
Mathematics of Deep Learning, Summer Term 2020

Week 8

ReLU Networks and the Role of Depth

Philipp Harms Lars Niemann

University of Freiburg

Overview of Week 8

1 Operations on ReLU Networks

2 ReLU Representation of Saw-Tooth Functions

3 Saw-Tooth Approximation of the Square Function

4 ReLU Approximation of Multiplication

5 ReLU Approximation of Analytic Functions

6 Wrapup

Acknowledgement of Sources

Sources for this lecture:

Philipp Christian Petersen (Faculty of Mathematics, University of
Vienna): Course on Neural Network Theory.

Perekrestenko, Grohs, Elbrächter, Bölcskei (2018): The universal
approximation power of finite-width deep ReLU Networks.
arXiv:1806.01528

E, Wang (2018): Exponential convergence of the deep neural
approximation for analytic functions. arXiv:1807.00297

Yarotsky (2017): Error bounds for approximations with deep ReLU
networks. Neural Networks 94, pp. 103–114.

Mathematics of Deep Learning, Summer Term 2020

Week 8, Video 1

Operations on ReLU Networks

Philipp Harms Lars Niemann

University of Freiburg

Repetition: ReLU Activation Function

Definition

The rectified linear unit (ReLU) activation function is defined as

ρR(x) = max(0, x), x ∈ R.

8 6 4 2 0 2 4 6 8
0

1

2

3

4

5

6

7

8

Remark: The ReLU function is not sigmoidal but discriminatory.

Networks of Bounded Width with Bounded Weights

Remark:

Previously, the focus was on wide networks of bounded depth.

For ReLU networks, we focus on deep networks of bounded width.

Definition

Let Φ = ((A1, b1), . . . , (AL, bL)) be a neural network with architecture
(N0, N1, . . . , NL).

The width of Φ is defined as W(Φ) := maxiNi.

The weight bound of Φ is defined as

B(Φ) := max{max
i
‖Ai‖∞,∞,max

i
‖bi‖∞},

where the norms ‖ · ‖∞,∞ and ‖ · ‖∞ are the maxima of the absolute
values of the matrix or vector entries, respectively.

ReLU Representation of the Identity

Lemma

For each d ∈ N and L ∈ N, the identity on Rd can be realized as
IdRd = R(ΦId

d,L) for a ReLU network ΦId
d,L with B(ΦId

d,L) = 1,

W(ΦId
d,L) = 2d, and L(ΦId

d,L) = L.

Proof: For L = 1 we use ΦId
d,1 := ((IdRd , 0)), and for L ≥ 2, the network

ΦId
d,L :=

(((
IdRd

− IdRd

)
, 0

)
, (IdR2d , 0), . . . (IdR2d , 0), ((IdRd ,− IdRd), 0)

)
has the desired properties thanks to the algebraic relations

ρR(x)− ρR(−x) = x, ρR(ρR(x)) = ρR(x).

Problem: Lack of Sparsity in Network Concatenations

Example: Lack of sparsity in network concatenations.

Let n ∈ N and define the neural network Φ by

Φ := ((A1, 0), (A2, 0)),

where A1 = (1, . . . , 1)> ∈ Rn×1 and A2 = (1, . . . , 1) ∈ R1×n.

Φ realizes the map

R 3 x 7→ (x, . . . , x) 7→ (x+, . . . , x+) 7→ x+ + · · ·+ x+ = nx+ ∈ R.

Then M(Φ) = 2n but M(Φ • Φ) = 2n+ n2 because

Φ • Φ = ((A1, 0), (A1A2, 0), (A2, 0)).

Hence, the number of weights of a concatenated network scales
quadratically in the number of weights of the individual networks.

Solution: Sparse Concatenation

Remark: The lack of sparsity of concatenations motivates the following
definition:

Definition

The sparse concatenation of a neural network Φ1 with input dimension d
and neural network Φ2 with output dimension d is defined as

Φ1 � Φ2 := Φ1 • ΦId
d,2 • Φ2,

where ΦId
d,2 is the 2-layer ReLU representation of the identity on Rd.

Remark: Similarly, using ΦId
d,L with L > 2, one can define sparse

concatenations of increased depth.

