(net of recoveries), the single default probabilities pi and the pairwise default probabilities pij (i, j =
1, 2, . . . , n). As there is an intrinsic lack of sufficient default statistics (joint defaults are inherently
very rare events), it becomes clear that in practice the knowledge of the above mentioned parameters
is the maximum4 amount of information available when building models. In other words, all models
that compute risk measures for credit risk portfolios require some further ad-hoc assumptions for
describing the full dependence (e.g., the specification of the probabilities that 3 or more loans default
together). This line of reasoning shows that the problem setting that we discussed in this paper
is particularly relevant for credit risk. To compare our VaR bounds with the VaRs calculated from
various standard models we consider a homogeneous portfolio of credit risks with net exposures vi = 1
(i = 1, 2, . . . , n). Let p and ρD denote the default probability and pairwise default correlation (between
two risks Xi and Xj, i �= j).

Many industry credit risk portfolio models rely on the “Merton’s model of the firm” when com-
puting the VaR of a portfolio (see also the survey of McKinsey ((2009))). Also Basel III and Solvency
II regulatory frameworks rely on the same model when setting their VaR-based capital requirements.
The very basic idea of the Merton approach is to model a default as the event when the asset value
drops below a threshold value. Formally, after normalization, a default for the i-th risk occurs for
the event {Ni < c} where Ni is the normalized asset return and c is the constant threshold value
so that p = pi = P (Ni < c). Merton’s model further assumes that the joint asset (log-)returns are
multivariate normally distributed. Hence, for an homogeneous portfolio one can conveniently express

4In fact, it is already ambitious to have all pairwise correlations available. It is more realistic to assume knowledge
of the portfolio variance (for example, based on an analysis of the aggregate default statistics).
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the standardized asset return for the i-th obligor Ni as

Ni =
√

ρAM +
√
1− ρAεi, (5.2)

Here, M and εi (i = 1, 2, . . . , n) are independent standard normally distributed random variables
and ρA � 0 is the (asset) correlation coefficient. The variable M corresponds to a systemic factor
(describing the global economy) and the εi reflect the idiosyncratic (individual) risks. Furthermore,
for a given realization for M = m the portfolio sum has a binomial distribution with parameters n
and p(m), where p(m) is the conditional default probability given as

p(m) = P (Ni < c|M = m) = P

(
εi <

c−
√

ρAm√
1− ρA

)
= Φ

(
Φ−1(p)−

√
ρAm√

1− ρA

)
, (5.3)

where Φ is the distribution of the standard normal random variable. The VaRs can now be easily
estimated using e.g. Monte-Carlo simulation. As conditionally on the state of the economy M, the
default events are independent it follows that in the limit (n→∞) the portfolio loss S

n
has the same

distribution as p(M). We thus obtain that

lim
n→∞

VaRq

[
S

n

]
= Φ

(
Φ−1(p) +

√
ρA · Φ−1(q)√

1− ρA

)
, (5.4)

see also Vasicek (2001). In fact, the model as described above is an example of a one-factor mixture
model in which the default event of the obligor is assumed to be driven by a common economic factor
M. It can also be seen as the one-factor version of the KMV model that is highly used in the industry
and also appears in regulatory frameworks. For example, the Basel III standard framework relies on
formula (5.4) to determine the required capital that banks need to hold for their credit portfolios; see
the Basel Committee on Banking Supervision (2006), (2010). Also the Solvency II framework uses
this formula to decide on the amount of capital that insurers need to hold as a buffer against the
adverse consequences if one or more of their reinsurance or derivative counterparts fail. We refer to
Committee of Insurance and Occupational Pension Supervisors (2008) for an overview of the technical
Solvency II guidelines as well as to Doff (2008) for a detailed critical analysis of the whole Solvency
II framework.

It is clear that other distributions for p(M) can also be used and other choices that have been
made in the literature include a logit-normal mixing distribution (one obtains the one-factor version of
the CreditMetrics approach) and a Beta distribution. Note that this last model is intimately related
to the actuarial approach for credit risk portfolio modelling, which is also known as the one-factor
CreditRisk+ model; see Vandendorpe et al. (2008) for a study. We recall that in all these cases,
conditionally on M = m the number of defaults is the sum of n independent Bernoulli variables with
parameter p(m) and hence has a binomial distribution with parameters n and p(m), which implies
that upon the specification of the mixing distribution used the VaRs can be readily obtained.

