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Encoding, Decoding, and Distortion

Definition

Let H be a normed space, let C ⊆ H be a signal class, and let l ∈ N.

The set of binary encoders of C with runlength l is defined as

E l := {E : C → {0, 1}l} .

The set of binary decoders with runlength l is defined as

Dl := {D : {0, 1}l → H} .

The distortion of an encoder-decoder pair (E,D) ∈ E l ×Dl is defined
as

δ(E,D) := sup
f∈C
‖f −D(E(f))‖H .

Remark: Alternatively, in probabilistic settings, one can consider the
expected distortion E[‖f −D(E(f))‖H].



Encoding Rate

Definition

The optimal encoding rate of a signal class C in a normed space H is
defined as

s∗enc(C) := sup
{
s > 0

∣∣∣ inf
(E,D)∈El×Dl

δ(E,D) = O(l−s)
}
.

Remark:

The optimal encoding rate quantifies the complexity of a signal class.

The interpretation is information-theoretic: for any s < s∗enc(C), one
can compress signals f ∈ C using l-bit encodings with distortion l−s.

Rate-distortion theory is the mathematical branch of information
theory which studies data compression problems by analyzing the
trade-off between compression rates and distortion.



Examples: Signal Classes

Continuously differentiable functions:
CkK(C) := {f ∈ L2(Rd) | f ∈ Ck, ‖f‖Ck ≤ K, supp f ⊆ C}, where
C ⊆ Rd is a smooth bounded domain.

Piecewise continuously differentiable functions:
Ck,pwK (I) := {f11[0,c) + f21[c,1) | c ∈ I, f1, f2 ∈ CkK(I)}, where
I = (a, b) is an open interval.

Star-shaped images:
STAR2

K := {1B | B is interior of Jordan curve ρ ∈ C2, ‖ρ‖C2 ≤ K}.
Cartoon images:
CART2

K := {f11B + f2 | 1B ∈ STAR2
K , f1, f2 ∈ C2

K([0, 1]2)}.
Textures: TEXTk

K,M := {sin(Mf)g | f, g ∈ CkK([0, 1]2)}.

Mutilated functions: MUTILkK := {g(u ·)h | g ∈ Ck,pwK (R), h ∈
CkK([0, 1]d), u ∈ Rd, ‖u‖ = 1}.

Remark: All introduced signal classes are relatively compact in L2(Rd).



Examples: Optimal Encoding Rates

Remark: The main goal of this week’s lecture is to establish the following
optimal encoding rates and to show that they are achieved by deep neural
networks.

Theorem

s∗enc(CkK(C)) = k/d.

s∗enc(C
k,pw
K (I)) = k.

s∗enc(STAR2
K) = 1.

s∗enc(CART2
K) = 1.

s∗enc(TEXTk
K,M ) = k/2.

s∗enc(MUTILkK) = k/d.

Sketch of Proof:

Upper bounds on encoding rates: Hypercubes are difficult to encode.
If C contains hypercubes, then C is difficult to encode. See Video 2.

Lower bounds on encoding rates: If signals in C have Banach frame
coefficients with fast decay, then picking the n largest among the first
nk frame coefficients defines a good encoder. See Video 4.
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Fig. 5.2 Left: A natural image is typically composed of smooth parts separated by edges and thus
resembles a cartoon image as defined in Example 5.5. The main features are still visible. Right:
True cartoon image.

Example 5.6 (Textures, see [9]). Textures are signals with highly oscillatory,
repetitive structures. In [9] the following model has been proposed for textures:

TEXTk
K;M WD fsin.Mf .x//g.x/ where f ; g 2 Ck

K.Œ0; 1!
2/g:

It consists of warped, oscillatory patterns.

Example 5.7 (Mutilated Functions, see [2]). The class of ‘mutilated functions’ has
been introduced in [2] as all functions of the form

MUTILkK WD fg.u ! x/h .x/ W g 2 C k;pw
K .R/; h 2 C k

K.Œ0; 1!
d/; u 2 Rd; juj D 1g:

Functions in MUTILkK are generally smooth aside from possible discontinuities
across hyperplanes orthogonal to the vector u. Mutilated functions arise, for
instance, as solution to linear transport PDEs [25].

