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Harmonic Analysis

Setting: π : G→ U(H) is a strongly continuous irreducible unitary
representation of a locally compact group G on a Hilbert space H
such that

∫
|〈πgf, f〉H |2dg <∞ for some ψ ∈ H.

Voice transform: For any ψ ∈ H, the voice transform is the linear map

Vψ : H → C(G), Vψf(g) = 〈f, πgψ〉H .

Admissibility: the voice transform Vψ is isometric for all ψ ∈ D(A)
with ‖Aψ‖H = 1, where A is the Duflo–Moore operator. These ψ are
called admissible.

Reproducing kernel spaces: for any admissible ψ, the voice transform
is an isometric isomorphism onto the space

{F ∈ L2(G) : F ∗ Vψψ = F}

with reproducing kernel Vψψ.



Coorbit Theory

Weighted spaces: for exponents p ∈ [1,∞] and w-moderate weight
functions m : G→ R+, one defines weighted spaces Lpw(G) and
Lpm(G), respectively.

Analyzing vectors are defined as admissible ψ with Vψψ ∈ L1
w(G).

Coorbit spaces Hp,m are constructed by requiring the voice transform
to be an isomorphism for some (equivalently, all) analyzing vectors ψ:

Vψ : Hp,m
∼=−→ {F ∈ Lpm(G) : F ∗ Vψψ = F}.

Banach frames: for suitable analyzing vectors ψ ∈ D(A) and group
elements (gk)k∈N, one obtains a Banach frame (πgkψ)k∈N for the
coorbit space Hp,m with respect to a weighted sequence space `pm.

Proof by correspondence principle: (LgkVψψ)k∈N is a Banach frame
for {F ∈ Lpm(G) : F ∗ Vψψ = F} with respect to `pm.



Abelian Groups are not Interesting for Coorbit Theory

Theorem

Abelian groups have only one-dimensional irreducible representations.

Lemma (Schur)

π : G→ U(H) is irreducible if and only if its centralizer is trivial, i.e.,

{T ∈ L(H) : πgT = Tπg for all g ∈ G} = span{IdH}.

Proof of the Theorem:

The centralizer of π is trivial because π is irreducible.

The operators πg belong to the centralizer because G is Abelian.

Thus, the operators πg are multiples of the identity.

Thus, all one-dimensional subspaces are invariant.



Signal analysis and Deep Learning

Signal Analysis:

There are many different group representations with associated voice
transforms.

These have a variety of applications in signal analysis such as
time-frequency analysis, multi-resolution analysis, and edge detection.

The interpretation varies strongly from case to case.

Deep learning inherits many of the strengths of signal analysis:

Many voice transforms are implementable via shallow nets with
activation function equal to the analyzing function.

Alternatively, via dictionary learning, they are implementable via deep
nets with other activation functions.

In this case, deep learning can adaptively select (i.e., learn) a suitable
analyzing function.



Questions to Answer for Yourself / Discuss with Friends

Repetition: Refresh your memory of the voice transform and the
construction of coorbit spaces.

Check: As the translation group is Abelian, its representation on
L2(Rd) must be reducible—can you find a subrepresentation?

Check: Same question for the modulation group. Hint: apply the
Fourier transform.

Check: How can dictionary learning be applied to implement signal
transforms via deep networks?

Background: Look up the proof of Schur’s lemma. For instance, in
[Christensen], [Dahlke e.a.], or [Folland].
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Structure

Definition

The Heisenberg group is the set G := Rd × Rd × S1 equipped with the
product topology and the composition

(a1, b1, t1) · (a2, b2, t2) := (a1 + a2, b1 + b2, t1t2e
2πib1a2) .

Properties:

The Heisenberg group is not Abelian.

The Haar measure is the product measure of the three involved
Lebesgue measures.

The Heisenberg group is unimodular.



Representation

Definition

The Schrödinger representation π : G→ U(L2(Rd)) is defined as

π(a, b, t)f(x) := te2πib(x−a)f(x− a) ,

where f ∈ L2(Rd), (a, b, t) ∈ G, and x ∈ Rd.

Remark:

π can be expressed in terms of translation and modulation as

π(a, b, t)f = te−2πiabEbTaf .

