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Hilbert’s 13th Problem

Hilbert’s 13th problem

Can the roots of the equation

x7 + ax3 + bx2 + cx+ 1 = 0

be represented as superpositions of continuous functions of two variables?

Remark:

This is the general form of a septic equation after some algebraic
transformations. The roots are functions of (a, b, c).

A single superposition is w
(
u(a, b), v(b, c)

)
, and a double

superposition is w
(
u
(
p(a, b), q(b, c)

)
, v
(
r(b, c), s(c, a)

))
.

More generally, the question becomes: Do functions of three variables
exist at all, or can they be represented as superpositions of functions
of less than three variables?



Hilbert’s Conjecture

Conjecture: Hilbert conjectured that such reductions to smaller numbers
of variables are impossible. The strongest supporting evidence is:

Theorem (Vitushkin 1955)

There is a polynomial such that neither the polynomial itself nor any
function sufficiently close to it (in the sense of uniform convergence) can
be decomposed into a simple superposition of continuous functions of two
variables in any region or in any system of coordinates.



Dimension theory

Remark: Kolmogorov interpreted Hilbert’s problem using dimension
theory:

Let N(ε) be the smallest number of ε-balls needed to cover a metric
space X.

On X = [0, 1]n one has dim(X) := lim infε→0
− logN(ε)

log ε = n.

On X = Cs([0, 1]n) one has

dim(X) := lim infε→0
− log logN(ε)

log ε = n/s.

In this sense, Hölder functions of 3 variables are strictly richer than
Hölder functions of 2 variables.

However, as we will see, this argument does not generalize to
continuous functions.



Reduction to three variables

Theorem (Kolmogorov 1956)

Any continuous function f of n ∈ N variables can be represented as a
finite number of superpositions of functions of 3 variables. For instance,
for n = 4 one has

f(x1, x2, x3, x4) =

4∑

i=1

gi
(
u(x1, x2, x3), v(x1, x2, x3), x4

)

for some continuous functions gi, u, v : R3 → R.



Sketch of Proof: Reduction to three variables

Sketch of Proof:

The level sets (aka. contour lines) of a continuous function form a
tree (Kronrod, Menger):

On the representation of functions of several variables 7

3. However, in the domain of all continuous functions Hilbert’s conjecture
has proved to be false.

In the spring of 1956 Kolmogorov succeeded in showing that every contin-
uous function of n variables (n ! 4) defined on an n-cube is a superposition
of continuous functions of the three variables.12 The main tool in his con-
struction is the one-dimensional tree of components of level sets of a function
introduced by Kronrod.13

Fig. 1. Fig. 2.

By the level set of a function we mean the collection of all points in the
domain of the function at which the function takes some fixed value. For
example, if the function of a point of part of the land surface represents the
height at this point above sea level, then the level set will consist of all points
of the locality having the same height above sea level; in topography these
level sets are called contour lines. In Figs. 1 and 2 we have depicted simple
functions of two variables and the ‘maps’ of the level sets of these functions
(that is, a partition of the squares on which the functions are defined into

12 Kolmogorov, A.N.: On the representation of continuous functions of several vari-
ables by superpositions of continuous functions of a smaller number of variables.
Dokl. Akad. Nauk SSSR 108, 179–182(1956); English transl. in Amer. Math Soc.
transl. Ser. 2, vol. 17, 369–373 (1961).

13 Kronrod, A.S.: On functions of two variables. Usp. Mat. Nauk 5, No.1, 24–134
(1950).
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Sketch of Proof: Reduction to three variables (cont.)

Any continuous function of n variables can be written as a sum of
n+ 1 continuous functions with standard trees, i.e., trees which do
not depend on the given function (Kolmogorov):

f(x1, . . . , xn) =

n+1∑

i=1

f i(x1, . . . , xn).

Each of function fi can be written as a one-parameter family of
functions of n− 1 variables:

f(x1, . . . , xn) =

n+1∑

i=1

f ixn(x1, . . . , xn−1)



Sketch of Proof: Reduction to three variables (cont.)