5.1.2 Parameterization

The natural parameterization of Merton’s model consists in the knowledge of the default probability
and the asset correlation. The latter parameter can be estimated using asset value data, but un-
fortunately these values are not readily observable. One way to deal with this issue is to generate
pseudo asset values that are based on equity value data or other data series that can be used (after
suitable transformation) as a proxy for asset values; see e.g. Duellmann et al. (2008), Pitts(2004)
and Chernih et al. (2010). Another approach consists in estimating the default correlation ρD using
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default statistics and next inferring from ρD and p the implied asset correlation ρA (using the KMV
model5). Papers in the latter category include Gordy (2000), Frey and McNeil (2003) and Dietsch
and Petey (2004).

We remark that it is common to use the asset correlations (and not the default correlations) as
the basis for discussing and comparing the different findings. The different studies mentioned report
different values for the asset correlations, depending on loan quality (level of default probability), the
sector of activity of the obligor and so on. As a conclusion, one can state that the reported values
range between 1% and 30% with an average of about 8–10%. This range for asset correlations is also
consistent with the values that are used in regulatory frameworks (for example, Basel III uses asset
correlations up to 30%). In Table 5.3, we report the default correlation as a function of the default
probability and the asset correlation.

p = 0.05% p = 0.50% p = 1% p = 5%

ρA = 0% 0.00% 0.00% 0.00% 0.00%

ρA = 4% 0.03% 0.19% 0.32% 0.94%

ρA = 8% 0.08% 0.44% 0.71% 1.99%

ρA = 12% 0.15% 0.75% 1.18% 3.14%

ρA = 16% 0.24% 1.13% 1.75% 4.40%

ρA = 20% 0.38% 1.60% 2.41% 5.78%

ρA = 24% 0.56% 2.17% 3.19% 7.28%

Table 5.3 The table provides default correlations ρD for given levels of the default probability p and the
asset correlation ρA.

Whereas in the case of the KMV model the natural parameterization consists in a direct specifica-
tion of the default probability p and the asset correlation ρA, in the other models the input parameters
here are the default probability p and the default correlation ρD (obtained though an historical data
analysis or inferred from the asset correlation ρA). Hence the mean and the variance of p(M) are
specified since E(p(M)) = p and var(p(M)) = ρDp(1 − p). Next, one infers the two parameters of
the mixing distribution at hand. In the case of a Beta distribution these parameters can be obtained
analytically and for the CreditMetrics approach one can use numerical techniques. We provide some
more details in the appendix.

5.1.3 Comparing the VaRs and assessing the impact of the variance constraint

We first consider a portfolio of 10, 000 loans. Using Table 8.6 on page 365 from McNeil et al. (2005),
we fix the default probability p = 0.049 and ρD = 0.0157. The variance s2 of the portfolio sum of n
correlated Bernoulli risks is thus equal to

s2 = np(1− p) + n(n− 1)p(1− p)ρD.

Consider for instance d = 1, 000. Each Xj (j = 1, 2, . . . , n; n = 10, 000) takes the value 0 in 951
states and 1 in 49 states, so that effectively each Xj has a Bernoulli distribution with parameter 0.049.
We consider thus a matrix (xij)i=1,...,d,j=1,..n of d × n entries. Let q the probability level that is used
to compute the Value-at-Risk. We then apply Theorem 2.1 to find Ad and Bd,

Ad = n
(p−min(p, (1− q)))

q
, Bd = n min(p/(1− q), 1).

5Indeed, note that ρD =
ppair−p2

p(1−p) where the pairwise default probability of two different obligors write as ppair =

ΦρA(Φ−1(p),Φ−1(p)) in which ΦρA(·, ·) denotes the distribution function of a bivariate standard normal random couple
with correlation coefficient ρA.
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Furthermore, using Theorem 3.3 we derive ad and bd as

ad = max

(
np− s

√
1− q

q
, Ad

)
, bd = min

(
np + s

√
q

1− q
, Bd

)
.

