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Overview of Week 4

@ Hilbert's 13th Problem

© Kolmogorov—Arnold Representation

© Approximate Hashing for Specific Functions
@ Approximate Hashing for Generic Functions
© Proof of the Kolmogorov—Arnold Theorem

@ Approximation by Networks of Bounded Size

e Wrapup
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Hilbert's 13th Problem

Hilbert's 13th problem

Can the roots of the equation

2 tard +brP+cx+1=0

be represented as superpositions of continuous functions of two variables?

Remark:
@ This is the general form of a septic equation after some algebraic
transformations. The roots are functions of (a, b, c).
@ A single superposition is w(u(a, b),v(b, c)) and a double
superposition is w (u (p(a, b),q(b, c)) , v(r(b, ¢), s(e, a))) .
@ More generally, the question becomes: Do functions of three variables

exist at all, or can they be represented as superpositions of functions
of less than three variables?



Hilbert's Conjecture

Conjecture: Hilbert conjectured that such reductions to smaller numbers
of variables are impossible. The strongest supporting evidence is:

Theorem (Vitushkin 1955)

There is a polynomial such that neither the polynomial itself nor any
function sufficiently close to it (in the sense of uniform convergence) can
be decomposed into a simple superposition of continuous functions of two
variables in any region or in any system of coordinates.




Dimension theory

Remark: Kolmogorov interpreted Hilbert's problem using dimension
theory:

Let N(e) be the smallest number of e-balls needed to cover a metric
space X.

On X = [0, 1]" one has dim(X) := liminf._, _1%;5(6) =
On X = C?*([0,1]™) one has
dim(X) := liminf._,o %ﬁj\[(e) =n/s.

In this sense, Holder functions of 3 variables are strictly richer than
Holder functions of 2 variables.

However, as we will see, this argument does not generalize to
continuous functions.



Reduction to three variables

Theorem (Kolmogorov 1956)

Any continuous function f of n € N variables can be represented as a

finite number of superpositions of functions of 3 variables. For instance,
for n = 4 one has

4

flar, w2, w3,24) = > g (u(@r, 22, 23), v(21, 22, 23), 74
=1

for some continuous functions ¢*,u,v: R? — R.




Sketch of Proof: Reduction to three variables

Sketch of Proof:
@ The level sets (aka. contour lines) of a continuous function form a
tree (Kronrod, Menger):

Figure: Figure from Arnold (1956)



Sketch of Proof: Reduction to three variables (cont.)

@ Any continuous function of n variables can be written as a sum of
n + 1 continuous functions with standard trees, i.e., trees which do
not depend on the given function (Kolmogorov):

n+1

flze, ... zn) = Zfi(xl, cey ).
i=1

@ Each of function f; can be written as a one-parameter family of
functions of n — 1 variables:

n+1

flz1,...,2n) = Zf;n(xl, ey Tp—1)
i=1



Sketch of Proof: Reduction to three variables (cont.)

@ Each of the functions f;n factors through a function on the
corresponding standard tree:

n+1

fl@r,. . mn) =Y gh (0(21,..., 20 1)),
=1

My
'

Figure: Figure from Arnold (1956)




Sketch of Proof: Reduction to three variables (cont.)

o© Embedding the trees in a plane with a two-dimensional coordinate
system (u,v) transforms this into:

n+1

f(xlu"'v Zgg;n 151,...7xn_1),’0i($1,...,In_1)).

e This yields 3-variate functions g; and (n — 1)-variate functions u?, v':

n+1

f(z1,...,z Zg a1,y Te1)s 0 (21, Tpe1), Tn) -

e Applying this construction iteratively to u* and v’ yields the reduction
to superpositions of functions of 3 variables. O



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: State Hilbert's 13th problem and describe how
Kolmogorov cast it in the frameworks of dimension and graph theory.

@ Check: What happens to Hilbert's problem when continuous
functions are replaced by measurable or arbitrary functions?

@ Background: Find out about generalizations, limitations, and open
problems related to Hilbert's thirteenth problem.
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Kolmogorov—Arnold Representation

Theorem (Kolmogorov—Arnold 1956-1957)
For every n € N>, there exist p; ; € C([0,1]) such that any
f € C([0,1]™) can be represented as

2n+1 n

f@i,. )= gi @i (5) |
i=1 7j=1

for some g; € C'(R).

Remark:

@ This disproves Hilbert's conjecture and shows that “the only”
multivariate function is a sum.

@ The inner functions ¢; ; are universal, i.e., they do not depend on f.

@ The outer functions g; can be learned by linear regression.