Concatenation versus Sparse Concatenation

Top: Two neural networks, Middle: Sparse Concatenation, Bottom:
Concatenation. [Figure from Petersen, Ch. 3]

Properties of Sparse Concatenation

Lemma

If Φ1 has input dimension d and Φ2 has output dimension d, then the
sparse concatenation Φ1 � Φ2 satisfies

R(Φ1 � Φ2) = R(Φ1) ◦ R(Φ2),

L(Φ1 � Φ2) = L(Φ1) + L(Φ2),

M(Φ1 � Φ2) ≤ 2(M(Φ1) + M(Φ2)),

W(Φ1 � Φ2) ≤ max(W(Φ1),W(Φ2), 2d),

B(Φ1 � Φ2) ≤ max(B(Φ1),B(Φ2)).

Remark: Most importantly, the number of weights increases linearly rather
than quadratically, and the weights remain bounded.

Proof: Properties of Sparse Concatenation

Proof:

Sparse concatenation realizes function composition because

R(Φ1 • ΦId
d,2 • Φ2) = R(Φ1) ◦ R(ΦId

d,2) ◦ R(Φ2) = R(Φ1) ◦ R(Φ2).

The width, depth, weight bound, and number of weights can be
estimated from the following explicit formula:

((A1
1, b

1
1), . . . , (A1

L1
, b1L1

))� ((A2
1, b

2
1), . . . , (A2

L2
, b1L2

))

=

(
(A2

1, b
2
1), . . . , (A2

L2−1, b
2
L2−1),

((
A2
L2

−A2
L2

)
,

(
b2L2

−b2L2

))
,

((A1
1,−A1

1), b11), (A1
2, b

1
2), . . . , (A1

L1
, b1L1

)

)
.

Skip Connections

Remark: Recall that a network Φ = ((A1, b1), . . . , (AL, bL)) can be
represented as a computational graph with edges corresponding to the
non-zero entries of the matrices Ai.

Definition

A skip connection is an edge between non-adjacent layers in the
computational graph of a network.

Remark:

Networks with skip connections have been highly successful in image
recognition.

The ReLU representation of the identity allows one to rewrite
networks with skip connections as networks without skip connections.

Deep Linear Combinations of Networks

Remark:

The following implementation of linear combinations increases the
depth, and not the width, of the networks.

As scalar multiplication does not affect the network structure, we
focus on sums of networks.

Lemma

For any networks Φ1, . . . ,Φk with input dimension d and output dimension
n, there exists a network Φ with B(Φ) ≤ maxi B(Φi),
W(Φ) ≤ maxi W(Φ) + 2d+ 2n, and L(Φ) =

∑
i L(Φi) such that

R(Φ) =
∑
i

R(Φi).

Proof: Deep Linear Combinations of Networks

Proof:

Let Φsum and Φdiag be the single-layer networks realizing the maps

sum: Rd × Rn × Rn 3 (x, y, z) 7→ (x, y + z) ∈ Rd × Rn,
diag : Rd × Rn 3 (x, y) 7→ (x, x, y) ∈ Rd × Rd × Rn.

Then the sum with skip connections

Rd × Rn 3 (x, y) 7→ (x,R(Φi)(x) + y) ∈ Rd × Rn

is realized by the network

Ψi := Φsum • FP
(

ΦId
d,L(Φi)

,Φi,Φ
Id
N,L(Φi)

)
• Φdiag,

which satisfies B(Ψi) ≤ max{B(Φi), 1}, W(Ψi) ≤W(Φi) + 2d+ 10,
L(Ψi) = L(Φi).

Proof: Deep Linear Combinations of Networks

Let Φpr and Φins be the single-layer networks realizing the maps

pr: Rd × Rn 3 (x, y) 7→ y ∈ Rn,
ins : Rd 3 x 7→ (x, 0) ∈ Rd × Rn.

Then the network Φ := Φpr •Ψ1 � · · · �Ψk • Φins has the desired
properties.

Questions to Answer for Yourself / Discuss with Friends

Repetition: How can the identity be realized using ReLU networks?

Repetition: What is sparse concatenation, and how does it differ from
non-sparse concatenation?