Each of the functions f ixn factors through a function on the
corresponding standard tree:

f(x1, . . . , xn) =

n+1∑

i=1

gixn(`i(x1, . . . , xn−1)).
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Sketch of Proof: Reduction to three variables (cont.)

Embedding the trees in a plane with a two-dimensional coordinate
system (u, v) transforms this into:

f(x1, . . . , xn) =

n+1∑

i=1

gixn
(
ui(x1, . . . , xn−1), v

i(x1, . . . , xn−1)
)
.

This yields 3-variate functions gi and (n− 1)-variate functions ui, vi:

f(x1, . . . , xn) =

n+1∑

i=1

gi
(
ui(x1, . . . , xn−1), v

i(x1, . . . , xn−1), xn
)
.

Applying this construction iteratively to ui and vi yields the reduction
to superpositions of functions of 3 variables.



Questions to Answer for Yourself / Discuss with Friends

Repetition: State Hilbert’s 13th problem and describe how
Kolmogorov cast it in the frameworks of dimension and graph theory.

Check: What happens to Hilbert’s problem when continuous
functions are replaced by measurable or arbitrary functions?

Background: Find out about generalizations, limitations, and open
problems related to Hilbert’s thirteenth problem.
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Kolmogorov–Arnold Representation

Theorem (Kolmogorov–Arnold 1956–1957)

For every n ∈ N≥2, there exist ϕi,j ∈ C([0, 1]) such that any
f ∈ C([0, 1]n) can be represented as

f(x1, . . . , xn) =

2n+1∑

i=1

gi




n∑

j=1

ϕi,j(xj)


 ,

for some gi ∈ C(R).

Remark:

This disproves Hilbert’s conjecture and shows that “the only”
multivariate function is a sum.

The inner functions ϕi,j are universal, i.e., they do not depend on f .

The outer functions gi can be learned by linear regression.



Sprecher’s Refinement: Universal Inner Function

Theorem (Sprecher 1965, Köppen 2002)

For every n ∈ N≥2, there exists a continuous function ϕ : R→ R and
constants a, λj ∈ R such that any f ∈ C([0, 1]n) can be represented as

f(x1, . . . , xn) =

2n+1∑

i=1

gi




n∑

j=1

λjϕ(xj + ia)


 ,

for some gi ∈ C(R).

Remark:

The function ϕ and the constants λj and a can be constructed
explicitly and are universal, i.e., independent of f .

Sprecher’s representation can be interpreted as a neural network.

There are many further versions of the Kolmogorov–Arnold theorem
with varying regularity and structural assumptions.



Sprecher’s Refinement: Universal Inner Function

Figure 2. Plot of function ψ for γ = 10 , from
[2].

Figure 3. Plot of the hash function ξ for d = 2
and γ = 10 , from [1].

each dimension. Figure 4 represents a tilage section of a 2D
space: 2d + 1 = 5 different superposed tilages can be seen,
displaced by a.

Figure 4. Section of the tilage for a 2D space
and a base γ = 10 (5 different layers). From
[1].

For a 2D space, a hypercube is associated with a couple
dkr = (dkr1, dkr2). The hypercube Skr (dkr) is associated
with an interval Tkr(dkr) by the function ξ. The image of a
hypercube S is an interval T by function ξ, see figure 5.

Internal functions ψ and ξ have been determined. Ex-
ternal functions gn cannot be directly evaluated. Sprecher
builds r functions gr

n, such that their sum converges to the

Figure 5. Function ξ associates each paving
block with an interval Tk in [0 , 1].

external function gn. The algorithm iteratively evaluates an
external function gr

n, in three steps. At each step r, the pre-
cision, noted kr, must be determined. The decomposition of
real numbers dk can be reduced to only kr digits (see equa-
tion 2). Function fr defines the approximation error, that
tends to 0 when r increases. The algorithm is initialized
with f0 = f and r = 1.

3.1. first step: determination of the preci-
sion kr and tilage construction

For two coordinates xi and x′
i that belong to two sets,

referencing the same dimension i and located at a given dis-
tance, the distance between the two sets x and x′ obtained
with f must be smaller than the N th of the oscillation of f ,
i.e.:

if |xi − x′
i| ! 1

γkr
,∣∣fr−1(x1, ..., xd) − fr−1(x

′
1, ..., x

′
d)

∣∣ ! ϵ ∥fr−1∥ .