Translations are time shifts, and modulations are frequency shifts.

π is irreducible and integrable.

All unit vectors in L2(Rd) are admissible because G is unimodular.



Gabor Transform

Remark:

The Gabor transform or short-time Fourier transform is the voice
transform of the Schrödinger representation.

The torus component t ∈ S1 can (and will) be ignored for all practical
purposes.

Definition

For any admissible ψ ∈ L2(Rd), the Gabor transform
Vψ : L

2(Rd)→ L2(R2d) is given by

Vψf(a, b) :=

∫
Rd

f(x)ψ(x− a)e−2πixbdx = 〈f,EbTaψ〉L2(Rd),

where f ∈ L2(Rd) and a, b ∈ Rd.



Questions to Answer for Yourself / Discuss with Friends

Repetition: Describe the Schrödinger representation of the Heisenberg
group. Think about a way of memorizing the group structure.

Check: Why can the torus component be ignored for the purpose of
signal analysis?
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Analyzing Functions

Setting: We consider the Schrödinger representation π of the Heisenberg
group G on L2(Rd).

Lemma

Let w be a weight function on G. A function ψ ∈ L2(Rd) is an analyzing
vector for w if and only if ‖ψ‖ = 1 and∫

Rd

∫
Rd

|〈ψ,EbTaψ〉|w(a, b) da db <∞ .

Remark:

The Feichtinger algebra S0 is defined as the subspace of L2(Rd)
described by the above integrability condition with w ≡ 1.

The Gauss function is analyzing1 for all polynomial weight functions
w(a, b) := (1 + ‖b‖)|s|, s ∈ R.

1See [Feichtinger Gröchenig 1988, Section 7.1].



Gabor coorbit spaces

Remark: Gabor coorbit spaces are called modulation spaces:

Definition

Let d ∈ N, let m be a w-moderate weight, and let ψ be an analyzing
vector for w. For any 1 ≤ p, q ≤ ∞, the modulation space Mp,q

m consists
of all tempered distributions f ∈ S ′ such that∫ (∫

|〈f,EbTaψ〉|pm(a, b)pda

)q/p
db <∞ ,

with the usual modifications for p, q ∈ {∞}.

Remark:

This definition is independent of the choice of w and ψ.

For p = q, we write Mp
m :=Mp,p

m .



Properties and Examples

The Feichtinger algebra provides a rich repertoire of analyzing vectors
because it

Contains all f ∈ Cc(Rd) with Ff ∈ L1(Rd).
Contains the Schwartz space of rapidly decreasing functions.

Is invariant under the Heisenberg group and the Fourier transform.

Modulation spaces with constant weights m ≡ 1:

M1
m is the Feichtinger algebra S0.

M2
m is the space L2(Rd).

Modulation spaces with polynomial weights m(a, b) := (1 + ‖b‖)s:
M2
m is the Sobolev (aka. Bessel potential) space Hs(Rd), for any

s ∈ R. This follows from the respective characterization via frames.



Gabor Frames

Theorem

Let p ∈ [1,∞), let s ∈ R, let w(a, b) := (1 + ‖b‖)|s|, and let
m(a, b) := (1 + ‖b‖)s. For any ψ ∈M1,1

w \ {0} and sufficiently small
α, β > 0, the vectors (EβbTαaψ)a,b∈Zd form a Banach frame for Mp

m with
respect to the sequence space

`pm :=
{
(λa,b)a,b∈Zd : ‖λ‖p

`pm
:=

∑
a,b∈Zd

|λa,b|p(1 + ‖b‖)sp <∞
}
.

Proof: For this choice of weight function, no further conditions2 on the
analyzing vector ψ are needed.

Remark: The result is independent of the enumeration of a, b ∈ Zd
because the sum in the `pm norm converges unconditionally.

2See Theorem 3.19 in Dahlke, De Mari, Grohs, Labatte (2015).



Gabor Frames for Time-Frequency Analysis

Remark: Gabor frames (equivalently, the short-time Fourier transform)
define a uniform tiling of the time-frequency domain:

Figure: [www.ndt.net/article/v07n09/08]



Gabor Frames for Time-Frequency Analysis

22

A Typical Musical STFT

Hans G. Feichtinger WIENER AMALGAMS and GABOR ANALYSIS

Figure: Intensity (color-coded) of an audio signal, plotted over time (horizontal)
and frequency (vertical). [Feichtinger (2015): Wiener Amalgams and Gabor
Analysis]



Questions to Answer for Yourself / Discuss with Friends

Repetition: Describe the Gabor transform, modulation spaces, and
their role in signal analysis.