Repetition: What are skip connections, what are they good for, and
how can they be implemented using ReLU networks?

Discussion: To what extent are the results of this video limited to
ReLU networks?

Mathematics of Deep Learning, Summer Term 2020

Week 8, Video 2

ReLU Representation of Saw-Tooth Functions

Philipp Harms Lars Niemann

University of Freiburg

ReLU Representation of the Hat Function

Lemma

The hat function

F (x) := ρR(2x)− 2ρR(2x− 1) + ρR(2x− 2)

equals the ReLU realization of the network Φhat := ((A1, b1), (A2, 0)) with

A1 := (2, 2, 2)>, b1 := (0,−1,−2)>, A2 := (1,−2, 1) .

This network satisfies B(Φhat) = 2, W(Φhat) = 3, and L(Φhat) = 2.

ReLU Representation of Saw-Tooth Functions

Theorem

For any n ∈ N, the saw-tooth function Fn given by Fn(x) = 0 for
x /∈ (0, 1) and

Fn(x) :=

{
2n(x− i2−n), x ∈ [i2−n, (i+ 1)2−n], i even,

2n((i+ 1)2−n − x), x ∈ [i2−n, (i+ 1)2−n], i odd,

equals the ReLU realization of the concatenated network Φn := •nΦhat

with B(Φn) ≤ 4, W(Φn) ≤ 3, and L(Φn) = n+ 1.

Proof:

Fn is the n-fold composition of hat functions.

Thus, the n-fold concatenation •nΦhat has the desired properties.

Visualization of Saw-Tooth Functions

Top Left: F1, Bottom Right: F2, Bottom Left: F4.

[Figure from Petersen, Ch. 3]

The Role of Depth

Remark: The theorem is surprising for the following reason:

The realization of a shallow network Φ with two layers and input
dimension 1 is piece-wise linear with at most W(Φ) pieces.

Similarly, networks of depth bounded by L have at most W(Φ)L−1

pieces.

In contrast, the previously introduced deep networks realize the
saw-tooth function Fn, which has exponentially many pieces in L(Φ).

Thus, saw-tooth functions Fn can be represented very efficiently by
deep networks, but not very efficiently by shallow networks.

Questions to Answer for Yourself / Discuss with Friends

Repetition: How can saw-tooth functions be represented by deep
ReLU networks?

Check: Why can the realization of a two-layer network Φ have at
most M(Φ) pieces?

Check: Verify that the saw-tooth function is a composition of hat
functions.

Background: Can you show that the ReLU function is discriminatory?

Mathematics of Deep Learning, Summer Term 2020

Week 8, Video 3

Saw-Tooth Approximation of the Square Function

Philipp Harms Lars Niemann

University of Freiburg

Saw-Tooth Approximation of the Square Function

Setting: Let Fn, n ∈ N, denote the saw-tooth functions of Video 2.

Lemma

The piece-wise linear functions

Hn(x) := x−
n∑
k=1

Fk(x)2−2k, n ∈ N, x ∈ R,

approximate the square function at an exponential rate:

sup
x∈[0,1]

∣∣x2 −Hn(x)
∣∣ ≤ 2−2(n+1), n ∈ N .

Remark: This makes us optimistic that, using sufficiently deep networks,
we can approximate the square function efficiently.

Visualizing the Approximation of the Square Function

Figure: Approximants Hn(x) := x−
∑n

k=1 Fk(x)2−2k of the square function x2.
[Figure from Petersen, Ch. 3]

Proof: Approximating the Square Function by Saw-Tooths

Proof:

By induction, the function Hn is piecewise linear with breakpoints
k2−n for k ∈ {0, . . . , 2n}, and Hn(x) = x2 at the breakpoints.

By convexity, Hn(x) ≥ x2 for x ∈ [0, 1].

For any x between the breakpoints ` := k2−n and u := (k + 1)2−n,

∣∣Hn(x)− x2
∣∣ = Hn(x)− x2 =

u− x
u− `

`2 +
x− `
u− `

u2 − x2.

This quadratic function assumes its maximum at its unique critical
point x∗, and one easily verifies that

x∗ =
u+ `

2
, Hn(x∗)− (x∗)2 =

(
u− `

2

)2

= 2−2(n+1).