Sprecher’s Refinement: Universal Inner Function

Theorem (Sprecher 1965, Koppen 2002)

For every n € N>, there exists a continuous function ¢ : R — R and
constants a, \; € R such that any f € C([0,1]"™) can be represented as

2n+1 n

i=1 g=ll

for some g; € C(R).

Remark:
@ The function ¢ and the constants A\; and a can be constructed
explicitly and are universal, i.e., independent of f.
@ Sprecher’s representation can be interpreted as a neural network.

@ There are many further versions of the Kolmogorov—Arnold theorem
with varying regularity and structural assumptions.
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Figure: Sprecher’s universal inner functions ¢ (left) and 1 (right), where
iz, 22) = Mp(a1 + ia) + Aap(xe + ia) for some constants A1, Ay, a. [Leni
Fougerolle Truchetet 2008]




Remark:

@ The inner functions in the Kolmogorov—Arnold representation
theorem can be interpreted as hash functions.

Background:
@ Hash functions are widely used in computer science for array indexing
operations.
@ They map high-dimensional /unstructured /variable-length data to
scalar hash values.

@ Hash functions should be fast to compute and should be “nearly”
injective, i.e., minimize duplication of output values.



Hashing and Kolmogorov—Arnold Representation

Lemma

For eachi € {1,...,2n+ 1}, Sprecher’s inner function

$i [0,1]" 3 (21,...,20) = Y Ajo(a; +ia) € R
j=1

is injective on a countable dense subset D C [0,1]".

Remark:
o It is sufficient to establish injectivity of ¢(z) := >, Ajp(x;) on D.
@ This follows from the following two facts: ¢ takes rational values on
D, and the coefficients \; are independent over the rational numbers.

@ Of course, 1 is not injective everywhere; otherwise the
Kolmogorov—Arnold theorem would be trivial.



Space-filling curves

@ Intuitively, the inverse of a hash function [0,1]” — [0,1] is a
space-filling curve, i.e., a surjective continuous map [0, 1] — [0, 1]™.

@ For Sprecher’s hash function, this is made precise as follows: By
carefully examining the properties of v, one may construct an
“inverse” map A : [0,1] — [0, 1]™ with the following properties:

@ The map A :[0,1] — [0,1]™ is a space-filling curve.
@ Its image may be approximated by discrete curves Ay as k — oo.

Remark:
@ By the Hahn—Mazurkiewicz theorem, a non-empty Hausdorff
topological space is a continuous image of the unit interval if and only
if it is compact, connected, locally connected, and second-countable.



Space-filling curves
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Figure: An approxmation Ay of the space-filling curve )\. [Sprecher Draghici 2002]



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: Recall and compare the presented versions of the
Kolmogorov—Arnold Theorem.

@ Check: Why exactly does the Kolmogorov—Arnold representation
theorem disprove Hilbert's conjecture?

@ Check: Show that there is no continuous bijection [0, 1]" — [0, 1] for
any n > 2.

@ Discussion: How would you implement Sprecher’s theorem using
neural networks? Do you think this could work well for supervised
learning?
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Hashing rational numbers

There exists a linear map £: R™ — R whose restriction to rational
numbers is injective.

Proof:
e n=2:Set {(x,y) =z + Ay for any irrational number \.
o n>2: Set l(x1,...,xpn) := A1x1 + -+ + Apxy, where \; are
independent over Q, e.g. \; = 7! or some other powers of any

transcendental number. O

Remark:

@ Thus, any f: Q" — R can be written as f = g o £, where £ is the
above linear hashing function. However, g cannot be chosen
continuously, and the approximation error cannot be controlled on
non-rational numbers—a more elaborate construction is needed.

e We fix an irrational number A € R\ Q throughout this section.



Approximate Hashing for a Specific Function

Remark:

@ The key step in the proof of the Kolmogorov—Arnold theorem is the
construction of approximate hashing functions.

@ This is done here for a given specific function and in the next section
for generic functions.

@ We restrict ourselves to bivariate functions.

Definition (Approximate hashing functions, specific f)

A function ¢ € C([0,1],R%) is called approximate hashing function for
f € C([0,1)?) if there exists g € C(R) such that

5

sup lg()] < 1/7,  sup |f(xz,y) — Y g(pil@) + Api(y))| < 7/8.
teR z,y€[0,1] =1




Approximate Hashing for a Specific Function

For any f € C2([0,1]?) with || f|lo < 1, the set of approximate hashing
functions for f is open and dense in C([0, 1], R%).

Proof:

@ The set is open, since if g works for a particular ¢, it does so for
every nearby .

e It remains to show that the set is dense in C([0, 1], R?).