Check: Compute the analyzing condition more explicitly. Hint:
express the integral da by a convolution and apply the Fourier
transform; see [Feichtinger Gröchenig (1988), Section 7.1].

Background: Read up on the Gabor transform and short-time Fourier
transform.
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Structure

Definition

The affine group is the set G := (R \ {0})× R equipped with the product
topology and the composition

(a′, b′) · (a, b) := (a′a, a′b+ b′) .

Properties:

This corresponds to the composition of affine maps.

The affine group is not Abelian.

The left Haar measure is 1
|a|2da db, and the right Haar measure is

1
|a|da db, where da db denotes the Lebesgue measure on R2.

In particular, the group is not unimodular.



Representation

Definition

The affine representation π : G→ U(L2(R)) is defined as

π(b, a)f(y) :=
1√
|a|
f
(y − b

a

)
, f ∈ L2(R), (b, a) ∈ G, y ∈ R .

Remark:

π can be expressed in terms of translation and dilation as

π(a, b)f = TbDaf .

The representation π is irreducible and integrable.1

1Irreducibility fails for the connected subgroup R>0 × R.



Admissibility

Lemma

The Duflo–Moore operator associated to π is given by

Af(ξ) :=
Ff(ξ)√
|ξ|

, ξ ∈ R,

and is defined for all f in

D(A) :=
{
f ∈ L2(R) :

∫
R

|Ff(ξ)|2

|ξ|
dξ <∞

}
.

Remark: Thus, a function ψ ∈ L2(R) is admissible if and only if it satisfies
the Calderón equation2 ∫

R

|Fψ(ξ)|2

|ξ|
dξ = 1.

2See [Dahlke e.a., Example 2.48.]



Wavelet Transform

Remark:

Admissible vectors are called wavelets.

The wavelet transform is the voice transform of the affine
representation.

Definition

For any admissible ψ ∈ L2(R), the wavelet transform Vψ : L
2(R)→ L2(G)

is given by

Vψf(a, b) :=
1√
|a|

∫
R
f(x)ψ

(x− b
a

)
dx .



Questions to Answer for Yourself / Discuss with Friends

Repetition: Describe the representation of the affine group.

Background: Read the computation of the Duflo–Moore operator.
See [Dahlke e.a. (2015), Example 2.48].

Check: What goes wrong when the affine group is replaced by the
connected subgroup R>0 × R? Hint: see the computation of the
Duflo–Moore operator.

Check: What goes wrong for affine groups in higher dimension. Hint:
see the computation of the Duflo–Moore operator.

Discussion: Can you think of a sub-group of the affine group which
has an integrable representation in higher dimension? Hint: restrict to
scalar multiples of orthogonal matrices.
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Analyzing functions

Setting: We consider the representation π of affine group G on L2(R).

Lemma

Let w be a weight function on G. A function ψ ∈ L2(R) is an analyzing
vector for w if and only if ‖Aψ‖ = 1 and∫

G
|〈ψ, TbDaψ〉|w(a, b)

da db

|a|2
<∞ .

Examples:1

Schwartz functions whose Fourier transform is compactly supported in
R \ {0} are analyzing for any weight function.

Compactly supported functions with sufficient smoothness and
sufficiently many vanishing moments are analyzing for weight
functions of the form w(a, b) := |a|s + |a|−s.

1See [Dahlke e.a., Theorems 3.24 and 3.35].



Wavelet Coorbit Spaces

Definition

Let m be a w-moderate weight, and let ψ be an analyzing vector for w.
For any p ∈ [1,∞], the wavelet coorbit space Hp,m consists of all
tempered distributions f ∈ S ′ such that∫

G
|〈f, TbDaψ〉|pm(a, b)p

da db

|a|2
<∞ ,

with the usual modification for p =∞.

Remark:

This definition is independent of the choice of w and ψ.