Similarly as in the case of a portfolio of normally and Pareto distributed risks, we also apply the
extended RA to find numerical VaR bounds. Finally, we also report the results that are obtained
using different mixture models that we apply asymptotically. The results are reported in Table
5.4. All numbers are normalized as percentage of the maximum possible total loss, i.e. n. In other
words, in Table 5.4 the outputs Ad, Bd, ad, bd and the approximate sharp bounds that are obtained
by applying the extended RA are divided by n and multiplied by 100. The example shows that
adding a variance constraint has a significant impact on the level of the VaR bounds. For example,
the unconstrained upper bound of the 95%-VaR is 98%, but the constrained one is only 16.73%.
As expected the difference between the upper and lower bounds is increasing significantly when
increasing the probability level used for VaR assessments. Clearly, when using q = 99.5% as the basis
for calculating VaR and capital requirements, then the results of the models are typically within the
big range of possible values of VaR but as they only use information on the default probability p and
the default correlation 
D they seem difficult to justify. The model risk appears more limited when
using lower probability levels for assessing the VaR. For example, when using the 90%-VaR we find
that the distance between the upper bound bd and the lower bound ad becomes more limited and the
different industry models provide outcomes that are nearly in the middle of the interval (ad, bd).

(Ad, Bd) (ad, bd) (md,Md) KMV Beta CreditMetrics

VaR0.8 (0%; 24.50%) (3.54%; 10.33%) (3.63%; 10%) 6.84% 6.95% 6.71%

VaR0.9 (0%; 49.00%) (4.00%; 13.04%) (4.00%; 13%) 8.51% 8.54% 8.41%

VaR0.95 (0%; 98.00%) (4.28%; 16.73%) (4.32%; 16%) 10.10% 10.01% 10.11%

VaR0.995 (4.42%; 100.00%) (4.71%; 43.18%) (4.73%; 40%) 15.15% 14.34% 15.87%

Table 5.4 The table provides VaR bounds and VaR computed in different models (KMV, Beta, Credit-
Metrics).

Finally, we compute the bounds A, a, b and B as well as the VaRs in a KMV framework for an
infinitely big portfolio assuming a relevant range of default probabilities and asset correlations. The
results are reported in Table 5.5 and confirm the findings of the previous example.

p = 0.25% p = 1%

(A,B) (a, b) KMV (A,B) (a, b) KMV

ρA = 0% (0%; 50%) (0.25%; 0.25%) 0.25% (0.50%; 100%) (1.00%; 1.00%) 1.0%

ρA = 6% (0%; 50%) (0.23%; 3.27%) 1.2% (0.50%; 100%) (0.95%; 10.98%) 4.0%

ρA = 12% (0%; 50%) (0.23%; 5.05%) 2.1% (0.50%; 100%) (0.92%; 16.27%) 6.3%

ρA = 18% (0%; 50%) (0.23%; 6.84%) 2.9% (0.50%; 100%) (0.90%; 21.18%) 8.7%

ρA = 24% (0%; 50%) (0.21%; 8.76%) 3.8% (0.50%; 100%) (0.87%; 26.09%) 11.1%

ρA = 30% (0%; 50%) (0.20%; 10.85%) 4.8% (0.50%; 100%) (0.85%; 31.13%) 13.7%

Table 5.5 Unconstrained and constrained upper and lower 0.995-VaR bounds for several combinations
of default probability and correlation and the VaR in the (one-factor) KMV model.

In particular, they show the significant impact of the variance constraint on the VaR bounds. For
example, when the asset correlation ρA = 6% and p = 1%, one has that the unconstrained upper
bound for the 99.5%-VaR is 100% whereas the constrained bound is only 11.1%. These findings also
confirm that computing capital requirements based on the 99.5% VaRs is prone to significant model
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error as the distance between the upper and lower VaR bounds is big. For example, for an asset
correlation ρA = 6% and a default probability p = 0.25%, the most optimistic model may report a
99.5%-VaR that is equal to 0.2% whereas the most pessimistic one provides in this instance a 99.5%-
VaR that is equal to 3.3%. These results thus show that knowledge of the marginal distributions and
the correlations is not enough to estimate true portfolio VaRs with confidence.