Once kr has been determined, the tilage dn
kr1, ..., d

n
krd is

calculated by:

∀i ∈ !1, d", dn
kri = dkri + n

kr∑

r=2

1

γr
.

3.2. second step: internal functions ψ and ξ

For n from 0 to m, determine ψ(dn
kr

) and
ξ(dn

kr1, ..., d
n
krd) using equations 2 and 3.

3.3. third step: determination of the ap-
proximation error

∀n ∈ !0 , m", evaluate:

gr
n ◦ ξ(x1 + an, ..., xd + an) =

1
m+1

∑
dn

kr1,...,dn
krd

fr−1

(
dkr1, ..., dkrd

)
θdn

kr

(
ξ(x1 + an, ..., xd + an)

)
,

where θ is defined in equation 4. Then, evaluate:

fr(x1, ..., xd) = f(x1, ..., xd)
− ∑m

n=0

∑r
j=1 gj

n ◦ ξ(x1 + an, ..., xd + an).
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Figure: Sprecher’s universal inner functions ϕ (left) and ψ1 (right), where
ψi(x1, x2) := λ1ϕ(x1 + ia) + λ2ϕ(x2 + ia) for some constants λ1, λ2, a. [Leni
Fougerolle Truchetet 2008]



Hashing

Remark:

The inner functions in the Kolmogorov–Arnold representation
theorem can be interpreted as hash functions.

Background:

Hash functions are widely used in computer science for array indexing
operations.

They map high-dimensional/unstructured/variable-length data to
scalar hash values.

Hash functions should be fast to compute and should be “nearly”
injective, i.e., minimize duplication of output values.



Hashing and Kolmogorov–Arnold Representation

Lemma

For each i ∈ {1, . . . , 2n+ 1}, Sprecher’s inner function

ψi : [0, 1]n 3 (x1, . . . , xn) 7→
n∑

j=1

λjϕ(xj + ia) ∈ R

is injective on a countable dense subset D ⊆ [0, 1]n.

Remark:

It is sufficient to establish injectivity of ψ(x) :=
∑

j λjϕ(xj) on D.

This follows from the following two facts: φ takes rational values on
D, and the coefficients λj are independent over the rational numbers.

Of course, ψ is not injective everywhere; otherwise the
Kolmogorov–Arnold theorem would be trivial.



Space-filling curves

Intuitively, the inverse of a hash function [0, 1]n → [0, 1] is a
space-filling curve, i.e., a surjective continuous map [0, 1]→ [0, 1]n.

For Sprecher’s hash function, this is made precise as follows: By
carefully examining the properties of ψ, one may construct an
“inverse” map λ : [0, 1]→ [0, 1]n with the following properties:

Lemma
1 The map λ : [0, 1]→ [0, 1]n is a space-filling curve.

2 Its image may be approximated by discrete curves Λk as k →∞.

Remark:

By the Hahn–Mazurkiewicz theorem, a non-empty Hausdorff
topological space is a continuous image of the unit interval if and only
if it is compact, connected, locally connected, and second-countable.



Space-filling curves
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Figure: An approximation Λk of the space-filling curve λ. [Sprecher Draghici 2002]



Questions to Answer for Yourself / Discuss with Friends

Repetition: Recall and compare the presented versions of the
Kolmogorov–Arnold Theorem.

Check: Why exactly does the Kolmogorov–Arnold representation
theorem disprove Hilbert’s conjecture?

Check: Show that there is no continuous bijection [0, 1]n → [0, 1] for
any n ≥ 2.

Discussion: How would you implement Sprecher’s theorem using
neural networks? Do you think this could work well for supervised
learning?
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Hashing rational numbers

Lemma

There exists a linear map ` : Rn → R whose restriction to rational
numbers is injective.

Proof:

n = 2 : Set `(x, y) = x+ λy for any irrational number λ.

n ≥ 2: Set `(x1, . . . , xn) := λ1x1 + · · ·+ λnxn, where λi are
independent over Q, e.g. λi = πi−1 or some other powers of any
transcendental number.