@ Thus, given € > 0 and x € C([0,1],R%), we have to find an
approximate hashing function ¢ for f such that [|[¢ — x|| < e.



Proof: Approximate Hashing for a Specific Function

e Divide [0,1] into N € N intervals, cut out the i-th fifth of each
interval, and color all remaining intervals red.

e Approximate y; (gray) by functions ¢; (blue), which are constant on
red intervals of type i.

1=1

~— %
iy S =




Proof: Approximate Hashing for a Specific Function

@ It can be arranged that each function ¢; assumes distinct rational
numbers on each of the red intervals, and that these numbers are
distinct for different 4.

@ Moreover, for sufficiently large N, ||¢ — x|| < €, as desired.

e Furthermore, by the uniform continuity of f on [0, 1]?, we can make
N even larger to get

| f(z,y) —f(x/,y’)‘ < 1/7 whenever max{|:c—x/ y—y/’} <4/N.

)



Proof: Approximate Hashing for a Specific Function

@ The function ¥;(z,y) := ¢i(x) + Ap;(y) is constant on red rectangles
of type i, which are defined as products of red intervals of type 1.

@ The irrational numbers, which the functions ¢; assume on rectangles
of type 4, are all distinct for different rectangles and/or different .

@ Thus, there is g € C(R) such that g(¢;(x,y)) = £1/7 if (x,y)

belongs to a red rectangle of type ¢ where f = 0.

Without loss of generality, ||g|| < 1/7.

@ Intuitively, g tracks the sign of f on each rectangle.



Proof: Approximate Hashing for a Specific Function

e For any point (z,y), consider the approximation error
5
i=1

o If f(z,y) = 1/7, then f = 0 on each red rectangle containing (z,vy).

@ There are at least 3 such rectangles because out of 5 types, one may
fail on the z-axis and another one on the y-axis.

@ Thus, the majority of the summands in (x) tracks the sign of f
correctly, and the approximation error is bounded by 6/7.

o If [f(z,y)| < 1/7, the approximation error is again bounded by 6/7,
regardless of correct or incorrect tracking.

@ As 6/7 < 7/8, we have shown that ¢ is an approximate hashing
function, which is e-close to x. Ol



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: Recall the definition of and main result on approximate
hashing.

@ Background: Refresh your memory of algebraic closures and the
definition of algebraic and transcendental numbers, if necessary.

@ Check: Draw the red rectangles of types 1 to 5 and verify that each
point is contained in at least three rectangles.

@ Check: What is the role of the numbers 5 and 1/7 in the lemma?
Can they be altered?
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Approximate Hashing for Generic Functions

Remark:
@ As before, we fix an irrational number A € R\ Q.

Definition (Approximate hashing functions)

A function ¢ € C([0,1],R®) is called approximate hashing function if for
any f € C([0,1]?), there exists g € C(R) such that

8
< 5 1fllo

5
1
p=1

where ¥;(z,y) = @i(x) + Api(y). J

Remark:
@ Compared to hashing for specific functions f, this definition imposes
the hashing property simultaneously for all f and with a slightly worse
error bound.




Approximate Hashing for Generic Functions

The set of approximate hashing functions is dense in C([0,1],R).

Proof:

Let Uy be the sets of approximate hashing functions of fi, for some
dense sequence (f)ren in the unit sphere of C([0, 1]?).

The sets Uy, are open and dense. By Baire's category theorem, its
intersection U is dense.

Any function ¢ € U is an approximate hashing function: for any f
with || f]leo < 1, there exists f;, and g such that

[ = gow| < = il + | f - g0w

oo

<G-D+i-b

Extend to general f by scaling.



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: What is the difference between hashing for specific versus
generic functions, and how does the former imply the latter?

@ Background: Refresh your memory of the Baire category theorem if
necessary.

@ Discussion: Can you strengthen the proof to get monotonically
increasing approximate hashing functions?
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Kolmogorov—Arnold Representation, Refined Version

Remark: The approximate hashing results imply the following refined
version of the Kolmogorov—Arnold representation theorem:

Theorem (Kolmogorov—Arnold representation, refined version)

For any n € N>g, there exist A1,...,\p € R and @1, ..., p,+1 € C([0,1])
such that any f € C([0,1]™) admits a representation

2n+1

flay,... ) = Z g(Mpi(z1) + -+ + Anpi(zn))
i=1

for some continuous function g.

Remark: The difference to Kolmogorov's original result is that g does not
depend on 1.



