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Overview of Week 3

@ Introduction to Dictionary Learning

© Approximating Holder Functions by Splines

9 Approximating Univariate Splines by Multi-Layer Perceptrons
@ Approximating Products by Multi-Layer Perceptrons

© Approximating Multivariate Splines by Multi-Layer Perceptrons

@ Approximating Holder Functions by Multi-Layer Perceptrons

e Wrapup
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Signal classes

Definition (Signal class, approximation error)

Let H be a normed space.
@ A signal class is a subset C of H.

@ The approximation error of signal class C by signal class A is
o(A,C) =supinf || f — .
(4,0) = sup int [~ il

@ A function g € A which realizes the above infimum is called best
approximation of f.

Example:
o H = L%(Q) for some Q C R%.
o C=C*(Q) or H5(Q) for some s € R

o A is a set of multi-layer perceptrons, splines, or wavelets



Dictionaries

Definition (Dictionaries)

Let H be a normed space, and let A be a countable index set.
@ A dictionary is a collection ¢ = (¢))rea Of elements in H.

@ The set of n-term linear combinations in ¢ is defined for any n € N as
Tn(g) = {Zcm ceRY ey < n} :
AEA

where ||-||, denotes the number of non-zero entries.

@ The n-term approximation error of signal class C by dictionary ¢ is

o(Xp(¢),C) =sup inf — .
(50(0).0) = sup k117 ~ il

@ A function g which realizes the above infimum is called best n-term
approximation of f.




Approximation Rates

Definition (Approximation Rates)

Let C be a signal class, and let h € RY.

@ A sequence (A, )nen of signal classes achieves an approximation rate

of h for C if
0(Ap,C) = O(hy) as n — c©.

@ A dictionary ¢ achieves an approximation rate of h for C if

0(Xn(9),C) = O(hy,) asn — .

Remark:
@ Bounds on the approximation rate are typically more easily obtained
than bounds on the approximation error for finite n.
@ A “good” dictionary needs more than just a good approximation rate.

Indeed, any dense sequence ¢ in H achieves any approximation rate
for any signal class but is ill-suited for efficient encoding of functions.



Dictionary Learning: Transfer of Approximation

Motivation: show a result of the following type

o If multi-layer perceptrons approximate a dictionary well, and the
dictionary approximates a signal class well, then multi-layer
perceptrons approximate the signal class well.

Theorem (Transfer of approximation)

Let C be a signal class in a normed space H of functions R? — R. Assume
that multi-layer perceptrons of depth L with activation function p and at
most M weights approximate any function in a dictionary ¢ to arbitrary
accuracy:

Ve>O0VAEATD: L(®) =L, M@) <M, [¢r—R(®)|,y<e.

Then multi-layer perceptrons with Mn weights approximate C with error

o({R(®) : L(®) = L, M(®) < Mn},C) < o(Sn(¢),C).




Proof: Transfer of Approximation

Proof:
e Given f € C and € > 0, there exists g € ¥,,(¢) with

1f = 9glly < 0(En(0),C) + e

o After relabeling we may write g = Zz‘gn c;¢p; for some ¢; € R.

@ Given € > 0, there exists neural networks ®; for : = 1,...,n with
€
L(®) =L, M(®;) <M, [¢i—R(®i)]ly <

n-lello

@ By the subsequent lemma on linear combinations of neural networks,
there exists a neural network ® with

L(®) =L, M(®) < Mn, H > cioi - R((I))HH <e.

o Consequently R(®) approximates f with error
1f = R(®)[lyy < If =gl +lg = B(®)[l3 < 0(Xn(9),C)+2e. [



Linear combinations of networks

Lemma (Linear combinations of networks)
Let ®q,...,®, be neural networks with depth L and input dimension d,

and let cy,...,c, € R. Then there exists a neural network ® with depth L
and input dimension d such that
R(®) =) cR(®:), M(®) <> M(®;).
i<n i<n

Proof:
e Let c be the row vector (ci,...,c,) € RPX"

@ Define the neural network ® by
® = ((¢,0)) e P(Pq,...,P,)

@ Count the number of layers and weights 0J




Questions to Answer for Yourself / Discuss with Friends

@ Repetition: Recall the definitions of signal classes, dictionaries, and
approximation errors.

@ Check: Verify that the network ® in the lemma on linear
combinations has indeed depth L and not L + 1.

@ Check: Is the set ¥,,(¢), which consists of n-term linear combinations
in the dictionary ¢, a linear space?

@ Transfer: How is the approximation error related to the one defined in
statistical learning theory?
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Univariate Splines

Definition (Univariate splines)
Let £ € N.

@ The univariate cardinal basis spline of order k on [0, k] is defined as

k

Ni(x) := G _1 i Z(—l)l (lli) (z—D¥1 forzeR

=0

where (-)4 := max{0,-}.
@ Fort € R and | € N we define the univariate basis splines by
rescalings and translations:

Nr(@) = N2z —t)) forz €R.