Remark:

Thus, any f : Qn → R can be written as f = g ◦ `, where ` is the
above linear hashing function. However, g cannot be chosen
continuously, and the approximation error cannot be controlled on
non-rational numbers—a more elaborate construction is needed.

We fix an irrational number λ ∈ R \Q throughout this section.



Approximate Hashing for a Specific Function

Remark:

The key step in the proof of the Kolmogorov–Arnold theorem is the
construction of approximate hashing functions.

This is done here for a given specific function and in the next section
for generic functions.

We restrict ourselves to bivariate functions.

Definition (Approximate hashing functions, specific f)

A function ϕ ∈ C([0, 1],R5) is called approximate hashing function for
f ∈ C([0, 1]2) if there exists g ∈ C(R) such that

sup
t∈R
|g(t)| ≤ 1/7, sup

x,y∈[0,1]

∣∣∣∣∣f(x, y)−
5∑

i=1

g
(
ϕi(x) + λϕi(y)

)
∣∣∣∣∣ < 7/8.



Approximate Hashing for a Specific Function

Lemma

For any f ∈ C2([0, 1]2) with ‖f‖∞ ≤ 1, the set of approximate hashing
functions for f is open and dense in C([0, 1],R5).

Proof:

The set is open, since if g works for a particular ϕ, it does so for
every nearby ϕ.

It remains to show that the set is dense in C([0, 1],R5).

Thus, given ε > 0 and χ ∈ C([0, 1],R5), we have to find an
approximate hashing function ϕ for f such that ‖ϕ− χ‖ ≤ ε.



Proof: Approximate Hashing for a Specific Function

Divide [0, 1] into N ∈ N intervals, cut out the i-th fifth of each
interval, and color all remaining intervals red.
Approximate χi (gray) by functions ϕi (blue), which are constant on
red intervals of type i.

i = 1

i = 5

i = 4

i = 3

i = 2



Proof: Approximate Hashing for a Specific Function

It can be arranged that each function ϕi assumes distinct rational
numbers on each of the red intervals, and that these numbers are
distinct for different i.

Moreover, for sufficiently large N , ‖ϕ− χ‖ ≤ ε, as desired.

Furthermore, by the uniform continuity of f on [0, 1]2, we can make
N even larger to get

∣∣f(x, y)− f(x′, y′)
∣∣ ≤ 1/7 whenever max{

∣∣x− x′
∣∣ ,
∣∣y − y′

∣∣} ≤ 4/N.



Proof: Approximate Hashing for a Specific Function

The function ψi(x, y) := ϕi(x) + λϕi(y) is constant on red rectangles
of type i, which are defined as products of red intervals of type i.

The irrational numbers, which the functions ψi assume on rectangles
of type i, are all distinct for different rectangles and/or different i.

Thus, there is g ∈ C(R) such that g(ψi(x, y)) = ±1/7 if (x, y)
belongs to a red rectangle of type i where f ≷ 0.

Without loss of generality, ‖g‖ ≤ 1/7.

Intuitively, g tracks the sign of f on each rectangle.



Proof: Approximate Hashing for a Specific Function

For any point (x, y), consider the approximation error

∣∣∣∣∣f(x, y)−
5∑

i=1

g
(
ψi(x, y)

)
∣∣∣∣∣ . (∗)

If f(x, y) ≷ 1/7, then f ≷ 0 on each red rectangle containing (x, y).

There are at least 3 such rectangles because out of 5 types, one may
fail on the x-axis and another one on the y-axis.

Thus, the majority of the summands in (∗) tracks the sign of f
correctly, and the approximation error is bounded by 6/7.

If |f(x, y)| ≤ 1/7, the approximation error is again bounded by 6/7,
regardless of correct or incorrect tracking.

As 6/7 < 7/8, we have shown that ϕ is an approximate hashing
function, which is ε-close to χ.



Questions to Answer for Yourself / Discuss with Friends

Repetition: Recall the definition of and main result on approximate
hashing.

Background: Refresh your memory of algebraic closures and the
definition of algebraic and transcendental numbers, if necessary.

Check: Draw the red rectangles of types 1 to 5 and verify that each
point is contained in at least three rectangles.