Questions to Answer for Yourself / Discuss with Friends

Repetition: How can the square function be approximated by linear
combinations of saw-tooth functions?

Check: Verify that a secant approximation of the square function is
worst half-way between the abscissas of the intersection.

Discussion: How could the saw-tooth approximation of the square
function be implemented by ReLU networks. Spoiler alert: think
about this before you watch the next video.

Mathematics of Deep Learning, Summer Term 2020

Week 8, Video 4

ReLU Approximation of Multiplication

Philipp Harms Lars Niemann

University of Freiburg

Approximating the Square Function

Remark: As an auxiliary result, we will approximate the square function by
ReLU networks, building on the saw-tooth approximations of the square
function.

Lemma

The square function can be approximated by ReLU networks at an
exponential rate:

∀n ∈ N ∃Φ : B(Φ) ≤ 4,W(Φ) ≤ 5,L(Φ) = n+ 2,

sup
x∈[−1,1]

∣∣x2 − R(Φ)(x)
∣∣ ≤ 2−2(n+1) .

Attempted Proof: Approximating the Square Function

Attempted proof: Strategy of Yarotsky (2017).

Approximate the square function by saw-tooth functions: For any
n ∈ N,

sup
x∈[0,1]

∣∣x2 −Hn(x)
∣∣ ≤ 2−2(n+1), Hn(x) = x−

∑
k≤n

Fk2
−2k.

Represent each saw-tooth function by a network: Fk = R(•kΦ∧).

Use skip connections to get networks of equal depth: Fk = R(Φk)
with Φk := ΦId

1,n−k � •kΦ∧.

Take linear combinations of Φ1, . . . ,Φn to obtain networks of width
proportional to n.

Alternatively, using deep linear combinations, one obtains networks of
depth proportional to n2.

In any case, this strategy is sub-optimal.

Proof: Approximating the Square Function

Proof: Strategy of Perekrestenko e.a. (2018).

As before, approximate the square by saw-tooth functions Hn:

sup
x∈[0,1]

∣∣x2 −Hn(x)
∣∣ ≤ 2−2(n+1), Hn(x) = x−

∑
k≤n

Fk2
−2k.

Recall that Fn is the n-fold composition of the hat function

F (x) := 2ρR(x)− 4ρR(x− 1
2) + 2ρR(x− 1),

and note that Hn(x) = Hn−1(x)− 2−2nFn(x).

This yields the recursion{
Fn(x) = 2ρR(Fn−1(x))− 4ρR(Fn−1(x)− 1

2) + 2ρR(Fn−1(x)− 1),

Hn(x) = ρR(Hn−1(x))− ρR(−Hn−1(x))− 2−2nFn(x),

where the term Fn(x) on the right-hand side can be substituted by a
term involving the functions Fn−1(x) using the first equation.

Proof: Approximating the Square Function (cont.)

Each recursive step corresponds to a network layer:(
Fn
Hn

)
= W1ρR

(
W2

(
Fn−1

Hn−1

))
,

W1(x) =


2 −2−2n+1

−4 2−2n+2

2 2−2n+1

0 1
0 −1


>

x1

x2

x3

x4

x5

 ,

W2(x) =


1 0
1 0
1 0
0 1
0 −1


(
x1

x2

)
−


0

1/2
1
0
0

 .

Thus, using non-sparse concatenation •, the iteration for Hn with
F0(x) = |x| and H0(x) = |x| can be realized by a ReLU network Φ of
depth n+ 2, width 5, and weights bounded by 4.

Approximating Multiplication

Remark: The previous lemma on approximation of the square function
implies the following theorem:

Theorem

Multiplication can be approximated by ReLU networks at an exponential
rate:

∀n ∈ N ∃Φ : B(Φ) ≤ 8,W(Φ) ≤ 10,L(Φ) = n+ 2,

sup
x,y∈[−1,1]

|xy − R(Φ)(x, y)| ≤ 2−2n−1 .

Remark: On domains x, y ∈ [−K,K], the weight bound changes to a
quadratic polynomial in K.