We reiterate that the signal classes that we have seen in the previous examples do
not necessarily correspond to what real-world signals might look like. But still it
is reasonable to consider, for instance, the class TEXTk

K;M as a stylized model for
fingerprint images or seismic data, or the class CART2K as a model for images with
little texture, see Figures 5.3 and 5.2.

Having agreed on what we mean by signal classes in a mathematical sense we
now define what we mean by encoding such data which formally means a mapping
that maps each u 2 C to a bitstream of finite length. Our nomenclature is mostly
based on conventions in the field of rate-distortion theory [1].

Definition 5.8. Let C be a signal class. An encoding/decoding pair .E;D/ consists
of two mappings
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Fig. 5.3 Left: A fingerprint image resembles a texture image as defined in Example 5.6. Right:
True texture image.

E W C ! f0; 1gR; D W f0; 1gR !H ;

where R 2 N denotes the runlength R.E;D/ of .E;D/. The distortion of .E;D/ is
defined as

ı.E;D/ WD sup
u2C
ku ! D ı E.u/kH :

Given an encoding/decoding pair one encodes a signal u 2 C simply by applying
the mapping E (and thus ‘digitizing’ the continuous signal u into a bitstream) and
the decoding works by applying the decoder, e.g. computing D.E.u// 2 H . The
goal of rate-distortion theory is simply to develop encoding/decoding pairs with a
runlength which is as short as possible while at the same time keeping the distortion
small. In particular we want to understand the following quantity.

Definition 5.9. Let C be a signal class. Then we denote its optimal encoding
rate by

s!.C / WD supfs > 0 W There exists C > 0 such that for each R 2 N

there exists .ER;DR/ with R.ER;DR/ D R and ı.ER;DR/ " CR"sg: (5.4)

We remark that knowledge of s!.C / exactly answers the question posed in the
beginning of this section: Indeed, for any s < s!.C / we can encode any signal
u 2 C , up to precision " > 0 using, up to a fixed constant C, ""1=s bits. Of course,
the larger s!, the better: suppose we want to encode with a guaranteed accuracy of
four decimals, i.e. " D 10"6. Then, if s!.C / D 2, we would need about 1000 bits
whereas we would need about 1012 bits if s!.C / D 1=2.
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Fig. 5.1 Many parts of natural images can be modeled mathematically as piecewise smooth
functions with curved discontinuities.

The main question that we ask in this chapter is the following.

Suppose we have a given signal class C and a desired precision " > 0. What is the minimal
number N of bits needed to encode any signal f 2 C up to precision "?

Of course this question makes no sense mathematically, as it stands. We need
to cast it more into the mathematical language. For instance: What precisely do we
mean by a ‘signal class’? What does ‘encoding’ mean? And what do we mean by
‘up to precision "’?

In what follows we will present rigorous answers to these questions, together
with some examples. Finally we will show a fundamental and perhaps surprising
phenomenon: For many signal classes one can precisely quantify the optimal trade-
off between N, the number of bits, and ", the desired precision.

To this end we will first, in Section 5.2 introduce basic notions of coding theory.
After presenting several interesting mathematical models for different types of real-
world signals we introduce, for a signal class C , its optimal encoding rate which
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Fig. 5.3 Left: A fingerprint image resembles a texture image as defined in Example 5.6. Right:
True texture image.

E W C ! f0; 1gR; D W f0; 1gR !H ;

where R 2 N denotes the runlength R.E;D/ of .E;D/. The distortion of .E;D/ is
defined as

ı.E;D/ WD sup
u2C
ku ! D ı E.u/kH :

Given an encoding/decoding pair one encodes a signal u 2 C simply by applying
the mapping E (and thus ‘digitizing’ the continuous signal u into a bitstream) and
the decoding works by applying the decoder, e.g. computing D.E.u// 2 H . The
goal of rate-distortion theory is simply to develop encoding/decoding pairs with a
runlength which is as short as possible while at the same time keeping the distortion
small. In particular we want to understand the following quantity.