Check: What is the role of the numbers 5 and 1/7 in the lemma?
Can they be altered?
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Approximate Hashing for Generic Functions

Remark:

As before, we fix an irrational number λ ∈ R \Q.

Definition (Approximate hashing functions)

A function ϕ ∈ C([0, 1],R5) is called approximate hashing function if for
any f ∈ C([0, 1]2), there exists g ∈ C(R) such that

‖g‖∞ ≤
1

7
‖f‖∞ ,

∥∥∥∥∥f −
5∑

i=1

g ◦ ψi
∥∥∥∥∥
∞

≤ 8

9
‖f‖∞ ,

where ψi(x, y) = ϕi(x) + λϕi(y).

Remark:

Compared to hashing for specific functions f , this definition imposes
the hashing property simultaneously for all f and with a slightly worse
error bound.



Approximate Hashing for Generic Functions

Lemma

The set of approximate hashing functions is dense in C([0, 1],R5).

Proof:

Let Uk be the sets of approximate hashing functions of fk, for some
dense sequence (fk)k∈N in the unit sphere of C([0, 1]2).

The sets Uk are open and dense. By Baire’s category theorem, its
intersection U is dense.

Any function ϕ ∈ U is an approximate hashing function: for any f
with ‖f‖∞ ≤ 1, there exists fk and g such that

∥∥∥f −
∑

i

g ◦ ψi
∥∥∥
∞
≤ ‖f − fk‖∞ +

∥∥∥fk −
∑

i

g ◦ ψi
∥∥∥
∞

≤
(
8
9 − 7

8

)
+ 7

8 = 8
9 .

Extend to general f by scaling.



Questions to Answer for Yourself / Discuss with Friends

Repetition: What is the difference between hashing for specific versus
generic functions, and how does the former imply the latter?

Background: Refresh your memory of the Baire category theorem if
necessary.

Discussion: Can you strengthen the proof to get monotonically
increasing approximate hashing functions?
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Kolmogorov–Arnold Representation, Refined Version

Remark: The approximate hashing results imply the following refined
version of the Kolmogorov–Arnold representation theorem:

Theorem (Kolmogorov–Arnold representation, refined version)

For any n ∈ N≥2, there exist λ1, . . . , λn ∈ R and ϕ1, . . . , ϕ2n+1 ∈ C([0, 1])
such that any f ∈ C([0, 1]n) admits a representation

f(x1, . . . , xn) =

2n+1∑

i=1

g
(
λ1ϕi(x1) + · · ·+ λnϕi(xn)

)

for some continuous function g.

Remark: The difference to Kolmogorov’s original result is that g does not
depend on i.



Proof: Kolmogorov–Arnold Representation for n = 2

Proof: Iterative improvement of the approximate hashing representation

Let ϕ ∈ C([0, 1],R5) be an approximate hashing function, define
ψi(x, y) = λ1ϕi(x) + λ2ϕi(y) for λ1 := 1 and λ2 irrational, and
define Tg :=

∑5
i=1 g ◦ ψi.

Set f1 := f and find g1 with ‖g1‖∞ ≤ 1
7‖f1‖∞ and

‖f1 − Tg1‖∞ ≤ 7
8‖f1‖∞.

Set f2 := f1 − Tg1 and find g2 with ‖g2‖∞ ≤ 1
7‖f2‖∞ and

‖f2 − Tg2‖∞ ≤ 7
8‖f2‖∞.

Continue to eternity. When done, set g =
∑

k gk and note that
f = Tg as required.



Questions to Answer for Yourself / Discuss with Friends

Repetition: Recall the proof of the Kolmogorov–Arnold theorem via
the construction of approximate hashing functions.

Discussion: How does the proof work in higher dimensions?
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Approximation by Networks of Bounded Size

Theorem

There exists a continuous, piece-wise polynomial activation function
ρ : R→ R which allows one to approximate continuous multivariate
functions by realizations of neural networks with bounded size, that is, for
all n ∈ N there exists a constant C = C(n) such that

∀ε > 0 ∀f ∈ C([0, 1]n) ∃Φ : L(Φ) = 3, M(Φ) ≤ C(n), ‖f − R(Φ)‖∞ ≤ ε .