Proof: Kolmogorov—Arnold Representation for n = 2

Proof: lterative improvement of the approximate hashing representation

e Let ¢ € C([0,1],R®) be an approximate hashing function, define
Yi(z,y) = Api(z) + Aawi(y) for A; ;=1 and Ay irrational, and
define Tg := Z?Zl g o ;.

e Set f1:= f and find g; with [|g1]/cc < %Hfl”oo and
11 = Tg1lloe < Il f1lloo-

o Set fo:= fi — Tig1 and find go with [[gallc < L[| f2]lc0 and
1f2 = Tg2lloo < Ell f2lloo-

e Continue to eternity. When done, set g = ), g, and note that
f =1Tg as required. O



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: Recall the proof of the Kolmogorov—Arnold theorem via
the construction of approximate hashing functions.

@ Discussion: How does the proof work in higher dimensions?
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Approximation by Networks of Bounded Size

Theorem

There exists a continuous, piece-wise polynomial activation function

p: R — R which allows one to approximate continuous multivariate
functions by realizations of neural networks with bounded size, that is, for
all n € N there exists a constant C = C(n) such that

Ve > 0Vf € C([0,1]") 3B : L(®) =3, M(®) < C(n), ||f — R(®)||, < ¢

Remark:

@ This theorem is in a sense “too good” because it provides an
approximate representation of continuous functions by finitely many
real numbers.

@ It highlights the influence of the choice of activation function on the
resulting approximation theory.

@ It also points to the importance of asking for bounded weights.



Approximation by Networks of Bounded Size

Lemma (Univariate case)

The theorem holds in the univariate case n = 1: there exists a continuous,
piecewise polynomial activation function p: R — R such that

Ve >0VfeC(0,1]) 30: L(®) =2, M@®) <3, |[f-R(®), <e.

Remark: By translation and scaling, this extends to continuous functions f
on every closed interval [a,b] C R.



Proof: Approximation by Networks of Bounded Size

Proof of the lemma:

@ Recall that the set II of polynomials with rational coefficients is dense
in the Polish space C'([0,1]), and let (7;);ez be an enumeration of II.

@ Define the activation function p by

(2) = mi(x — 2i), x € (20,20 + 1]
P w1242 — ) + w1 (0) (@ —2i — 1), ze (2i+1,2i+2

o Note that, by the very definition of p, one has p(z + 2i) = m;(z) for
z € [0,1].

@ Hence, the neural network @ := ((1,2i), (1,0)) has the desired
properties. O



Proof: Approximation by Networks of Bounded Size

Proof of the theorem:
e By the Kolmogorov—Arnold theorem (refined version),

2n+1
[= Z g o, wi(xlv v 7$n) = >\180i(951) +eee )\n%(fﬂn)-
i=1
for some g € C(R), A1,..., A\, € Rand p1,..., 02,41 € C([0,1]).

@ By the previous lemma, ¢; =~ R(®;) € C(]0,1]) for some networks ®;
and a piece-wise polynomial activation function p, where =~ denotes
approximation up to arbitrary accuracy.

@ Then ¢; =~ R(V;) € C([0,1]") for each i € {1,...,2n+ 1}, where

‘111' = ((()\1, ey )\n), 0)) o FP((I)“ ey (I)l)



Proof: Approximation of Multivariate Functions (cont.)

@ By the previous lemma, g = R(E) € C([-K, K]), where K is
sufficiently large such that ;([0,1]") C [- K, K].

@ Then the network
b = (((1, ey 1), 0)) [ ] FP(E, e ,E) ° P(\Ifl, ey \Ifgn+1).

has the desired number of layers and weights.
@ Moreover, f =~ R(®) thanks to the estimate

If —R(® H<Z:||REOR i) = gouil

SZHR(E)OR(%) R(Z) o ¢ill + [IR(Z) 0 i — g o ¢l ,

and thanks to the uniform continuity of R(E) on [-K, K].



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: Recall the approximation of univariate and multivariate
functions by networks of bounded size.

@ Check: Verify that the activation function p constructed in the
univariate case is continuous.

@ Discussion: What are theoretical implications to approximation theory
and practical implications to supervised learning?
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Outlook on this week's discussion and reading session

@ Reading:
— Arnold (1958): On the representation of functions of several variables
— Bar-Natan (2009): Hilberts 13th problem, in full color
— Hecht-Nielsen (1987): Kolmogorov's mapping neural network existence
theorem



Summary by learning goals

Having heard this lecture, ...
@ You can describe the Kolmogorov—Arnold representation theorem and
its proof.
@ You can appreciate the fundamental distinction between inner and
outer network layers.
@ You are aware that different choices of activation functions may lead
to very different approximation theories.
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