The main example is m(a, b) = |a|−s with s ∈ R, and in this case

Hp,m coincides2 with the homogeneous Besov space Ḃ
s−1/2−1/p
p,p .

2See [Feichtinger Gröchenig 1998] or [Dahlke e.a. 2015]



Wavelet Frames

Theorem

Let p ∈ [1,∞), s ∈ R, w(a, b) := |a|s + |a|−s, and m(a, b) := |a|−s. For
any w-admissible symmetric ψ subject to some further conditions3 and
sufficiently small α > 1 and β > 0, the vectors (TαaβbDαaψ)a,b∈Z form a
Banach frame for Hp,m with respect to the sequence space

`pm :=
{
(λa,b)a,b∈Z : ‖λ‖p

`pm
:=
∑
a,b∈Z

|λa,b|pα−asp <∞
}
.

Proof: For any given U and sufficiently small α > 1 and β > 0, the
sequence (εαa, εαaβb)ε∈{−1,1},a∈Z,b∈Z is U -dense and relatively
separated.

3See Theorem 3.19 in Dahlke, De Mari, Grohs, Labatte (2015).



Wavelet Frames for Multi-Resolution Analysis

Remark: Wavelet frames define a non-uniform tiling of the time-frequency
domain, which corresponds to fast sampling of high frequencies and slow
sampling of low frequencies.

Figure: [www.ndt.net/article/v07n09/08]



Wavelet Frames for Multi-Resolution Analysis

Figure: Top: A seismic signal. Bottom: The signal intensity (color-coded) plotted
over time (horizontal) and scale (vertical). From obspy.org



Application to Image Analysis

Remark: The JPEG2000 standard uses lossy compression based on
Cohen–Daubechies–Feauveau (CDF) wavelets.

Figure: Wavelet coefficients at scale a = 1 (top left), differences to scale a = 1/2
(neighboring squares), and differences to scale a = 1/4 (neighboring squares).
From en.wikipedia.org/wiki/JPEG_2000

en.wikipedia.org/wiki/JPEG_2000


Questions to Answer for Yourself / Discuss with Friends

Repetition: Describe wavelet spaces and the wavelet transform.

Check: Draw the locations of the group elements in the definition of
wavelet frames.

Check: These group elements accumulate near a = 0; why are they
still relatively separated?

Check: Verify that m(a, b) := |a|s is moderate for
w(a, b) := |a|s + |a|−s.

Background: Read up on wavelets and multi-resolution analysis.
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Structure

Notation: For a ∈ R∗ := R \ {0} and b ∈ R, let

Aa =

(
a 0

0 sign(a)
√
|a|

)
and Sb =

(
1 b
0 1

)
denote the parabolic scaling matrix and the shear matrix, respectively.

Definition

The full shear group is the set G := R∗ × R× R2 equipped with the
product topology and the composition

(a1, b1, t1) · (a2, b2, t2) := (a1a2, b1 + b2
√
|a1|, t1 + Sb1Aa1t2) .

Properties:

The full shearlet group is not Abelian.

The left Haar measure is given by |a|−3 da db dt.



Representation

Definition

The shearlet representation π : G→ U(L2(R2)) is defined as

π(a, b, t)f(x) := |a|−
3
4 f(A−1a S−1b (x− t)) ,

where f ∈ L2(R2), (a, b, t) ∈ G, and x ∈ R2.

Remark:

It can be written in terms of translations and the left-regular
representation of parabolic scaling and shear matrices:

π(a, b, t)f(y) = TtLSbAaf .

The representation π is irreducible and square-integrable.

However, as an aside, the representation of the reduced shear group
R+ × R× R2 is reducible.



Admissibility

Lemma

The Duflo–Moore operator associated to π is given by

Af(ξ, η) :=
Ff(ξ, η)
|ξ|

, (ξ, η) ∈ R2,

and is defined for all f in

D(A) :=
{
f ∈ L2(R2) :

∫
R2

|Ff(ξ, η)|2

|ξ|2
<∞

}
.

Remark: Thus, a function ψ ∈ L2(R2) is admissible if and only if∫
R2

|Fψ(ξ, η)|2

|ξ|2
dξ dη = 1.



Shearlet Transform

Remark:

Admissible vectors are called shearlets.

