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Overview of Week 7

@ Rate-Distortion Theory

© Hypercube Embeddings and Ball Coverings
© Dictionaries as Encoders

@ Frames as Dictionaries

© Networks as Encoders

@ Dictionaries as Networks

a Wrapup
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Encoding, Decoding, and Distortion

Let H be a normed space, let C C H be a signal class, and let [ € N.

@ The set of binary encoders of C with runlength [ is defined as
E={E:C—{0,1}'}.

@ The set of binary decoders with runlength [ is defined as
D= {D:{0,1}} — H}.

o The distortion of an encoder-decoder pair (E, D) € &' x D' is defined
as

&ED%=%QU—D@UMM-

Remark: Alternatively, in probabilistic settings, one can consider the
expected distortion E[|| f — D(E(f))]|x]-



Encoding Rate

Definition
The optimal encoding rate of a signal class C in a normed space H is
defined as

55 ..(C) == sup {S > 0’ (E,D%gglxDl 5(E,D) = O(l_s)} .

Remark:
@ The optimal encoding rate quantifies the complexity of a signal class.
@ The interpretation is information-theoretic: for any s < s%,.(C), one
can compress signals f € C using [-bit encodings with distortion [~°.
@ Rate-distortion theory is the mathematical branch of information

theory which studies data compression problems by analyzing the
trade-off between compression rates and distortion.



Examples: Signal Classes

@ Continuously differentiable functions:
Ch(C) ={f e L*RY) | f € C*, || fllcx < K, supp f C C}, where
C C R% is a smooth bounded domain.

@ Piecewise continuously differentiable functions:

CRP(I) = {filjpe) + falie) | c €1, fi, f2 € Ci(I)}, where
I = (a,b) is an open interval.

@ Star-shaped images:
STAR? = {1 | B is interior of Jordan curve p € C2, ||p|lo2 < K}.

o Cartoon images:
CART%( = {fl]lB -+ f2 | 1p € STAR2 R f1,f2 € C%(([O, 1]2)}.
o Textures: TEXT’}QM ={sin(Mf)g| f,g € Cf(([O, 11}
o Mutilated functions: MUTILE. == {g(u -)h | g € Cfgpw(R), h e
Cr([0,1]9), we R, lul| = 1}.

Remark: All introduced signal classes are relatively compact in L?(R%).



Examples: Optimal Encoding Rates

Remark: The main goal of this week’s lecture is to establish the following

optimal encoding rates and to show that they are achieved by deep neural
networks.

enc(ck ( )) = k/d el’lC(CART2 )
® enc(clﬁpw( )) =k. enC(TEXT ) - k/2
o s:.(STARZ) = enC(MUTILk ) =k/d.

Sketch of Proof:

@ Upper bounds on encoding rates: Hypercubes are difficult to encode.
If C contains hypercubes, then C is difficult to encode. See Video 2.

@ Lower bounds on encoding rates: If signals in C have Banach frame
coefficients with fast decay, then picking the n largest among the first
n* frame coefficients defines a good encoder. See Video 4. Ol



Paradigm: Analysis by Synthesis

Figure: Real-world images (top) can be analyzed by synthesizing them from
simpler image elements (bottom) such as star-shaped domains, cartoons, or
textures. Additional benefits are compression and denoising. [Dahlke, Fig. 5.1-3]



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: What is an endoding-decoding pair, and how are optimal
encoding rates defined?

@ Check: How many bits are needed to encode a natural number in
{1,...,n}?

@ Background: The definition of star-shaped images involves Jordan
curves—can you recall their definition and main properties?

e Context: Read some introductory articles (e.g. on Wikipedia) on data
compression and rate-distortion theory.



Mathematics of Deep Learning, Summer Term 2020
Week 7, Video 2

Hypercube Embeddings and Ball Coverings

Philipp Harms  Lars Niemann

University of Freiburg

UNI
|

FREIBURG



Hypercube Embeddings

Definition (Donoho 2001)
Let C be a signal class in H, and let p > 0.

