Overview of Week 3

1. Introduction to Dictionary Learning
2. Approximating Hölder Functions by Splines
3. Approximating Univariate Splines by Multi-Layer Perceptrons
4. Approximating Products by Multi-Layer Perceptrons
5. Approximating Multivariate Splines by Multi-Layer Perceptrons
6. Approximating Hölder Functions by Multi-Layer Perceptrons
7. Wrapup
Sources for this lecture:

- Philipp Christian Petersen (Faculty of Mathematics, University of Vienna): Course on Neural Network Theory.
Introduction to Dictionary Learning

Philipp Harms Lars Niemann

University of Freiburg
Signal classes

Definition (Signal class, approximation error)

Let \mathcal{H} be a normed space.

- A **signal class** is a subset \mathcal{C} of \mathcal{H}.
- The **approximation error** of signal class \mathcal{C} by signal class \mathcal{A} is

$$\sigma(\mathcal{A}, \mathcal{C}) = \sup_{f \in \mathcal{C}} \inf_{g \in \mathcal{A}} \| f - g \|_{\mathcal{H}}.$$

- A function $g \in \mathcal{A}$ which realizes the above infimum is called **best approximation** of f.

Example:

- $\mathcal{H} = L^2(\Omega)$ for some $\Omega \subseteq \mathbb{R}^d$.
- $\mathcal{C} = C^s(\Omega)$ or $H^s(\Omega)$ for some $s \in \mathbb{R}$
- \mathcal{A} is a set of multi-layer perceptrons, splines, or wavelets
Dictionaries

Definition (Dictionaries)

Let \mathcal{H} be a normed space, and let Λ be a countable index set.

- A dictionary is a collection $\phi = (\phi_\lambda)_{\lambda \in \Lambda}$ of elements in \mathcal{H}.
- The set of n-term linear combinations in ϕ is defined for any $n \in \mathbb{N}$ as

$$\Sigma_n(\phi) = \left\{ \sum_{\lambda \in \Lambda} c_\lambda \phi_\lambda : c \in \mathbb{R}^\Lambda, \|c\|_0 \leq n \right\},$$

where $\|\cdot\|_0$ denotes the number of non-zero entries.

- The n-term approximation error of signal class \mathcal{C} by dictionary ϕ is

$$\sigma(\Sigma_n(\phi), \mathcal{C}) = \sup_{f \in \mathcal{C}} \inf_{g \in \Sigma_n(\phi)} \|f - g\|_\mathcal{H}.$$

- A function g which realizes the above infimum is called best n-term approximation of f.

Approximation Rates

Definition (Approximation Rates)

Let \mathcal{C} be a signal class, and let $h \in \mathbb{R}^N$.

- A sequence $(\mathcal{A}_n)_{n \in \mathbb{N}}$ of signal classes achieves an approximation rate of h for \mathcal{C} if
 \[
 \sigma(\mathcal{A}_n, \mathcal{C}) = O(h_n) \text{ as } n \to \infty.
 \]

- A dictionary ϕ achieves an approximation rate of h for \mathcal{C} if
 \[
 \sigma(\sum_n(\phi), \mathcal{C}) = O(h_n) \text{ as } n \to \infty.
 \]

Remark:

- Bounds on the approximation rate are typically more easily obtained than bounds on the approximation error for finite n.

- A “good” dictionary needs more than just a good approximation rate. Indeed, any dense sequence ϕ in \mathcal{H} achieves any approximation rate for any signal class but is ill-suited for efficient encoding of functions.
Motivation: show a result of the following type

- If multi-layer perceptrons approximate a dictionary well, and the dictionary approximates a signal class well, then multi-layer perceptrons approximate the signal class well.

Theorem (Transfer of approximation)

Let \(C \) be a signal class in a normed space \(\mathcal{H} \) of functions \(\mathbb{R}^d \rightarrow \mathbb{R} \). Assume that multi-layer perceptrons of depth \(L \) with activation function \(\rho \) and at most \(M \) weights approximate any function in a dictionary \(\phi \) to arbitrary accuracy:

\[
\forall \epsilon > 0 \ \forall \lambda \in \Lambda \ \exists \Phi : \ L(\Phi) = L, \ M(\Phi) \leq M, \ \|\phi_\lambda - R(\Phi)\|_{\mathcal{H}} \leq \epsilon.
\]

Then multi-layer perceptrons with \(Mn \) weights approximate \(C \) with error

\[
\sigma(\{R(\Phi) : L(\Phi) = L, M(\Phi) \leq Mn\}, C) \leq \sigma(\Sigma_n(\phi), C).
\]
Proof: Transfer of Approximation