Remark:

This theorem is in a sense “too good” because it provides an
approximate representation of continuous functions by finitely many
real numbers.

It highlights the influence of the choice of activation function on the
resulting approximation theory.

It also points to the importance of asking for bounded weights.



Approximation by Networks of Bounded Size

Lemma (Univariate case)

The theorem holds in the univariate case n = 1: there exists a continuous,
piecewise polynomial activation function ρ : R→ R such that

∀ε > 0 ∀f ∈ C([0, 1]) ∃Φ : L(Φ) = 2, M(Φ) ≤ 3, ‖f − R(Φ)‖∞ ≤ ε .

Remark: By translation and scaling, this extends to continuous functions f
on every closed interval [a, b] ⊆ R.



Proof: Approximation by Networks of Bounded Size

Proof of the lemma:

Recall that the set Π of polynomials with rational coefficients is dense
in the Polish space C([0, 1]), and let (πi)i∈Z be an enumeration of Π.

Define the activation function ρ by

ρ(x) :=

{
πi(x− 2i), x ∈ [2i, 2i+ 1]

πi(1)(2i+ 2− x) + πi+1(0)(x− 2i− 1), x ∈ (2i+ 1, 2i+ 2) .

Note that, by the very definition of ρ, one has ρ(x+ 2i) = πi(x) for
x ∈ [0, 1].

Hence, the neural network Φ := ((1, 2i), (1, 0)) has the desired
properties.



Proof: Approximation by Networks of Bounded Size

Proof of the theorem:

By the Kolmogorov–Arnold theorem (refined version),

f =

2n+1∑

i=1

g ◦ ψi, ψi(x1, . . . , xn) = λ1ϕi(x1) + · · ·+ λnϕi(xn).

for some g ∈ C(R), λ1, . . . , λn ∈ R and ϕ1, . . . , ϕ2n+1 ∈ C([0, 1]).

By the previous lemma, ϕi ≈ R(Φi) ∈ C([0, 1]) for some networks Φi

and a piece-wise polynomial activation function ρ, where ≈ denotes
approximation up to arbitrary accuracy.

Then ψi ≈ R(Ψi) ∈ C([0, 1]n) for each i ∈ {1, . . . , 2n+ 1}, where

Ψi = (((λ1, . . . , λn), 0)) • FP(Φi, . . . ,Φi).



Proof: Approximation of Multivariate Functions (cont.)

By the previous lemma, g ≈ R(Ξ) ∈ C([−K,K]), where K is
sufficiently large such that ψi([0, 1]n) ⊆ [−K,K].

Then the network

Φ := (((1, . . . , 1), 0)) • FP(Ξ, . . . ,Ξ) • P(Ψ1, . . . ,Ψ2n+1).

has the desired number of layers and weights.

Moreover, f ≈ R(Φ) thanks to the estimate

‖f − R(Φ)‖ ≤
∑

i

‖R(Ξ) ◦ R(Ψi)− g ◦ ψi‖

≤
∑

i

‖R(Ξ) ◦ R(Ψi)− R(Ξ) ◦ ψi‖+ ‖R(Ξ) ◦ ψi − g ◦ ψi‖ ,

and thanks to the uniform continuity of R(Ξ) on [−K,K].



Questions to Answer for Yourself / Discuss with Friends

Repetition: Recall the approximation of univariate and multivariate
functions by networks of bounded size.

Check: Verify that the activation function ρ constructed in the
univariate case is continuous.

Discussion: What are theoretical implications to approximation theory
and practical implications to supervised learning?
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Outlook on this week’s discussion and reading session

Reading:

– Arnold (1958): On the representation of functions of several variables
– Bar-Natan (2009): Hilberts 13th problem, in full color
– Hecht-Nielsen (1987): Kolmogorov’s mapping neural network existence

theorem



Summary by learning goals

Having heard this lecture, . . .

You can describe the Kolmogorov–Arnold representation theorem and
its proof.

You can appreciate the fundamental distinction between inner and
outer network layers.

You are aware that different choices of activation functions may lead
to very different approximation theories.
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