Univariate Splines

Plots of the basis spline N, (blue) and some translates of it (gray):
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Multivariate Splines

Definition (Multivariate splines)
Let d, k € N.

@ For I € N and t € R? we define the multivariate basis splines
J\/ltk HMt“k (z;) for = (21,...2,) € RZ.

@ The dictionary of dyadic basis splines of order k is

k d
B := (M,t,k)leN,terlZd-




Approximating Holder Functions by Splines

Let H = LP([0,1]%) for some d € N and p € (0,00], let B* denote the
dyadic basis splines of some order k € N, and let C be the unit ball in
C*([0,1]%) for some s € (0,k]. Then for any r < s/d, the dictionary B"
achieves an approximation rate of (n™"),en for the signal class C in H.

Remark:
@ The coefficients ¢; in the spline approximation of f € C by
Zign ¢;B; € BF can be chosen such that max; |¢;| < || f]]oo-
@ More generally, spline approximations of Besov B;q(Rd) functions
converge in Besov B;:’q/ (R%) norms at a rate of (nearly)

(n_(s_s/)/d)neN. For p > ¢/, this follows from the constructive linear
theory with non-adaptive grids, whereas for p < p’ adaptive grids are
needed, and the approximation theory becomes non-constructive and
non-linear.



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: What is the meaning of the parameters [, ¢, k, d of dyadic
basis splines '/\/’lc,lt,k?

@ Background: Read up on the definition of Holder functions and
splines if needed.

@ Transfer: Cubic interpolating splines are the solution of a linear
best-approximation problem—which one?
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Sigmoidal Functions of Higher Order

A function p : R — R is called sigmoidal of order ¢ € N, if p € C7}(R)
and the following three conditions are met:

° pg(cq) —0 forz— —oco.

° %%1 for x — o0.
° [p(z)| S(A+]z|)¢ forzeR.

Example:
@ Sigmoidal functions are sigmoidal of order 0.
@ The Relu function = — (x); is sigmoidal of order 1.
@ The power unit z — ()% is sigmoidal of order ¢ € N.
Goal:

@ Approximation of univariate splines by multi-layer perceptrons with
sigmoidal activation functions of order ¢ > 2.



Approximating Power Units by Multi-Layer Perceptrons

Notation:

@ [z]| € Z denotes the the smallest integer greater than or equal to x.

Theorem

Let k € N, and let p: R — R sigmoidal of order ¢ > 2. Then there exists a
constant C' > 0 such that for every ¢, K > 0, there is a neural network ®
with [max{log,(k),0}| + 1 layers and C weights satisfying

sup ‘R(@)(m) - (x)’;‘ <e.
z€[—K,K]

Remark:

@ Two layers suffice for the approximation of square units.



Proof: Approximating Power Units by MLPs

Proof:

o Letn:= {max{logq(k:), 0}] let p:= q™ >k, and let f) be the n-fold
composition of p, rescaled by A > 0:

f(x) == A"Pp"(Ax) for r € R.
@ Then f) converges to the p-th power unit:

VK >0: lim sup |fi(z)— (2)f]=0.
A=0 pe[— K, K]

@ The difference quotient converges to the (p — 1)-th power unit:

Iz +0) — fa()

VK > 0: lim sup —pz)P =0,
f__ggoze[fK,K] d (@)

and similarly for higher-order difference quotients and derivatives.

@ These difference quotients are realizations of neural networks ® with
[max{log,(k),0}] + 1 layers. O



Approximating Univariate Basis Splines by MLPs

Any univariate basis spline of degree k € N can be approximated uniformly
on compacts by neural networks with sigmoidal activation function of
order ¢ > 2 and architecture depending only on k and q.

Proof:

@ Univariate basis splines AV, are linear combinations of translated
and rescaled power units:

Nipr(@) = Ni(2H (@ — 1)),

h k
oD Z(—1)l<’;> (x — 0k

o Approximate the power units by multi-layer perceptrons, apply

translations and scalings using the subsequent lemma, and take linear
combinations. O

Ni(z) =



Shifting and rescaling neural networks

Lemma (Shifting and rescaling neural networks)

Let ® be a neural networks of input dimension d € N.

For any t € R and A € R, there exists a neural network U with the same
architecture as ® and at most d additional weights such that

R(U)(z) = R(®)(\z + 1) for z € R%.

Proof:

@ Define the neural network W as
U= e ((Aldga,t))

@ Count the number of layers and weights Ol



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: What are power units and how are they related to splines?
@ Repetition: What are sigmoidal functions of higher order what are
they useful for?

@ Check: Verify the claims about uniform convergence on compacts of
rescaled sigmoidal functions to power units!
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Representing Products by Square Units

Theorem

Let d € N, and let p be the square unit x — (z)2. Then there exists a
neural network ® with [logy(d)| + 1 layers such that

d
R(®)(z) = Hmz for z € RY.
i=1

Remark:

@ Note that this representation is exact; no approximation is needed.