Proof:

- Given \(f \in C \) and \(\epsilon > 0 \), there exists \(g \in \Sigma_n(\phi) \) with
 \[
 \|f - g\|_\mathcal{H} \leq \sigma(\Sigma_n(\phi), C) + \epsilon.
 \]
- After relabeling we may write \(g = \sum_{i \leq n} c_i \phi_i \) for some \(c_i \in \mathbb{R} \).
- Given \(\epsilon > 0 \), there exists neural networks \(\Phi_i \) for \(i = 1, \ldots, n \) with
 \[
 L(\Phi_i) = L, \quad M(\Phi_i) \leq M, \quad \|\phi_i - R(\Phi_i)\|_\mathcal{H} \leq \frac{\epsilon}{n \cdot \|c\|_\infty}.
 \]
- By the subsequent lemma on linear combinations of neural networks, there exists a neural network \(\Phi \) with
 \[
 L(\Phi) = L, \quad M(\Phi) \leq M n, \quad \left\| \sum_{i \leq n} c_i \phi_i - R(\Phi) \right\|_\mathcal{H} \leq \epsilon.
 \]
- Consequently \(R(\Phi) \) approximates \(f \) with error
 \[
 \|f - R(\Phi)\|_\mathcal{H} \leq \|f - g\|_\mathcal{H} + \|g - R(\Phi)\|_\mathcal{H} \leq \sigma(\Sigma_n(\phi), C) + 2\epsilon. \quad \square
 \]
Lemma (Linear combinations of networks)

Let Φ_1, \ldots, Φ_n be neural networks with depth L and input dimension d, and let $c_1, \ldots, c_n \in \mathbb{R}$. Then there exists a neural network Φ with depth L and input dimension d such that

$$R(\Phi) = \sum_{i \leq n} c_i R(\Phi_i), \quad M(\Phi) \leq \sum_{i \leq n} M(\Phi_i).$$

Proof:

- Let c be the row vector $(c_1, \ldots, c_n) \in \mathbb{R}^{1 \times n}$
- Define the neural network Φ by
 $$\Phi = ((c, 0)) \bullet P(\Phi_1, \ldots, \Phi_n)$$
- Count the number of layers and weights
Questions to Answer for Yourself / Discuss with Friends

- **Repetition**: Recall the definitions of signal classes, dictionaries, and approximation errors.

- **Check**: Verify that the network Φ in the lemma on linear combinations has indeed depth L and not $L + 1$.

- **Check**: Is the set $\Sigma_n(\phi)$, which consists of n-term linear combinations in the dictionary ϕ, a linear space?

- **Transfer**: How is the approximation error related to the one defined in statistical learning theory?
Approximating Hölder Functions by Splines

Philipp Harms Lars Niemann

University of Freiburg
Definition (Univariate splines)

Let $k \in \mathbb{N}$.

- The univariate cardinal basis spline of order k on $[0, k]$ is defined as

 $$
 \mathcal{N}_k(x) := \frac{1}{(k - 1)!} \sum_{l=0}^{k} (-1)^l \binom{k}{l} (x - l)^{k-1} \quad \text{for } x \in \mathbb{R}
 $$

 where $(\cdot)_+ := \max\{0, \cdot\}$.

- For $t \in \mathbb{R}$ and $l \in \mathbb{N}$ we define the univariate basis splines by rescalings and translations:

 $$
 \mathcal{N}_{l,t,k}(x) := \mathcal{N}_k(2^l(x - t)) \quad \text{for } x \in \mathbb{R}.
 $$
Univariate Splines

Plots of the basis spline \mathcal{N}_k (blue) and some translates of it (gray):
Multivariate Splines

Definition (Multivariate splines)

Let \(d, k \in \mathbb{N} \).