Definition 5.9. Let C be a signal class. Then we denote its optimal encoding
rate by

s!.C / WD supfs > 0 W There exists C > 0 such that for each R 2 N

there exists .ER;DR/ with R.ER;DR/ D R and ı.ER;DR/ " CR"sg: (5.4)

We remark that knowledge of s!.C / exactly answers the question posed in the
beginning of this section: Indeed, for any s < s!.C / we can encode any signal
u 2 C , up to precision " > 0 using, up to a fixed constant C, ""1=s bits. Of course,
the larger s!, the better: suppose we want to encode with a guaranteed accuracy of
four decimals, i.e. " D 10"6. Then, if s!.C / D 2, we would need about 1000 bits
whereas we would need about 1012 bits if s!.C / D 1=2.

Figure: Real-world images (top) can be analyzed by synthesizing them from
simpler image elements (bottom) such as star-shaped domains, cartoons, or
textures. Additional benefits are compression and denoising. [Dahlke, Fig. 5.1–3]



Questions to Answer for Yourself / Discuss with Friends

Repetition: What is an endoding-decoding pair, and how are optimal
encoding rates defined?

Check: How many bits are needed to encode a natural number in
{1, . . . , n}?

Background: The definition of star-shaped images involves Jordan
curves—can you recall their definition and main properties?

Context: Read some introductory articles (e.g. on Wikipedia) on data
compression and rate-distortion theory.
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Hypercube Embeddings

Definition (Donoho 2001)

Let C be a signal class in H, and let p > 0.

A hypercube of dimension m ∈ N and side-length δ > 0 is a set of the
form {

f +

m∑
i=1

εiψi

∣∣∣εi ∈ {0, 1}} ,

where f ∈ C, and ψi are orthogonal functions in H with ‖ψi‖H ≥ δ.

The signal class C is said to contain a copy of `p0 if it contains for each
k ∈ N a hypercube with dimension mk and side-length δk such that

δk → 0 and m
−1/p
k = O(δk) as k →∞.

Remark: A ball of radius r in `p contains hypercubes of dimension m ∈ N
with side-length rm−1/p.



Hypercube Embeddings and Encoding Rates

Remark: For many signal classes, hypercube embeddings are easy to
construct and provide (sharp) upper bounds on the encoding rate.

Theorem

If a signal class C in H contains a copy of `p0 for some p ∈ (0, 2], then

s∗enc(C) ≤
1

p
− 1

2
.



Proof: Hypercube Embeddings and Encoding Rates

Idea of proof: (See [Dahlke e.a., Theorem 5.12] for a full proof.)

Hypercubes of dimension m can be identified with bit streams in
{0, 1}m.

Recall that the Hamming distance (aka. `1 or Manhattan distance)
between two bit streams is the number of unequal bits.

Chernoff’s bounds imply that for any compression rate α ∈ (0, 1),
there exists C > 0 such that for any m ∈ N and encoder-decoder

E : {0, 1}m → {0, 1}bαmc, D : {0, 1}bαmc → {0, 1}m,

the distortion in the Hamming distance is lower-bounded by Cm.

This translates into a lower bound on the encoding rate of a
hypercube as well as its containing signal class.



Examples: Upper Bounds on Optimal Encoding Rates

Remark: The following are special cases of the above theorem.

Corollary

The following upper bounds on encoding rates are achieved via hypercube
embeddings:

s∗enc(CkK(C)) ≤ k/d via embedding of `
1/( k

d
+ 1

2
)

0

s∗enc(C
k,pw
K (I)) ≤ k via embedding of `

1/(k+ 1
2

)

0

s∗enc(STAR2
K) ≤ 1 via embedding of `

2/3
0

s∗enc(CART2
K) ≤ 1 via embedding of `

2/3
0

s∗enc(TEXTk
K,M ) ≤ k/2 via embedding of `

2/(k+1)
0

s∗enc(MUTILkK) ≤ k/d via embedding of `
1/( k

d
+ 1

2
)

0



Examples: Upper Bounds on Optimal Encoding Rates

Idea of proof: For a fixed bump function ψ, one uses hypercubes of the
following forms:∑n−1

i=0 εiψ(nx− i) for piece-wise continuously differentiable functions,

1{‖x‖≤1}+
∑n−1

i=0 εi
(
1{‖x‖≤i/n}−1{‖x‖≤1}

)
for star-shaped images, or∑n−1

i,j=1 εi,j sin
(
n−kψ(nx− i)ψ(ny − j)

)
for textures, etc.