@ However, approximation is needed to allow for more general activation
functions.



Proof: Representing Products by Square Units

Proof:
@ Multiplication of 2 variables can be represented as a network of depth
2 and width 6 thanks to polarization:

22129 = (21+22)} + (—21—22)7 — (21)7 — (—21)F — (22)7 — (—22)}

@ Parallelize and concatenate to achieve multiplication of 2™ variables:

Ty ToTaTy LT T7 Ty

T1T3T3Ty

Ty Ty I3 Ty Tg T o5 T

[Figure from Petersen] 0



Approximating Products by Multi-Layer Perceptrons

Corollary

Let d € N, and let p be sigmoidal of order ¢ > 2. Then there exists a
constant C' such that for every e, K > 0, there exists a neural network ®
with [logy(d)]| + 1 layers and C' weights satisfying

d

R(®)(2) — [[ =

=1

< e.

sup
z€[-K,K]?

Proof:
@ Represent the product by a network with square-unit activation
function as above.
@ Approximate each square unit (i.e., each red dot in the previous
figure) by a 2-layer network of fixed size and note that this does not
increase the overall network depth.

O




Questions to Answer for Yourself / Discuss with Friends

@ Repetition: How can the product of two or more variables be
represented or approximated by multi-layer perceptrons?

@ Check: What does the multiplication network look like when the
number of variables is not a power of 27

@ Discussion: Is it possible to build multiplication networks with
activation function z +— 227
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Approximating Multivariate Basis Splines by MLPs

Theorem

Let k,d € N, and let p: R — R be sigmoidal of order ¢ > 2. Then there
exists a constant C' > 0 such that for every basis spline f € B* and every
e, K > 0 there is a neural network ® with

[ogy(d)] + [max{log,(k — 1),0}| + 1 layers and C weights satisfying

IR(®) = fll oo (-, 70y S €-




Proof: Approximating Multivariate Basis Splines by MLPs

Proof: Combine the approximations of power units and multiplication:
o Let f € B” be a dyadic basis spline, i.e.,

f(z) = l,t,k HNk ti)) for z € RY,

where N}, is the univariate basis spline of order k, i.e.,

k
S ()@t

=0

Ni(z) :=

o Approximate the univariate basis splines z; — N (2! (z; — t;)) by
networks W; with [max{log,(k —1),0}| + 1 layers.

e Approximate multiplication R — R by a network ¥ with
[logy(d)] + 1 layers.

o Define & := Uy e FP(Uy, ..., Ty).



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: Outline the structure of the proof above: How can
multivariate splines be approximated by multi-layer perceptrons?

@ Discussion: Where is sigmoidality of higher order used?
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Approximating Holder Functions by MLPs

Theorem

LetdeN, s >0, r <s/d, and p € (0,00]. Moreover, let p: R — R be
sigmoidal of order ¢ > 2. Then there exists a constant C' > 0 such that, for
every f in the unit ball of C*([0,1]%) and every e € (0,1/2), there exists a
neural network ® with depth L = [logy(d)] + fmax{logq(s —1),0}] +1
and number of weights M < Ce™" satisfying

If = R(®)||» < e

@ Deep networks are needed to approximate high-dimensional functions
using sigmoidal activation functions of low order compared to the
regularity of the function.

@ The approximation rate is inversely proportional to the dimension d.
This is often called the curse of dimensionality.



Proof: Approximating Holder Functions by MLPs

Proof: Transfer of approximation:

Let C be the unit ball in C*([0,1]%), let H := L?(]0,1]%), and let B*
be the dictionary of dyadic basis splines.

Multi-layer perceptrons of depth L with activation function p and at
most M weights approximate any function in the dictionary B*
uniformly on compacts and consequently also in H to arbitrary
accuracy.

The dictionary B* approximates the signal class C at rate (77" )nen.
Yy PP g €

By the transfer-of-approximation theorem,
c({R(®) : L(®) = L,M(®) < Mn},C) < o(Zn(B*),C) <n™.

Equivalently, an error of € can be achieved using networks with
O(e~1/7) weights. O



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: Explain dictionary learning in the context of splines and
Holder functions.

@ Discussion: What are strengths and weaknesses of the result when
applied to function approximation or encoding?
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Outlook on this week's discussion and reading session

@ Reading:
— Oswald (1990): On the degree of nonlinear spline approximation in
Besov-Sobolev spaces

— DeVore (1998): Nonlinear approximation



Summary by learning goals

Having heard this lecture, you can now ...

@ Describe signal classes, dictionaries, and related notions of
approximation and transfer of approximation.

@ Approximate products and power units by multi-layer perceptrons.

@ Establish approximation rates for Holder functions by multi-layer
perceptrons.
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