- For \(l \in \mathbb{N} \) and \(t \in \mathbb{R}^d \) we define the multivariate basis splines

\[
\mathcal{N}_{l,t,k}^d(x) := \prod_{i=1}^{d} \mathcal{N}_{l,t_i,k}(x_i) \quad \text{for} \quad x = (x_1, \ldots, x_n) \in \mathbb{R}^d.
\]

- The dictionary of dyadic basis splines of order \(k \) is

\[
\mathcal{B}^k := (\mathcal{N}_{l,t,k}^d)_{l \in \mathbb{N}, t \in 2^{-l} \mathbb{Z}^d}.
\]
Approximating Hölder Functions by Splines

Theorem

Let $\mathcal{H} = L^p([0, 1]^d)$ for some $d \in \mathbb{N}$ and $p \in (0, \infty]$, let \mathcal{B}^k denote the dyadic basis splines of some order $k \in \mathbb{N}$, and let \mathcal{C} be the unit ball in $C^s([0, 1]^d)$ for some $s \in (0, k]$. Then for any $r < s/d$, the dictionary \mathcal{B}^k achieves an approximation rate of $(n^{-r})_{n \in \mathbb{N}}$ for the signal class \mathcal{C} in \mathcal{H}.

Remark:

- The coefficients c_i in the spline approximation of $f \in \mathcal{C}$ by $\sum_{i \leq n} c_i B_i \in \mathcal{B}^k$ can be chosen such that $\max_i |c_i| \lesssim \|f\|_{\infty}$.

- More generally, spline approximations of Besov $B^s_{p,q}(\mathbb{R}^d)$ functions converge in Besov $B^{s'}_{p',q'}(\mathbb{R}^d)$ norms at a rate of (nearly) $(n^{-(s-s')/d})_{n \in \mathbb{N}}$. For $p \geq p'$, this follows from the constructive linear theory with non-adaptive grids, whereas for $p < p'$ adaptive grids are needed, and the approximation theory becomes non-constructive and non-linear.
Repetition: What is the meaning of the parameters l, t, k, d of dyadic basis splines $\mathcal{N}_{l,t,k}^d$?

Background: Read up on the definition of Hölder functions and splines if needed.

Transfer: Cubic interpolating splines are the solution of a linear best-approximation problem—which one?
Approximating Univariate Splines by Multi-Layer Perceptrons

Philipp Harms Lars Niemann

University of Freiburg
Sigmoidal Functions of Higher Order

Definition

A function $\rho : \mathbb{R} \rightarrow \mathbb{R}$ is called **sigmoidal of order** $q \in \mathbb{N}$, if $\rho \in C^{q-1}(\mathbb{R})$ and the following three conditions are met:

1. $\frac{\rho(x)}{x^q} \rightarrow 0$ for $x \rightarrow -\infty$.
2. $\frac{\rho(x)}{x^q} \rightarrow 1$ for $x \rightarrow \infty$.
3. $|\rho(x)| \lesssim (1 + |x|)^q$ for $x \in \mathbb{R}$.

Example:

- Sigmoidal functions are sigmoidal of order 0.
- The ReLu function $x \mapsto (x)_+$ is sigmoidal of order 1.
- The power unit $x \mapsto (x^q)_+$ is sigmoidal of order $q \in \mathbb{N}$.

Goal:

- Approximation of univariate splines by multi-layer perceptrons with sigmoidal activation functions of order $q \geq 2$.
Notation:

- \(\lceil x \rceil \in \mathbb{Z} \) denotes the smallest integer greater than or equal to \(x \).

Theorem

Let \(k \in \mathbb{N} \), and let \(\rho : \mathbb{R} \to \mathbb{R} \) sigmoidal of order \(q \geq 2 \). Then there exists a constant \(C > 0 \) such that for every \(\epsilon, K > 0 \), there is a neural network \(\Phi \) with \(\lceil \max\{\log_q(k), 0\} \rceil + 1 \) layers and \(C \) weights satisfying

\[
\sup_{x \in [-K,K]} \left| R(\Phi)(x) - (x)^k_+ \right| \leq \epsilon.
\]

Remark:

- Two layers suffice for the approximation of square units.
Proof: Approximating Power Units by MLPs

Proof:

- Let \(n := \left\lceil \max \{ \log_q(k), 0 \} \right\rceil \), let \(p := q^n \geq k \), and let \(f_\lambda \) be the \(n \)-fold composition of \(\rho \), rescaled by \(\lambda > 0 \):

\[
f_\lambda(x) := \lambda^{-p} \rho^n(\lambda x)
\]

for \(x \in \mathbb{R} \).

- Then \(f_\lambda \) converges to the \(p \)-th power unit:

\[
\forall K > 0 : \quad \lim_{\lambda \to \infty} \sup_{x \in [-K,K]} |f_\lambda(x) - (x)_+^p| = 0.
\]

- The difference quotient converges to the \((p-1)\)-th power unit:

\[
\forall K > 0 : \quad \lim_{\lambda \to \infty} \sup_{\delta \to 0} \frac{|f_\lambda(x + \delta) - f_\lambda(x) - p(x)_+^{p-1}|}{\delta} = 0,
\]

and similarly for higher-order difference quotients and derivatives.