See [Dahlke e.a., Theorem 5.17] for a full proof.



Digression: Kolmogorov Entropy

Remark:

Encoding rates are closely related to covering numbers and
Kolmogorov entropy.

We have already encountered the Kolmogorov entropy in the context
of statistical learning theory.

Unfortunately, covering numbers are often difficult to compute and
therefore of rather theoretical interest.

Definition

Let H be a metric space, and let C ⊆ H be a relatively compact subset.

The covering number of C is defined for any ε > 0 as the smallest
number Nε(C) of ε-balls required to cover C.

The Kolmogorov entropy of C is defined as Hε(C) := log2(Nε(C)).



Digression: Kolmogorov Entropy and Encoding Rates

Lemma

Let C ⊆ H be a relatively compact signal class in a normed space H. Then
the optimal encoding rate s∗enc(C) is related to the Kolmogorov entropy
Hε(C) by

s∗enc(C) = sup
{
s > 0 : Hε(C) = O(ε−

1
s )
}
.

Proof:

Given a pair (E,D) of length l that achieves distortion ε, the ε-balls
centered at D(ξ), ξ ∈ {0, 1}l, cover C.

Conversely, given ε > 0, we can find Nε := 2Hε(C) centers whose
ε-neighborhoods cover C. Encode C using the binary representation of
the nearest center, and decode by reversing this process.



Questions to Answer for Yourself / Discuss with Friends

Repetition: How are upper bounds on the encoding rate obtained
from hypercube embeddings?

Check: Show that relatively compact signal classes have finite
covering numbers.

Background: Skim through the construction of hypercube
embeddings for specific signal classes in [Dahlke e.a., Theorem 5.17].

Transfer: The upper bounds on the optimal encoding rates decay
inversely proportional to the dimension—an instance of the curse of
dimensionality.
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Repetition: Approximation Rates of Dictionaries

Definition

A dictionary (φλ)λ∈Λ in H achieves an approximation rate of (hn)n∈N if

σ(Σn(φ), C) := sup
f∈C

inf
g∈Σn(φ)

‖f − g‖H = O(hn) as n→∞,

where Σn(φ) denotes the set of n-term linear combinations in φ.

Remark:

A dense dictionary φ in H achieves any approximation rate for any
signal class. Nevertheless, it is ill-suited for efficient encoding of
functions.

This motivates the requirement of polynomial-depth search, which is
described next.

We restrict ourselves to polynomial rates hn = n−s, s > 0, as these
are most relevant.



Dictionary Approximation with Polynomial-Depth Search

Definition (Donoho 2001)

Let φ = (φi)i∈N be a dictionary, π a univariate polynomial, C a signal class
in H, and n ∈ N.

The set of n-term linear combinations in φ with polynomial-depth
search is defined as

Σπ
n(φ) =


π(n)∑
i=1

ciφi

∣∣∣∣∣∣ci ∈ R with ‖c‖0 ≤ n

 .

The approximation rate of φ with polynomial-depth search is defined
as

s∗dict(C, φ) := sup
{
s > 0

∣∣∣∃π : sup
f∈C

inf
g∈Σπn(φ)

‖g − f‖H = O(n−s)
}

Remark: Here, the dictionary needs to be ordered, i.e., indexed over N.



Encoding via Dictionaries

Remark: Polynomial-depth search leads to the desired link between
dictionary approximation rates and encoding rates:

Theorem

For any dictionary φ and bounded signal class C in H,

s∗enc(C) ≥ s∗dict(C, φ) .

Remark:

A dictionary φ is called rate-optimal if equality holds above.

Explicit dictionary approximation rates can be obtained for Hilbert or
Banach frames, as shown in the next video.