The shearlet transform is the voice transform of the shearlet
representation.

Definition

For any admissible ψ ∈ L2(R2), the shearlet transform
Vψ : L

2(R2)→ L2(G) is given by

Vψf(g) = 〈f, πgf〉 .

Remark: Generalizations to higher dimensions are possible.



Questions to Answer for Yourself / Discuss with Friends

Repetition: Describe the shearlet group and its representation.

Check: Draw the action of a shear matrix on a rectangle.

Background: Skim through the computation of the Haar measure and
the admissibility condition. Hint: this can be found in [Dahlke e.a.
(2015), Lemma 3.27 and Proposition 3.30].
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Analyzing Functions

Setting: We consider the representation of the shearlet group G on
L2(R2).

Examples of analyzing functions:1

Schwartz functions whose Fourier transform is compactly supported in
R2 \ ({0} × R) are analyzing for every locally integrable weight
function w(a, b, t) = w(a, b).

Compactly supported functions with sufficient smoothness and
sufficiently many vanishing moments are analyzing for weight
functions w(a, b, t) = w(a) = |a|r + |a|−r with r ∈ R.

1See [Dahlke e.a., Theorems 3.33 and 3.35]



Shearlet Coorbit Spaces

Definition

Let m be a w-moderate weight, and let ψ be an analyzing vector for w.
For any p ∈ [1,∞], the shearlet coorbit space Hp,m consists of all
tempered distributions f ∈ S ′ such that∫

G
|〈f, πgψ〉|pm(g)pdg <∞ ,

with the usual modification for p =∞.

Remark:

This definition is independent of the choice of w and ψ.

In the most important case m(a, b, t) = |a|−s with s ∈ R, there are
comparison results to Besov spaces.



Shearlet Frames

Theorem

Let p ∈ [1,∞), s ∈ R, w(a, b, t) = |a|s + |a|−s, and m(a, b, t) = |a|−s. For
suitable2 ψ and sufficiently small α > 1, β > 0, and τ > 0, the vectors(

πgψ : g = (αa, αa/2βb, Sαa/2βbAαaτt)
)
a∈Z,b∈Z,t∈Z

form a Banach frame for Hp,m with respect to the sequence space

`pm :=
{
(λa,b,t)a,b,t∈Z : ‖λ‖p

`pm
:=

∑
a,b,t∈Z

|λa,b,t|pα−asp <∞
}
.

Proof:2 For any given U and sufficiently small α > 1, β > 0, and τ > 0,
the following group elements are U -dense and relatively separated:

(εαa, αa/2βb, Sαa/2βbAαaτt)ε∈{−1,1},a∈Z,b∈Z,t∈Z

2See [Dahlke, Theorems 3.36 and 3.38].



Frequency Localization of Shearlet Frames

Remark: ψ is typically chosen as Fψ(ξ1, ξ2) = Fψ1(ξ1)Fψ2(ξ2/ξ1) with
suppFψ1 ⊆ [−2,−1/2] ∪ [1/2, 2] and suppFψ2 ⊆ [−1, 1].

160 K. Guo and D. Labate

and

supp O 1 ! Œ"1; 1!:

The elements of the shearlet system can be written in the Fourier domain as:

O a;s;t."1; "2/ D a
1Cˇ
2 O 1.a "1/ O 2.aˇ!1. "2

"1
" s// e!2# i""t:

Thus, by the assumptions on  1 and  2, it follows that the functions O a;s;t have
supports:

supp O a;s;t ! f."1; "2/ W "1 2 Œ" 2a ;" 1
2a ! [ Œ 12a ; 2a !; j

"2
"1
" sj # a1!ˇg:

That is, the support of O a;s;t is a pair of trapezoids, symmetric with respect to
the origin, oriented along a line of slope s. The trapezoidal supports become
increasingly more elongated as a ! 0. Note that, since the functions O a;s;t are in
C1
c , in the space domain the elements  a;s;t are well localized (even though, clearly,

not compactly supported), and their essential support is also highly anisotropic
with orientation controlled by s. In summary, the elements of a continuous shearlet
system form a collection of well-localized functions ranging over a multitude
of scales, orientations, and locations, associated with the variable a; s, and t,
respectively.