@ A hypercube of dimension m € N and side-length § > 0 is a set of the

form .
{f +) et
i=1

where f € C, and 1); are orthogonal functions in H with ||¢;[| > 4.

o The signal class C is said to contain a copy of £} if it contains for each
k € N a hypercube with dimension mj, and side-length 0 such that

€ € {0,1}} ,

S — 0 and mlzl/p = O(6) ask — .

Remark: A ball of radius 7 in ¢P contains hypercubes of dimension m € N
with side-length rm=1/7.



Hypercube Embeddings and Encoding Rates

Remark: For many signal classes, hypercube embeddings are easy to
construct and provide (sharp) upper bounds on the encoding rate.

If a signal class C in H contains a copy of £}, for some p € (0,2], then

1
5

1
st (C) < —
()_p




Proof: Hypercube Embeddings and Encoding Rates

Idea of proof: (See [Dahlke e.a., Theorem 5.12] for a full proof.)
@ Hypercubes of dimension m can be identified with bit streams in
{0,1}™.
o Recall that the Hamming distance (aka. ¢! or Manhattan distance)
between two bit streams is the number of unequal bits.

@ Chernoff's bounds imply that for any compression rate « € (0, 1),
there exists C' > 0 such that for any m € N and encoder-decoder

E: {0,1}™ — {0,1}lem D: {0,1}l*m — {0,1}™,

the distortion in the Hamming distance is lower-bounded by C'm.

@ This translates into a lower bound on the encoding rate of a
hypercube as well as its containing signal class. O



Examples: Upper Bounds on Optimal Encoding Rates

Remark: The following are special cases of the above theorem.

Corollary

The following upper bounds on encoding rates are achieved via hypercube
embeddings:

o s5..(CE(C)) < k/d via embedding of ¢, LG+
o 55, (CRPY(I)) < k via embedding ofﬁo/(}hL 2)
o s%..(STAR?) < 1 via embedding offg/S
o 5,.(CART%) < 1 via embedding 01‘62/3
° C(TEXT u) < k/2 via embedding of€2/(k+1)
MUTILK) < k/d via embedding of ¢ /( +2)

2)

enc(




Examples: Upper Bounds on Optimal Encoding Rates

Idea of proof: For a fixed bump function v, one uses hypercubes of the
following forms:

° Z?:_ol e;)(nx — i) for piece-wise continuously differentiable functions,
1 .

4 ]l{||x||§1} +Z?:O 62(]1{||x|\§1/n} — ﬂ{”xHSl}) for star—shaped Images, or

° Z?;:ll €,;sin (n™Fy(na — i)Y (ny — 7)) for textures, etc.

See [Dahlke e.a., Theorem 5.17] for a full proof. O



Digression: Kolmogorov Entropy

Remark:
@ Encoding rates are closely related to covering numbers and
Kolmogorov entropy.
@ We have already encountered the Kolmogorov entropy in the context
of statistical learning theory.
@ Unfortunately, covering numbers are often difficult to compute and
therefore of rather theoretical interest.

Definition
Let H be a metric space, and let C C H be a relatively compact subset.

@ The covering number of C is defined for any € > 0 as the smallest
number N,(C) of e-balls required to cover C.

@ The Kolmogorov entropy of C is defined as H(C) = logy(N¢(C)).




Digression: Kolmogorov Entropy and Encoding Rates

Let C C H be a relatively compact signal class in a normed space H. Then
the optimal encoding rate s%,.(C) is related to the Kolmogorov entropy
He(C) by

Senc(C) = sup {s >0:H(C) = (9(6_5)} .

Proof:
e Given a pair (F, D) of length [ that achieves distortion ¢, the e-balls
centered at D(), £ € {0,1}!, cover C.
o Conversely, given ¢ > 0, we can find N, := 2/<(©) centers whose
e-neighborhoods cover C. Encode C using the binary representation of
the nearest center, and decode by reversing this process. O



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: How are upper bounds on the encoding rate obtained
from hypercube embeddings?

@ Check: Show that relatively compact signal classes have finite
covering numbers.

@ Background: Skim through the construction of hypercube
embeddings for specific signal classes in [Dahlke e.a., Theorem 5.17].