Proof: Encoding via Dictionaries

Proof:

We start by constructing an encoder. For any s < s∗dict(C, φ), there
exists a polynomial π and a constant C > 0 such that for all n ∈ N
and f ∈ C, there exist coefficients ci ∈ R with ‖c‖0 ≤ n such that

∥∥∥∥f − π(n)∑
i=1

ciφi

∥∥∥∥
H
≤ Cn−s .

The set Λn := {i ∈ N : ci 6= 0} can be encoded using O(n log n) bits
thanks to the assumption of polynomial-depth search.

Applying the Gram-Schmidt orthonormalization to φΛn := (φλ)λ∈Λn

yields an orthonormal set φ̃Λn := (φ̃λ)λ∈Λn . Some φ̃λ may be zero.



Proof: Encoding via Dictionaries (cont.)

Determine coefficients c̃λ uniquely by∑
λ∈Λn

c̃λφ̃λ =
∑
λ∈Λn

cλφλ, c̃λ = 0 if φ̃λ = 0.

Note that ∥∥∥∥f − ∑
λ∈Λn

c̃λφ̃λ

∥∥∥∥
H
≤ Cn−s

and that the sequence c̃ is `2-bounded uniformly in n and f . (Here
enters the boundedness of C.)

Rounding the coefficients c̃λ up to multiples of n−(s+ 1
2

) encodes them
with a bit string of length O(n log n).

Altogether, this gives an encoding procedure El : C → {0, 1}l with
length l = O(n log n).



Proof: Decoding via Dictionaries

Decoding is done by reversing this process: starting from a bit string
ξ, reconstruct the set Λn and the rounded approximations ĉλ of c̃λ,
and define the decoder

Dn : {0, 1}l → H, Dl(ξ) :=
∑
λ∈Λn

ĉλφ̃λ .

It remains to control the distortion:

‖f −Dl(El(f))‖H =

∥∥∥∥f − ∑
λ∈Λn

ĉλφ̃λ

∥∥∥∥
H

≤
∥∥∥∥f − ∑

λ∈Λn

c̃λφ̃λ

∥∥∥∥
H

+

∥∥∥∥ ∑
λ∈Λn

ĉλφ̃λ −
∑
λ∈Λn

c̃λφ̃λ

∥∥∥∥
H

≤ Cn−s + max
λ∈Λn

|c̃λ − ĉλ|n
1
2 ≤ Cn−s.



Questions to Answer for Yourself / Discuss with Friends

Repetition: How are lower bounds on encoding rates obtained from
dictionary approximation rates?

Check: The approximation rate of a dense dictionary is arbitrarily
high—what about the approximation rate with polynomial-depth
search?

Check: Verify that the coefficients c̃ after Gram–Schmidt
orthogonalization are `2-bounded uniformly in n ∈ N and f ∈ C.
Hint: ‖c̃‖`2 = ‖

∑
λ c̃λφ̃λ‖H.

Transfer: Nonlinear approximation spaces C are defined by the
requirement that s∗(C, φ) = s for given s ∈ R.
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Repetition: Hilbert Frames

Remark: Recall that Hilbert frames are Banach frames in Hilbert spaces
with respect to the sequence space `2; this boils down to the following:

Definition

A Hilbert frame in a Hilbert space H is a dictionary φ = (φλ)λ∈Λ s.t.

∀f ∈ H : ‖f‖2H .
∑
λ∈Λ

|〈f, φλ〉H|2 . ‖f‖2H.

A dual frame for φ is a complementary dictionary φ̃ = (φ̃λ)λ∈Λ s.t.

∀f ∈ H : f =
∑
λ∈Λ

〈f, φ̃λ〉Hφλ =
∑
λ∈Λ

〈f, φλ〉Hφ̃λ.

Remark: Every Hilbert frame has a dual frame, for instance the canonical
one, which is determined by φµ =

∑
λ〈φ̃µ, φλ〉Hφλ, or the one from the

definition of Banach frames.



Weak `p Spaces

Remark: Recall that a quasi-norm is a norm without a triangle inequality.

Definition

The weak `p-quasinorm of a sequence c := (ck)k∈N is defined for any
p > 0 as

‖c‖pw`p := sup
t>0

tp #{k ∈ N : |ck| > t},

and the space w`p consists of all sequences with finite weak `p-quasinorm.