Proof: Approximating Multiplication

Proof:

By polarization, we have for x, y ∈ [−1, 1] that

xy =

(
x+ y

2

)2

−
(
x− y

2

)2

. (∗)

Approximate the square function on [−1, 1] with precision 2−2(n+1) by
a neural network Φ0 with B(Φ0) ≤ 4, W(Φ0) ≤ 5, and
L(Φ0) = n+ 2.

Define neural networks Φ1 and Φ2 as

Φ1 :=


1

2


1 1
−1 −1
1 −1
−1 1

 , 0


 , Φ2 :=

((
(1,−1), 0

))
.

As the realization of Φ := Φ2 • FP(Φ0,Φ0) • Φ1 equals (∗) with
squares replaced by R(Φ0), the error is at most 2−2n−1.

Questions to Answer for Yourself / Discuss with Friends

Repetition: How can multiplication be approximated by ReLU
networks at an exponential rate?

Transfer: Compare the ReLU approximation to the sigmoidal
approximation of multiplication. See Week 3.

Discussion: Using harmonic analysis we previously established
polynomial upper bounds on network approximation rates—are they in
contradiction to the exponential approximation rate established here?

Mathematics of Deep Learning, Summer Term 2020

Week 8, Video 5

ReLU Approximation of Analytic Functions

Philipp Harms Lars Niemann

University of Freiburg

Approximating Monomials

Lemma

Monomials can be approximated by ReLU networks at an exponential rate:

∀d, p, n ∈ N ∀i1, . . . , ip ∈ {1, . . . , d} ∃Φ :

B(Φ) ≤ 8,W(Φ) ≤ 2d+ 10,L(Φ) = p(n+ 2),

sup
x∈[−1,1]d

∣∣xi1 · · ·xip − R(Φ)
∣∣ (x) ≤ 2−2n−1

Remark:

Via dictionary learning, this leads to optimal polynomial
approximation rates for many signal classes.

More interestingly, in contrast to our previous results, it also leads to
exponential approximation rates for real-analytic functions, including
e.g. sinusoidal functions and oscillatory textures.

Proof: Approximating Monomials

Proof:

For any i ∈ {1, . . . , d}, the multiplication with skip connections

(x1, . . . , xd, y) 7→ (x1, . . . , xd, xiy)

can be approximated by a network Ψi with B(Ψi) ≤ 8,
W(Ψi) ≤ 2d+ 10, L(Ψi) = n+ 2, and

sup
x1,...,xd,y∈[−1,1]

‖(x1, . . . , xd, xiy)− R(Ψi)(x1, . . . , xd, y)‖∞ ≤ 2−2n−1.

As the realizations of Ψi are 1-Lipschitz and bounded by 1, the net

Φ := (((0(Rd)∗ , 1), 0)) •Ψi1 � · · · �Ψip •
(((

IdRd

0(Rd)∗

)
,

(
0Rd

1

)))
satisfies B(Φ) ≤ 8, W(Φ) ≤ 2d+ 10, L(Φ) = p(n+ 3), and

sup
x1,...,xd∈[−1,1]

∣∣xi1 · · ·xip − R(Φ)(x1, . . . , xd)
∣∣ ≤ 2−2n−1.

Real-Analytic Functions

Definition

A function f : (−r, r)d → R is real-analytic if it is given by a power series

f(x) =
∑
k∈Nd

akx
k, x ∈ (−r, r)d,

for some coefficients (ak)k∈Nd .

Remark:

The power series converges absolutely on (−r, r)d.

Thus, if r > 1, then a is summable, i.e., ‖a‖`1 :=
∑

k∈Nd |ak| <∞.

Approximating Real-Analytic Functions

Theorem

Real-analytic functions can be approximated by ReLU networks:

∀d ∈ N≥2 ∀δ > 0 ∃ε̄ > 0 ∀ε ∈ (0, ε̄) ∀(ak)k∈Nd ∈ `1 ∃Φ :

B(Φ) ≤ 8
∑
k∈Nd

|ak|,W(Φ) ≤ (2d+ 10),L(Φ) ≤
(
e
(

1
dδ log2

1
ε + 1

))2d
,

sup
x∈[−1+δ,1−δ]d

∣∣∣∣∣∣
∑
k∈Nd

akx
k − R(Φ)(x)

∣∣∣∣∣∣ ≤ 2ε‖ak‖`1 .