@ Transfer: The upper bounds on the optimal encoding rates decay
inversely proportional to the dimension—an instance of the curse of
dimensionality.
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Repetition: Approximation Rates of Dictionaries

Definition

A dictionary (¢x)aea in H achieves an approximation rate of (hy,)pen if

7(Zn(),C) =sup inf |f—gls=0(hn) asn— oo,
fec 9€En(9)

where ¥,,(¢) denotes the set of n-term linear combinations in ¢.

Remark:

@ A dense dictionary ¢ in H achieves any approximation rate for any
signal class. Nevertheless, it is ill-suited for efficient encoding of
functions.

@ This motivates the requirement of polynomial-depth search, which is
described next.

@ We restrict ourselves to polynomial rates h, =n7%, s > 0, as these
are most relevant.



Dictionary Approximation with Polynomial-Depth Search

Definition (Donoho 2001)

Let ¢ = (¢i)ien be a dictionary, 7 a univariate polynomial, C a signal class
in H#, and n € N.

@ The set of n-term linear combinations in ¢ with polynomial-depth
search is defined as

n(n)
Sr(@) =4 > cidilei € R with |cflo < n

=1

@ The approximation rate of ¢ with polynomial-depth search is defined
as

Siia(C,0) i=sup {5 > O3 ssup_inf g~ fllu = O(n™*)}

Remark: Here, the dictionary needs to be ordered, i.e., indexed over N.



Encoding via Dictionaries

Remark: Polynomial-depth search leads to the desired link between
dictionary approximation rates and encoding rates:

For any dictionary ¢ and bounded signal class C in H,

SZHC(C) Z szict (C7 (;5) .

Remark:
o A dictionary ¢ is called rate-optimal if equality holds above.

@ Explicit dictionary approximation rates can be obtained for Hilbert or
Banach frames, as shown in the next video.



Proof: Encoding via Dictionaries

Proof:

e We start by constructing an encoder. For any s < s%,(C, ¢), there
exists a polynomial 7w and a constant C' > 0 such that for all n € N
and f € C, there exist coefficients ¢; € R with ||c[|o < n such that

7r(n
Hf Ci¢i <Cn™°.
H

@ Theset A, :=={i € N: ¢ # 0} can be encoded using O(nlogn) bits
thanks to the assumption of polynomial-depth search.

o Applying the Gram-Schmidt orthonormalization to ¢a,, == (¢x)rea,
yields an orthonormal set QSA (qb,\),\eAn Some ¢y may be zero.



Proof: Encoding via Dictionaries (cont.)

@ Determine coefficients ¢y uniquely by

dadr= D adr, @ =0if gy =0
AeAn AeAn
@ Note that

<Cn~*
H

Hf— > EHon

AEA,

and that the sequence ¢ is /?-bounded uniformly in n and f. (Here
enters the boundedness of C.)

@ Rounding the coefficients ¢, up to multiples of n~(+3) encodes them
with a bit string of length O(nlogn).

o Altogether, this gives an encoding procedure E; : C — {0, 1} with
length | = O(nlogn).



Proof: Decoding via Dictionaries

@ Decoding is done by reversing this process: starting from a bit string
&, reconstruct the set A,, and the rounded approximations ¢y of ¢y,
and define the decoder

Dp: {0,1} = H,  Di(§)=)_ éxta-

AEA,

@ It remains to control the distortion:

|f — Di(Ei(f) ||H—Hf > e

AEA,

H

Hf CMg,\ +

AEA,

D> ada— Y éada
H

AEA, AEA,

H

a1 _
< Cn™% 4+ max |éy — é\|n2 < Cn”°. O
AEA,



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: How are lower bounds on encoding rates obtained from
dictionary approximation rates?

@ Check: The approximation rate of a dense dictionary is arbitrarily
high—what about the approximation rate with polynomial-depth
search?

@ Check: Verify that the coefficients ¢ after Gram—Schmidt
orthogonalization are /2-bounded uniformly in n € N and f € C.

Hint: [[2l;2 = | 325 &dalln.