Remark:

For any p ≥ 1, the space `p embeds continuously in w`p because

‖c‖p`p ≥
∑
k

tp1{k:|ck|>t} +
∑
k

|ck|p1{k:|ck|≤t} ≥ t
p#{k : |ck| > t} .

The space w`p coincides with the Lorentz space `p,∞, is complete,
and is normable for p > 1. Weak Lp spaces are defined similarly.



Approximation via Frames

Remark: We next show that weak `p bounds on Hilbert frame coefficients
translate into dictionary approximation rates.

Theorem

Let (φn)n∈N be a Hilbert frame with dual frame (φ̃n)n∈N in a Hilbert space
H, and let C be a signal class in H which satisfies the weak `p bound

sup
f∈C

∥∥∥(〈f, φ̃n〉H)n∈N

∥∥∥
w`p

<∞

and, for some α > 0, the `2 tail bound

sup
f∈C

∑
i≥n
|〈f, φ̃i〉|2 = O(n−α).

Then s∗dict(C, φ) ≥ 1
p −

1
2 .



Proof: Approximation via Frames

Proof: Claim 1: The w`p bound implies that σ(Σn(φ), C) = O(n−s).

For any signal f ∈ C, picking the n largest frame coefficients defines
an n-term approximation

fn :=
∑
i≤n

ckiφki ,

were cki is a non-increasing rearrangement of ck := 〈f, φ̃k〉H.

The definition of the w`p norm implies |cki | . i−1/p because

|cki |
p i ≤ |cki |

p #{k ∈ N : |ck| ≥ |cki |} ≤ ‖c‖
p
w`p .

Together with the frame property of φ this yields

‖f − fn‖2 .
∑
i>n

|cki |
2 .

∑
i>n

i−2/p ≤ n−2s, where s := 1
p −

1
2 ,

where the last inequality follows from an elementary calculation. This
proves Claim 1.



Proof: Approximation via Frames

Claim 2: The `2 tail bound implies σ(Σπ
n(φ), C) = O(n−s) for suitable π.

Define π(n) := nd2s/αe.

For any signal f ∈ C, picking the first π(n) frame coefficients defines
an approximation f̃n with

‖f − f̃n‖2H .
∑
i>π(n)

∣∣〈f, φ̃i〉H∣∣2 ≤ (π(n)
)−α ≤ n−2s.

By the previous claim, picking the n largest frame coefficients of f̃n
defines an approximation fn with

‖f̃n − fn‖2H . n−2s.

Taken together, this implies

‖f − fn‖H . n−s,

which proves Claim 2 and establishes the theorem.



Examples: Lower Bounds on Optimal Encoding Rates

Remark: The following lower bounds are sharp and are obtained as special
cases of the previous theorem:

Corollary

The following lower bounds on encoding rates are achieved via frames:

s∗enc(CkK(C)) ≥ k/d via wavelets, shearlets, and many more

s∗enc(C
k,pw
K (I)) ≥ k via wavelets

s∗enc(STAR2
K) ≥ 1 via curvelets and shearlets

s∗enc(CART2
K) ≥ 1 via curvelets and shearlets

s∗enc(TEXTk
K,M ) ≥ k/2 via wave atoms

s∗enc(MUTILkK) ≥ k/d via ridgelets

Proof: Verify the conditions of the previous theorem for the specified
frames; see [Dahlke e.a., Theorem 5.51].



Questions to Answer for Yourself / Discuss with Friends

Repetition: How are dictionary approximation rates obtained from
weak `p bounds on Hilbert frame coefficients?

Background: Find the definition of wave atoms and have a look at
some pictures of wave atoms. Hint: [Demanet and Ying (2007):
Wave atoms and sparsity of oscillatory patterns]

Discussion: Are the encoders/decoders obtained via frame
approximations constructive and numerically implementable?

Discussion: How could the theory be generalized to Banach frames,
and what kind of results would you expect from this?
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Neural Network Approximation Rates

Remark: Neural networks with constrained memory can be seen as
encoders.