- These difference quotients are realizations of neural networks \(\Phi \) with \([\max \{ \log_q(k), 0 \}] + 1 \) layers. \(\square \)
Approximating Univariate Basis Splines by MLPs

Corollary

Any univariate basis spline of degree \(k \in \mathbb{N} \) can be approximated uniformly on compacts by neural networks with sigmoidal activation function of order \(q \geq 2 \) and architecture depending only on \(k \) and \(q \).

Proof:

- Univariate basis splines \(\mathcal{N}_{l,t,k} \) are linear combinations of translated and rescaled power units:

 \[
 \mathcal{N}_{l,t,k}(x) = \mathcal{N}_k(2^l(x - t)),
 \]

 \[
 \mathcal{N}_k(x) = \frac{1}{(k-1)!} \sum_{l=0}^{k} (-1)^l \binom{k}{l} (x - l)^{k-1}.
 \]

- Approximate the power units by multi-layer perceptrons, apply translations and scalings using the subsequent lemma, and take linear combinations.
Lemma (Shifting and rescaling neural networks)

Let Φ be a neural networks of input dimension $d \in \mathbb{N}$.

For any $t \in \mathbb{R}^d$ and $\lambda \in \mathbb{R}$, there exists a neural network Ψ with the same architecture as Φ and at most d additional weights such that

$$R(\Psi)(x) = R(\Phi)(\lambda x + t) \quad \text{for } x \in \mathbb{R}^d.$$

Proof:

- Define the neural network Ψ as $\Psi = \Phi \circ ((\lambda \text{Id}_{\mathbb{R}^d}, t))$

- Count the number of layers and weights
Questions to Answer for Yourself / Discuss with Friends

- Repetition: What are power units and how are they related to splines?

- Repetition: What are sigmoidal functions of higher order what are they useful for?

- Check: Verify the claims about uniform convergence on compacts of rescaled sigmoidal functions to power units!
Approximating Products by Multi-Layer Perceptrons

Philipp Harms Lars Niemann

University of Freiburg
Theorem

Let \(d \in \mathbb{N} \), and let \(\rho \) be the square unit \(x \mapsto (x)^2_+ \). Then there exists a neural network \(\Phi \) with \(\lceil \log_2(d) \rceil + 1 \) layers such that

\[
R(\Phi)(x) = \prod_{i=1}^{d} x_i \quad \text{for } x \in \mathbb{R}^d.
\]

Remark:

- Note that this representation is exact; no approximation is needed.
- However, approximation is needed to allow for more general activation functions.
Proof: Representing Products by Square Units

Proof:

- Multiplication of 2 variables can be represented as a network of depth 2 and width 6 thanks to polarization:

\[2x_1 x_2 = (x_1 + x_2)^2 + (-x_1 - x_2)^2 - (x_1)^2 - (-x_1)^2 - (x_2)^2 - (-x_2)^2 \]

- Parallelize and concatenate to achieve multiplication of \(2^n\) variables:
Corollary

Let $d \in \mathbb{N}$, and let ρ be sigmoidal of order $q \geq 2$. Then there exists a constant C such that for every $\epsilon, K > 0$, there exists a neural network Φ with $\lceil \log_2(d) \rceil + 1$ layers and C weights satisfying

$$\sup_{x \in [-K,K]^d} \left| R(\Phi)(x) - \prod_{i=1}^{d} x_i \right| \leq \epsilon.$$

Proof:

- Represent the product by a network with square-unit activation function as above.
- Approximate each square unit (i.e., each red dot in the previous figure) by a 2-layer network of fixed size and note that this does not increase the overall network depth.
Questions to Answer for Yourself / Discuss with Friends

- Repetition: How can the product of two or more variables be represented or approximated by multi-layer perceptrons?

- Check: What does the multiplication network look like when the number of variables is not a power of 2?