@ Transfer: Nonlinear approximation spaces C are defined by the
requirement that s*(C, ¢) = s for given s € R.
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Repetition: Hilbert Frames

Remark: Recall that Hilbert frames are Banach frames in Hilbert spaces
with respect to the sequence space ¢2; this boils down to the following:

@ A Hilbert frame in a Hilbert space H is a dictionary ¢ = (¢))xea S-t.

VieH:  IfIE S D KA ol S I

A€A

o A dual frame for ¢ is a complementary dictionary ¢ = (¢x)xea S.t.

VEeH:  f=) (fauda= D (fda)ud

AEA AEA

Remark: Every Hilbert frame has a dual frame, for instance the canonical
one, which is determined by ¢, = >, (du, dr)2 @A, or the one from the
definition of Banach frames.



Weak (P Spaces

Remark: Recall that a quasi-norm is a norm without a triangle inequality.

Definition

The weak ¢P-quasinorm of a sequence ¢ := (¢ )ken is defined for any
p >0 as
lellber = supe? 4k € N : |ea| > ¢},

and the space w/P consists of all sequences with finite weak #P-quasinorm.

Remark:
@ For any p > 1, the space /P embeds continuously in w/fP because

lellpe > thﬂ{k:\ckbt} + Z kP Ly <ty = tPFLE < |er] >t}
K K

@ The space wfP coincides with the Lorentz space /P*°, is complete,
and is normable for p > 1. Weak LP spaces are defined similarly.



Approximation via Frames

Remark: We next show that weak /P bounds on Hilbert frame coefficients
translate into dictionary approximation rates.

Theorem

Let (¢n)nen be a Hilbert frame with dual frame (¢ )nen in a Hilbert space
‘H, and let C be a signal class in H which satisfies the weak (P bound

?é? H((ﬂ <l~5n>H)n€NHweP =

and, for some o > 0, the (2 tail bound

sup 3" (£, $0)? = O(n ).

fec >n

Then s%;..(C, ¢) >

==
D=




Proof: Approximation via Frames

Proof: Claim 1: The w/? bound implies that o(%,(¢),C) = O(n™?).

@ For any signal f € C, picking the n largest frame coefficients defines
an n-term approximation

fn = chl(ﬁkl 5

i<n

were ¢, is a non-increasing rearrangement of ¢ == (f, ¢x) .
o The definition of the w¢P norm implies |c;.| < i~'/P because

e, |78 < e, [ #{k € Nt fex| > [ex, [} < el -
o Together with the frame property of ¢ this yields

If = £all? S e, P S D i7P <™, where s =1 —

>n >n

)

N[ —

where the last inequality follows from an elementary calculation. This
proves Claim 1.



Proof: Approximation via Frames

Claim 2: The /2 tail bound implies (X7 (¢),C) = O(n~*) for suitable 7.
o Define 7(n) := nl?s/o1.
e For any signal f € C, picking the first m(n) frame coefficients defines
an approximation f,, with

If = Fll? S S [ danl® < (n(n) ™" <72

i>m(n)

@ By the previous claim, picking the n largest frame coefficients of f,
defines an approximation f, with

an - an%{ < n=%.
@ Taken together, this implies

1f = fallw S 7%

which proves Claim 2 and establishes the theorem. O



Examples: Lower Bounds on Optimal Encoding Rates

Remark: The following lower bounds are sharp and are obtained as special
cases of the previous theorem:

Corollary

The following lower bounds on encoding rates are achieved via frames:
o 5:.(CE(C)) > k/d via wavelets, shearlets, and many more
52 (CRPU(I)) > k via wavelets
s%..(STARZ.) > 1 via curvelets and shearlets
st..(CARTZ) > 1 via curvelets and shearlets
C(TEXT v) > k/2 via wave atoms

o st (MUTIL K) > k/d via ridgelets

Proof: Verify the conditions of the previous theorem for the specified
frames; see [Dahlke e.a., Theorem 5.51]. O



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: How are dictionary approximation rates obtained from
weak ¢P bounds on Hilbert frame coefficients?