Definition

Let C be a signal class in a normed function space H on Rd, let M ∈ N,
let π be a univariate polynomial, and let A be a subset of R.

The set NNA
M of neural networks with quantized weights is defined

as the set of neural networks Φ with input dimension d, output
dimension 1, and at most M non-zero weights belonging to A.

The effective network approximation rate of C is defined as

s∗NN (C) := sup
{
s > 0

∣∣∣∃π,∃(AM )M∈N : #AM = O(π(M)),

sup
f∈C

inf
Φ∈NNAMM

‖R(Φ)− f‖H = O(M−s)
}
,

where R is defined using some fixed activation function ρ ∈ C(R).



Encoding via Neural Networks

Remark: The memory constraint imposed via weight quantization yields
the desired link between network approximation rates and encoding rates:

Theorem

For any signal class C,

s∗enc(C) ≥ s∗NN (C).

Remark:

Neural networks are called rate-optimal for C if equality holds above.

The theorem implies a lower bound on the network connectivity,
namely, an approximation error of ε requires approximately ε1/s

∗
enc(C)

non-zero network weights.



Proof: Encoding via Neural Networks

Proof:

Let s < s∗NN (C), and choose π, (AM )M∈N, and C such that

∀M ∈ N : sup
f∈C

inf
Φ∈NNAMM

‖R(Φ)− f‖H < CM−s, #AM ≤ π(M) .

Thus, for any given f ∈ C and M ∈ N, there exists a network
Φ ∈ NNAM

M with ‖R(Φ)− f‖H < CM−s.

We write E ≤M for the number of edges, L ≤M for the number of
layers, N0 := d for the input dimension, N1, . . . , NL for the numbers
of neurons per layer, and N :=

∑L
`=0N` ≤ 2E.

We will show that Φ can be encoded in a bit string of length
O(M logM). This yields an encoder-decoder pair with distortion

‖D(E(F ))− f‖ = ‖R(Φ)− f‖ = O(M−s)

thereby establishing the theorem.



Proof: Encoding via Neural Networks (cont.)

We encode the architecture of Φ in a bit string:

– The number E of edges is encoded by a string of E 1’s, followed by a
single 0.

– The number L of layers is encoded by a string of dlog2Ee bits, namely,
by the binary representation of L− 1 with left-padded zeros.

– Then (N0, . . . , NL) is encoded in a string of (L+ 1)dlog2E + 1e bits.

We encode the topology of Φ in a bit string:

– To each neuron, we associate a unique index i ∈ {1, . . . , N}, noting
that this index can be encoded in a string bi of dlog2Ee+ 1 bits.

– For each neuron i, we output the concatenation of the bit strings bj of
all children j, followed by a zero string of length 2dlog2Ee+ 2 to
signal the transition to neuron i+ 1.

We encode the weights of Φ in a bit string:

– Each weight requires dlog2 π(M)e bits.
– The nodal weights are encoded in (N1 + · · ·+Nl)dlog2 π(M)e bits.
– The edge weights are encoded in Edlog2 π(M)e bits.

Overall, this requires O(M log2M) bits, as claimed.



Questions to Answer for Yourself / Discuss with Friends

Repetition: What is the effective network approximation rate, and
why is it upper-bounded by the encoding rate?

Check: Why can the logarithmic factors in the rate computations be
ignored?

Check: In the last proof we constructed an encoder—what does the
corresponding decoder look like?

Discussion: What does the result say about deep learning? What are
limitations of the result?
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Representation of Dictionaries by Neural Networks

Setting: H = L2(Ω) for some Ω ⊆ Rd, and ρ : R→ R is globally Lipschitz
continuous or differentiable with polynomially bounded first derivative.

Definition

A dictionary φ = (φi)i∈N in H is said to be effectively representable by
neural networks if there exists L,M ∈ N and a bi-variate polynomial π
such that for every ε ∈ (0, 1/2) and i ∈ N there exists a neural network Φ
with M(Φ) ≤M , L(Φ) ≤ L, and weights bounded by π(i, ε−1), such that

‖φi − R(Φ)‖H ≤ ε.

Remark:

The crucial point, also compared to our former setting for dictionary
learning, is the requirement of polynomially bounded weights.