- Discussion: Is it possible to build multiplication networks with activation function $x \mapsto x^2$?
Approximating Multivariate Splines by Multi-Layer Perceptrons

Philipp Harms Lars Niemann

University of Freiburg
Theorem

Let $k, d \in \mathbb{N}$, and let $\rho : \mathbb{R} \to \mathbb{R}$ be sigmoidal of order $q \geq 2$. Then there exists a constant $C > 0$ such that for every basis spline $f \in \mathcal{B}^k$ and every $\epsilon, K > 0$ there is a neural network Φ with

\[
\left\lfloor \log_2(d) \right\rfloor + \left\lceil \max\{\log_q(k - 1), 0\} \right\rceil + 1 \text{ layers and } C \text{ weights satisfying}
\]

\[
\| R(\Phi) - f \|_{L^\infty([-K,K]^d)} \leq \epsilon.
\]
Proof: Approximating Multivariate Basis Splines by MLPs

Proof: Combine the approximations of power units and multiplication:

- Let $f \in \mathcal{B}^k$ be a dyadic basis spline, i.e.,

$$f(x) = \mathcal{N}_{l,t,k}^d(x) = \prod_{i=1}^{d} \mathcal{N}_k(2^l(x_i - t_i)) \quad \text{for } x \in \mathbb{R}^d,$$

where \mathcal{N}_k is the univariate basis spline of order k, i.e.,

$$\mathcal{N}_k(x) := \frac{1}{(k-1)!} \sum_{l=0}^{k} (-1)^l \binom{k}{l} (x - l)^{k-1}$$

- Approximate the univariate basis splines $x_i \mapsto \mathcal{N}_k(2^l(x_i - t_i))$ by networks Ψ_i with $\lceil \max\{\log_q(k-1), 0\} \rceil + 1$ layers.
- Approximate multiplication $\mathbb{R}^d \to \mathbb{R}$ by a network Ψ_0 with $\lceil \log_2(d) \rceil + 1$ layers.
- Define $\Phi := \Psi_0 \bullet \text{FP}(\Psi_1, \ldots, \Psi_d)$.
Questions to Answer for Yourself / Discuss with Friends

- Repetition: Outline the structure of the proof above: How can multivariate splines be approximated by multi-layer perceptrons?

- Discussion: Where is sigmoidality of higher order used?
Approximating Hölder Functions by Multi-Layer Perceptrons

Philipp Harms Lars Niemann

University of Freiburg
Approximating Hölder Functions by MLPs

Theorem

Let $d \in \mathbb{N}$, $s > 0$, $r < s/d$, and $p \in (0, \infty]$. Moreover, let $\rho: \mathbb{R} \to \mathbb{R}$ be sigmoidal of order $q \geq 2$. Then there exists a constant $C > 0$ such that, for every f in the unit ball of $C^s([0, 1]^d)$ and every $\epsilon \in (0, 1/2)$, there exists a neural network Φ with depth $L = \lceil \log_2(d) \rceil + \lceil \max\{\log_q(s - 1), 0\} \rceil + 1$ and number of weights $M \leq C\epsilon^{-r}$ satisfying

$$\|f - R(\Phi)\|_{L^p} \leq \epsilon.$$

- Deep networks are needed to approximate high-dimensional functions using sigmoidal activation functions of low order compared to the regularity of the function.
- The approximation rate is inversely proportional to the dimension d. This is often called the curse of dimensionality.
Proof: Transfer of approximation:

- Let C be the unit ball in $C^s([0, 1]^d)$, let $\mathcal{H} := L^p([0, 1]^d)$, and let \mathcal{B}^k be the dictionary of dyadic basis splines.

- Multi-layer perceptrons of depth L with activation function ρ and at most M weights approximate any function in the dictionary \mathcal{B}^k uniformly on compacts and consequently also in \mathcal{H} to arbitrary accuracy.

- The dictionary \mathcal{B}^k approximates the signal class C at rate $(n^{-r})_{n \in \mathbb{N}}$.

- By the transfer-of-approximation theorem,

\[\sigma(\{R(\Phi) : L(\Phi) = L, M(\Phi) \leq Mn\}, C) \leq \sigma(\Sigma_n(\mathcal{B}^k), C) \lesssim n^{-r}. \]

- Equivalently, an error of ϵ can be achieved using networks with $O(\epsilon^{-1/r})$ weights.
Repetition: Explain dictionary learning in the context of splines and Hölder functions.

Discussion: What are strengths and weaknesses of the result when applied to function approximation or encoding?
Wrapup

Philipp Harms Lars Niemann

University of Freiburg
Outlook on this week’s discussion and reading session

Reading:
- Oswald (1990): On the degree of nonlinear spline approximation in Besov-Sobolev spaces
Having heard this lecture, you can now . . .

- Describe signal classes, dictionaries, and related notions of approximation and transfer of approximation.
- Approximate products and power units by multi-layer perceptrons.
- Establish approximation rates for Hölder functions by multi-layer perceptrons.