6 Conclusions

Recent literature has been dealing with the problem of finding sharp bounds on the Value-at-Risk of
risky portfolios when the distributions of the risky components are known. This problem is challenging
and there are few theoretical results available that allow to deal with situations in which also some
information on the dependence is available.

In this paper we consider a variance constraints for the portfolio sum as source of information on
the dependence and we propose some simple bounds that are easy to compute. These bounds are
usually not sharp, but their construction as well as some theoretical results on convex ordering and
mixability provide us with the intuition for proposing a new algorithm that allows us to approximate
the sharp bounds. Several numerical examples show that the algorithm performs well and confirm
that a variance constraint can significantly improve the unconstrained bounds of Embrechts et al.
(2013). This algorithm can thus be seen as a practical way to deal with a problem that is otherwise
hard to solve theoretically.

We believe that our results are useful for studying model risk. In the paper we touch on this issue
by discussing the adequacy of credit risk portfolio models. We show that the VAR computed in typical
credit models that the financial institutions report do not necessarily reflect the true risk and are hard
to compare. In this respect we note that under the internal model approach of Basel III and Solvency
II, the financial institutions are allowed to use their own model for setting their capital requirements.
However, it is hard, if not impossible, to show which model is better than the others, as they might
be all consistent with the available amount of information (namely, default probabilities and default
correlations in the credit risk context). When applied to similar portfolios, the models may thus give
rise to significantly different VaRs. Therefore, in the context of setting capital requirements, it might
be useful to impose some additional constraints on the internal models used for this purpose. For
example, one may use the computed VaR bounds (or a weighted average of them) as a yardstick to set
a minimum value on the VaR that is obtained by the internal model, as for example ad +0.7(bd− ad)
resp. md + 0.7(Md − ad). Another possibility consists in imposing a particular model when setting
capital requirements, so that at least capital levels can be readily compared across institutions, and
fair competition will be enhanced.

A Appendix

Proof of Theorem 2.4, page 7.

Let us first remark that

M = sup
Xi∼Fi

VaR+
q

[
n∑

i=1

Xi

]
= sup

Yi∼F q
i

VaR+
0

[
n∑

i=1

Yi

]
. (A.1)

23



Note also that

VaR+
0

[
n∑

i=1

Yi

]
= ess inf

(
n∑

i=1

Yi

)
(A.2)

is the minimal support of the distribution of
∑n

i=1 Yi.

So the problem of maximizing the VaR is equivalent to maximizing the minimal support of
∑n

i=1 Yi

over all possible Yi ∼ F q
i . This problem in turn is closely related to convex ordering: Let Y =

∑n
i=1 Yi,

Z =
∑n

i=1 Zi with Yi, Zi ∼ F q
i have dfs F , G, then it holds:

Y �cx Z ⇔
q∫

0

F−1(p)dp �
q∫

0

G−1(p)dp for all 0 < q < 1 (A.3)

⇔ F−1 ≺
S
G−1

where ≺
S
is the Schur order (see Rüschendorf (1983b; 2013, Corollary 3.26) and Dhaene et al. (2006)).

In particular (A.3) implies that

F−1(0) = ess inf

(
n∑

i=1

Yi

)
� G−1(0) = ess inf

(
n∑

i=1

Zi

)
(A.4)

and F−1(1) � G−1(1). The minimal support of Y is larger than the minimal support of Z and the
maximal support of Y is smaller than the maximal support of Z. As a consequence, the convex
ordering in (A.3) implies ordering of the VaR.

Proof of Theorem 3.3, page 10. Variance-constrained bounds

a) If var(X∗
α∗) < s2, this means that α∗ = 0. Hence, A(α∗) and B(α∗) correspond to the absolute

bounds and there is nothing to prove. We further assume that var(X∗
α∗) = s2 and denote by G

the distribution of X∗
α∗ . We first prove that b is an absolute upper bound for feasible solutions

of (1.3). Hence, assume there exist (X1, X2, . . . , Xn) such that VaR+
q [X1 +X2 + · · ·+Xn] > b.