For affine systems, i.e., dictionaries of affine transformations of a
mother function ψ, it suffices to check effective representability of ψ.



Quantization of Neural Networks

Remark: We will need a seemingly stronger property, namely effective
representation by quantized networks:

Lemma

In the definition of effective representability, it can be assumed without
loss of generality that the weights of Φ are quantized in the sense that
they belong to the set

π(i, ε)Z ∩ [−π(i, ε−1), π(i, ε−1)].



Proof: Quantization of Neural Networks

Sketch of proof for Lipschitz activation functions ρ:

For single-layer networks x 7→ A1x+ b1, which by definition are just
affine maps, the quantization error of the network is proportional to
the quantization error of the weights.

For double-layer networks x 7→ A2ρ(A1x+ b1) + b2, the quantization
error of the single-layer sub-network is amplified polynomially via the
multiplication by A2.

By induction, the same holds for multi-layer networks.

Thus, the quantization error of the network is O(ε) if the
quantization error of the weights is O(εk) for sufficiently high k, with
additional polynomial dependence on i.

For activation functions with polynomially bounded first derivative we refer
to [Bölcskei e.a., Lemma 3.3].



Transfer of Approximation

Remark: Approximation rates for dictionaries transfer to approximation
rates for neural networks if the dictionary is effectively represented by
neural networks.

Theorem

If φ is effectively representable by neural networks and C is bounded, then

s∗NN (C) ≥ s∗dict(C, φ).



Proof: Transfer of Approximation

Proof: Dictionary learning.

For any s < s∗dict(C, φ), there are approximations fn of f ∈ C s.t.

fn := Dn(En(f)) :=

π(n)∑
i=1

ciφi, ‖fn − f‖H = O(n−s).

In the theorem on encoding via dictionaries in Video 3 we have shown
that the coefficients ci can be chosen in a set of cardinality
polynomially bounded in n.
The dictionary functions φi, i ∈ {1, . . . , π(n)}, can be effectively
represented by neural networks Φi, up to an approximation error of
order O(n−s), with weights polynomially bounded in n.
By the quantization lemma, it can be assumed without loss of
generality that the weights of the networks Φi belong to a set of
cardinality polynomially bounded in n.
Taking linear combinations produces a network approximation of fn
with weights in a set of cardinality polynomially bounded in n and
approximation error O(n−s).



Rate-Optimal Approximation by Neural Networks

Corollary

If φ is a rate-optimal dictionary for C, and φ is effectively represented by
neural networks, then neural networks are rate-optimal for C.

Proof: The following rates are equal,

s∗dict(C, φ)
1

= s∗enc(C)
2

≥ s∗NN (C)
3

≥ s∗dict(C, φ),

because

1 the dictionary φ is rate-optimal,

2 quantized neural networks are encoders, as shown in Video 5, and

3 quantized dictionary approximations are quantized neural networks, as
shown in the last theorem.

Remark: This corollary applies to all examples of signal classes and
dictionaries discussed so far.



Questions to Answer for Yourself / Discuss with Friends

Repetition: Why and under what conditions is the effective network
approximation rate lower-bounded by the dictionary approximation
rate?

Check: How wide and deep are the approximating networks?

Check: How does the present transfer-of-approximation result differ
from the one of Week 3?

Discussion: What does the result say about deep learning? What are
limitations of the result?
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Outlook on this week’s discussion and reading session

Reading:

– Bölcskei, Grohs, Kutyniok, Petersen (2017): Optimal approximation
with sparsely connected deep neural networks

– Donoho (2001): Sparse Components of Images and Optimal Atomic
Decompositions. In: Constructive Approximation 17, pp. 353–382

– Shannon (1959): Coding Theorems for a Discrete Source with a
Fidelity Criterion. In: International Convention Record 7, pp. 325–350



Summary by learning goals

Having heard this lecture, you can now . . .

Derive lower bounds on effective network approximation rates from
harmonic analysis.

Derive upper bounds on effective network approximation rates from
rate-distortion theory.

Explain why neural networks are optimal descriptors of a wide variety
of signal classes.
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