@ Background: Find the definition of wave atoms and have a look at
some pictures of wave atoms. Hint: [Demanet and Ying (2007):
Wave atoms and sparsity of oscillatory patterns]

@ Discussion: Are the encoders/decoders obtained via frame
approximations constructive and numerically implementable?

@ Discussion: How could the theory be generalized to Banach frames,
and what kind of results would you expect from this?
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Neural Network Approximation Rates

Remark: Neural networks with constrained memory can be seen as
encoders.

Definition

Let C be a signal class in a normed function space H on R, let M € N,
let m be a univariate polynomial, and let A be a subset of R.

@ The set NNJ\"}[ of neural networks with quantized weights is defined
as the set of neural networks ® with input dimension d, output
dimension 1, and at most M non-zero weights belonging to A.

@ The effective network approximation rate of C is defined as

sin(©) = sup {s > 0|37, 3(Anr)aren : #4u = O(x(M),

sup inf |IR(®) — fl = O(M)},
fEC deNN M

where R is defined using some fixed activation function p € C'(R).




Encoding via Neural Networks

Remark: The memory constraint imposed via weight quantization yields
the desired link between network approximation rates and encoding rates:

For any signal class C,

Remark:
o Neural networks are called rate-optimal for C if equality holds above.

@ The theorem implies a lower bound on the network connectivity,
namely, an approximation error of € requires approximately e!/5enc(C)
non-zero network weights.



Proof: Encoding via Neural Networks

Proof:
o Let s < s3,\/(C), and choose 7, (Arr)pen, and C such that

VM eN: sup inf |R(®)— fllu <CM™°, #Ay <nm(M).
FEC DENNIM

@ Thus, for any given f € C and M € N, there exists a network
& € NNM with |R(®) — fllyw < CM~*.

o We write £ < M for the number of edges, L < M for the number of
layers, Ny := d for the input dimension, Ny, ..., N, for the numbers
of neurons per layer, and N := Zz%:o Ny < 2F.

@ We will show that ® can be encoded in a bit string of length
O(M log M). This yields an encoder-decoder pair with distortion

IDEF)) = fl = IR(®) = fll = O(M™)

thereby establishing the theorem.



Proof: Encoding via Neural Networks (cont.)

@ We encode the architecture of ® in a bit string:
— The number E of edges is encoded by a string of E/ 1's, followed by a
single 0.
— The number L of layers is encoded by a string of [log, E bits, namely,
by the binary representation of L — 1 with left-padded zeros.
— Then (Ny,...,Nr) is encoded in a string of (L + 1)[logy E + 1] bits.

@ We encode the topology of ® in a bit string:

— To each neuron, we associate a unique index ¢ € {1,..., N}, noting
that this index can be encoded in a string b; of [log, E] + 1 bits.

— For each neuron 7, we output the concatenation of the bit strings b; of
all children j, followed by a zero string of length 2[log, E'| + 2 to
signal the transition to neuron i + 1.

@ We encode the weights of ® in a bit string:

— Each weight requires [log, 7(M)] bits.

— The nodal weights are encoded in (N7 + - - - + N;)[log, w(M)] bits.

— The edge weights are encoded in E[log, w(M)] bits.

e Overall, this requires O(M log, M) bits, as claimed. O



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: What is the effective network approximation rate, and
why is it upper-bounded by the encoding rate?

@ Check: Why can the logarithmic factors in the rate computations be
ignored?

@ Check: In the last proof we constructed an encoder—what does the
corresponding decoder look like?

@ Discussion: What does the result say about deep learning? What are
limitations of the result?
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Representation of Dictionaries by Neural Networks

Setting: H = L?(2) for some Q C R?, and p: R — R is globally Lipschitz
continuous or differentiable with polynomially bounded first derivative.

Definition

A dictionary ¢ = (¢;)ien in H is said to be effectively representable by
neural networks if there exists L, M € N and a bi-variate polynomial 7
such that for every € € (0,1/2) and i € N there exists a neural network ®
with M(®) < M, L(®) < L, and weights bounded by m(i,e!), such that

[¢i — R(®)[|# < e

Remark:

@ The crucial point, also compared to our former setting for dictionary
learning, is the requirement of polynomially bounded weights.

o For affine systems, i.e., dictionaries of affine transformations of a
mother function 1), it suffices to check effective representability of .