One has that, ∀a � x < b, FX1+X2+···+Xn(x) � G(x) = q. When b � x, FX1+X2+···+Xn(x) �
G(x) = 1. Since G(x) = 0 for x < a this implies that,{

∀x < a, F
X1+X2+···+Xn

(x) � G(x),

∀x � a, F
X1+X2+···+Xn

(x) � G(x).
(A.5)

In other words, the distribution function FX1+X2+···+Xn crosses G once from above. Since E(X1+
X2+ · · ·+Xn) = μ this implies that X∗

α∗ �cx X1+X2+ · · ·+Xn (see Karlin and Novikoff (1963),
Müller and Stoyan (2002)). Since var(X∗

α∗) = s2, the feasibility of (X1, X2, . . . , Xn) requires that
var(X1+X2+ · · ·+Xn) = var(X∗

α∗). In view of the convex ordering between X1+X2+ · · ·+Xn

and X∗
α∗ , this is only possible when X1 + X2 + · · · + Xn

d
= X∗

α∗ (here,
d
= means that there is

equality in distribution), which is a contradiction.

The proof that a is an absolute lower bound can be given in a similar way. Let now (X1, X2, . . . ,
Xn) be such that VaRq [X1 +X2 + · · ·+Xn] < a. One has that, ∀x � a, FX1+X2+···+Xn(x) �
G(x) = 0. When a � x < b, FX1+X2+···+Xn(x) � G(x) = q. Since G(x) = 1 for x � b this implies
that, {

∀x < b, F
X1+X2+···+Xn

(x) � G(x),

∀x � b, F
X1+X2+···+Xn

(x) � G(x).
(A.6)

In other words, the distribution function FX1+X2+···+Xn crosses G once from above. By symmetry
of the argument the result follows from the first part of the proof.

24



b) If s2 � q(A − μ)2 + (1 − q)(B − μ)2 then the result is obvious from Theorem 2.1 and Proposi-
tion 3.2. In the other case, the proposition implies that there exists α∗ such that var(X∗

α∗) = s2.
Hence, a and b can be seen as the mass points from a 2-point distribution satisfying the mean
constraint μ and the variance constraint s2. This yields the desired expressions for a and b im-
mediately. �

Proof of Theorem 3.6, page 11. Sharpness of variance-constrained bounds

We note that by the convex ordering assumption in (3.9) we get for the upper q-part T = {U � q}
of Sn.

E(Sn)
2 = E

(
(Sn)

2 | T )P (T ) + E
(
(Sn)

2 | T c
)
P (T c)

� E(S2
n | T )P (T ) + E(S2

n | T c)P (T c)

= ES2
n

and thus var(Sn) � var(Sn) � s2. The argument for the increase of VaR+
q [Sn] (resp. decrease of

VaRq[Sn]) compared to VaR+
q [Sn] (resp. VaRq[Sn]) is similar as in Theorem 2.4. �

Mixing Distributions, page 20.

Note that all mixture models that we discuss require 2 parameters only and are thus completely
specified once the default probability and the default correlation (or the asset correlation) are known.

Beta distribution

We say that the mixing variable p(M) has a Beta distribution with parameters a, b > 0 if it has a
density given as

f (x) =
Γ (a+ b)

Γ (a) Γ (b))
xa−1(1− x)b−1 for 0 < x < 1, (A.7)

where Γ(x) is the Gamma function. It readily shows that

p =
a

a + b
, ρD =

1

a+ b+ 1
,

which allows us to get a and b as a function of ρD and p in explicit form:

a = p

(
1

ρ
− 1

)
, b = (1− p)

(
1

ρ
− 1

)
.

Probit-Norm distribution (KMV)

The mixing variable p(M) is said to have a Probit-Norm distribution if it writes as p(M) = Φ(μ+σM)
where Φ is the distribution function of a standard normal random variable. In this case one has that

μ =
Φ−1(p)√
1− ρA

, σ2 =
ρA

1− ρA
.

Note that if the default correlation is provided and not the asset correlation then on first needs to
back out the asset correlation.

Logit-Norm distribution (KMV)

Finally, in the case of the Logit-Normal mixing distribution one has that p(M) = F (μ + σM) with
F = 1

1+exp(−x)
. As the moments of p(M) are not known analytically, parameters μ and σ can only be

obtained numerically.
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