Some representative support sets of the functions O a;s;t are illustrated in Fig. 4.1.
Even though the continuous shearlet systems (4.8) exhibit directionality prop-

erties going beyond the traditional isotropic wavelet systems, they do have a
directional bias which is a consequence of the fact that shear variable s is associated

Fig. 4.1 Fourier domain
supports of representative
elements  a;s;t of a
continuous shearlet system,
for different values of a and s.

Figure: Support of ψ after scaling by a and shearing by b := s. [Dahlke e.a.
(2015)]



Shearlet Frames for Edge Detection

Remark: The decay of Vψf(a, b, t) for a↘ 0 is

Fast when t is a regular point of f , and

Slow when t lies on an edge of f which is normal to (1, b).4 Detection of Edges 165

O(a
3
4 )

O(aN)

O(a
3
4 )

O(a
3
4 ) O(aN)

O(aN)

Fig. 4.2 Asymptotic decay rate of the continuous shearlet transform of B D!S, where S ! R2 has
piecewise smooth boundary. Here we consider the case where ˇ D 1

2
. Away from the boundary,

the decay is faster than O.aN/, for any N 2 N. At the regular points p 2 @S, for s corresponding to
the normal orientation, the shearlet transform decays as O.a

3
4 /; for all other values of s, the decay

is faster than O.aN/, for any N 2 N. At a corner point p, the shearlet transform decays as O.a
3
4 /

for the values of s associated with the two normal orientations at p.

(i) If p … @S then, for all s 2 R,

lim
a!0C

a"N SH  B.a; s; p/ D 0; for all N > 0:

(ii) If p0 2 @S is a regular point, s0 corresponds to the normal direction of @S at
p0 ands ¤ s0, then

lim
a!0C

a"N SH  B.a; s; p0/ D 0; for all N > 0:

(iii) If p0 2 @S is a regular point, s0 corresponds to the normal direction of @S at
p0; k.p0/ D 0, and 1

3
< ˇ < 1, then

lim
a!0C

a" 1C ˇ
2 SH  B.a; s0; p0/ ¤ 0:

(iv) If p0 2 @S is a regular point, s0 corresponds to the normal direction of @S at
p0; k.p0/ 6D 0, and0 < ˇ ! 1

2
, then

lim
a!0C

a".1"ˇ
2
/SH  B.a; s0; p0/ ¤ 0:

(v) If p0 2 @S is a regular point, s0 corresponds to the normal direction of @S at
p0; k.p0/ 6D 0, and 1

2
! ˇ < 1, then

lim
a!0C

a" 1C ˇ
2 SH  B.a; s0; p0/ ¤ 0:

Figure: Indicator function f , points t with attached vectors (1, b), and decay of
Vψf(a, b, t) for a↘ 0. [Dahlke e.a., 2015]



Shearlet Frames for Edge Detection

Example: edge detection based on shearlet coefficients.
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Figure: [Gibert (2014): Discrete Shearlet Transform on GPU with applications in
anomaly detection and denoising]



Questions to Answer for Yourself / Discuss with Friends

Repetition: Describe the construction of shearlet coorbit spaces.

Check: Draw the locations of the scaling and shearing coefficients of
the shearlet frame.

Discussion: How could one redefine shearlets to achieve symmetry
with respect to the horizontal and vertical axes in R2? Hint: define
horizontal and vertical shearlets.

Discussion: Are shearlets directional wavelets? In what sense?

Background: Find out about ridgelets and curvelets and compare
them to shearlets.



Mathematics of Deep Learning, Summer Term 2020

Week 6, Video 8

Wrapup

Philipp Harms Lars Niemann

University of Freiburg



Outlook on this week’s discussion and reading session

Reading:

– Gröchenig (2001): Foundations of Time-Frequency Analysis
– Mallat (2009): A Wavelet Tour of Signal Processing
– Kutyniok and Labate (2012): Shearlets - Multiscale Analysis for

Multivariate Data



Summary by learning goals

Having heard this lecture, you can now . . .

Describe Schrödinger, wavelet, and shearlet representations and the
associated modulation, wavelet, and shearlet spaces.

Explain the time-frequency tilings of the associated signal transforms.

Implement these signal transforms by neural networks.
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