Quantization of Neural Networks

Remark: We will need a seemingly stronger property, namely effective
representation by quantized networks:

In the definition of effective representability, it can be assumed without
loss of generality that the weights of ® are quantized in the sense that
they belong to the set

7(i,€)Z N [—m(i,e ), m(i, e ).




Proof: Quantization of Neural Networks

Sketch of proof for Lipschitz activation functions p:

@ For single-layer networks x +— Aix + b1, which by definition are just
affine maps, the quantization error of the network is proportional to
the quantization error of the weights.

e For double-layer networks x — Agp(Ajx + b1) + by, the quantization
error of the single-layer sub-network is amplified polynomially via the
multiplication by As.

@ By induction, the same holds for multi-layer networks.

@ Thus, the quantization error of the network is O(e) if the
quantization error of the weights is O(¢") for sufficiently high k, with
additional polynomial dependence on 1.

For activation functions with polynomially bounded first derivative we refer
to [Bolcskei e.a., Lemma 3.3]. O



Transfer of Approximation

Remark: Approximation rates for dictionaries transfer to approximation
rates for neural networks if the dictionary is effectively represented by
neural networks.

If ¢ is effectively representable by neural networks and C is bounded, then

S.T\/'J\/'(C) > Sjiict(ca ¢)




Proof: Transfer of Approximation

Proof: Dictionary learning.
@ For any s < s%;..(C, ¢), there are approximations f, of f € C s.t.
m(n)
fo=Du(En(f)) =Y _cidi,  |fa— fll=0(n"").
i=1

@ In the theorem on encoding via dictionaries in Video 3 we have shown
that the coefficients ¢; can be chosen in a set of cardinality
polynomially bounded in n.

@ The dictionary functions ¢;, ¢ € {1,...,7(n)}, can be effectively
represented by neural networks ®;, up to an approximation error of
order O(n~*), with weights polynomially bounded in n.

@ By the quantization lemma, it can be assumed without loss of
generality that the weights of the networks ®; belong to a set of
cardinality polynomially bounded in n.

@ Taking linear combinations produces a network approximation of f,
with weights in a set of cardinality polynomially bounded in n and
approximation error O(n™*). O



Rate-Optimal Approximation by Neural Networks

If ¢ is a rate-optimal dictionary for C, and ¢ is effectively represented by
neural networks, then neural networks are rate-optimal for C.

Proof: The following rates are equal,

o o o

$iict (C,0) = Senc(C) = sy (C) = 54t (C, 9),

because
© the dictionary ¢ is rate-optimal,
@ quantized neural networks are encoders, as shown in Video 5, and

© quantized dictionary approximations are quantized neural networks, as
shown in the last theorem. O

Remark: This corollary applies to all examples of signal classes and
dictionaries discussed so far.



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: Why and under what conditions is the effective network
approximation rate lower-bounded by the dictionary approximation
rate?

@ Check: How wide and deep are the approximating networks?

@ Check: How does the present transfer-of-approximation result differ
from the one of Week 37

@ Discussion: What does the result say about deep learning? What are
limitations of the result?
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Outlook on this week's discussion and reading session

@ Reading:
— Bolcskei, Grohs, Kutyniok, Petersen (2017): Optimal approximation
with sparsely connected deep neural networks
— Donoho (2001): Sparse Components of Images and Optimal Atomic
Decompositions. In: Constructive Approximation 17, pp. 353-382
— Shannon (1959): Coding Theorems for a Discrete Source with a
Fidelity Criterion. In: International Convention Record 7, pp. 325-350



Summary by learning goals

Having heard this lecture, you can now ...

@ Derive lower bounds on effective network approximation rates from
harmonic analysis.

@ Derive upper bounds on effective network approximation rates from
rate-distortion theory.

@ Explain why neural networks are optimal descriptors of a wide variety
of signal classes.
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