Remark: Note that the error decays exponentially in L1/(2d) because

L(Φ) ≤
(
e
(

1
dδ log2

1
ε + 1

))2d
⇔ ε ≤ exp(−dδ(e−1L1/(2d) − 1)).

Approximating Real-Analytic Functions

Proof:

Without loss of generality, ‖ak‖`1 = 1.

Truncation: Let p := d1
δ log2

1
ε e, f(x) :=

∑
k∈Nd akx

k,
fp(x) :=

∑
k∈Nd

≤p
akx

k. Then

sup
x∈[−1+δ,1−δ]d

|f(x)− fp(x)| ≤ (1− δ)p ≤ ε.

Monomial approximation: Let n := d1
2 log2

1
ε e. Approximate each

monomial xk by a network Φk with B(Φ) ≤ 8, W(Φ) ≤ 2d+ 10,
L(Φk) = p(n+ 2), and

sup
x∈[−1,1]d

∣∣∣xk − R(Φk)(x)
∣∣∣ ≤ 2−2n−1 ≤ ε.

Approximating Real-Analytic Functions

Deep linear combinations of the
(
p+d
d

)
monomials: there is a network

Φ with B(Φ) ≤ 8, W(Φ) ≤ 2d+ 11, L(Φ) = p(n+ 2)
(
p+d
d

)
,

sup
x∈[−1,1]d

|fp(x)− R(Φ)(x)| ≤ ε.

Depth bound: for sufficiently small ε̄ and ε < ε̄,

L(Φ) = p(n+ 2)

(
p+ d

d

)
= p(n+ 2)

(p+ d) · · · (p+ 1)

d!

≤ p(n+ 2)

(
p+ d

d/e

)d
= p(n+ 2)

(
e(pd + 1)

)d
≤
(
e(1
dδ log2

1
ε + 1)

)2d
,

where the last inequality follows by an elementary calculation from
the definitions of p and n and the assumption d ≥ 2.

Questions to Answer for Yourself / Discuss with Friends

Repetition: How can real-analytic functions be approximated by ReLU
networks at an exponential rate?

Background: What is the difference between smooth, real-analytic,
and holomorphic functions?

Check: Prove the inequality d! ≥ (d/e)d, which was used in the last
proof. Hint: dd/d! is a summand in the series expansion of ed.

Discussion: Can real-analytic functions be approximated by shallow
networks at an exponential rate?

Transfer: What other assumptions on the signal class besides real
analyticity might increase the approximation rate?

Mathematics of Deep Learning, Summer Term 2020

Week 8, Video 6

Wrapup

Philipp Harms Lars Niemann

University of Freiburg

Outlook on this week’s discussion and reading session

Reading:

– Yarotsky (2017): Error bounds for approximations with deep ReLU
networks. Neural Networks 94, pp. 103–114.

– Perekrestenko, Grohs, Elbrächter, Bölcskei (2018): The universal
approximation power of finite-width deep ReLU Networks.
arXiv:1806.01528

– E, Wang (2018): Exponential convergence of the deep neural
approximation for analytic functions. arXiv:1807.00297

Summary by learning goals

Having heard this lecture, you can now . . .

Establish exponential rates for the approximation of real-analytic
functions by deep ReLU networks.

Explain the role of skip connections in this construction.

Review and Outlook

Topics covered in this lecture series:

– Statistical learning theory
– Universal approximation theorems
– Dictionary learning
– Kolmogorov–Arnold representation
– Harmonic analysis
– Information theory
– ReLU networks and the role of depth

Topics not covered in this lecture series: (non-exhaustive)

– Residual, recurrent, and adversarial networks; auto-encoders
– Manifold assumptions on the data distribution
– Generalization capability and implicit regularization
– Many practical issues

	ReLU Networks and the Role of Depth
	Operations on ReLU Networks
	ReLU Representation of Saw-Tooth Functions
	Saw-Tooth Approximation of the Square Function
	ReLU Approximation of Multiplication
	ReLU Approximation of Analytic Functions
	Wrapup

