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Signal classes

Definition (Signal class, approximation error)

Let H be a normed space.

A signal class is a subset C of H.

The approximation error of signal class C by signal class A is

σ(A, C) = sup
f∈C

inf
g∈A
‖f − g‖H .

A function g ∈ A which realizes the above infimum is called best
approximation of f .

Example:

H = L2(Ω) for some Ω ⊆ Rd.

C = Cs(Ω) or Hs(Ω) for some s ∈ R
A is a set of multi-layer perceptrons, splines, or wavelets



Dictionaries

Definition (Dictionaries)

Let H be a normed space, and let Λ be a countable index set.

A dictionary is a collection φ = (φλ)λ∈Λ of elements in H.

The set of n-term linear combinations in φ is defined for any n ∈ N as

Σn(φ) =

{∑
λ∈Λ

cλφλ : c ∈ RΛ, ‖c‖0 ≤ n

}
,

where ‖·‖0 denotes the number of non-zero entries.

The n-term approximation error of signal class C by dictionary φ is

σ(Σn(φ), C) = sup
f∈C

inf
g∈Σn(φ)

‖f − g‖H.

A function g which realizes the above infimum is called best n-term
approximation of f .



Approximation Rates

Definition (Approximation Rates)

Let C be a signal class, and let h ∈ RN.

A sequence (An)n∈N of signal classes achieves an approximation rate
of h for C if

σ(An, C) = O(hn) as n→∞ .

A dictionary φ achieves an approximation rate of h for C if

σ(Σn(φ), C) = O(hn) as n→∞ .

Remark:

Bounds on the approximation rate are typically more easily obtained
than bounds on the approximation error for finite n.

A “good” dictionary needs more than just a good approximation rate.
Indeed, any dense sequence φ in H achieves any approximation rate
for any signal class but is ill-suited for efficient encoding of functions.



Dictionary Learning: Transfer of Approximation

Motivation: show a result of the following type

If multi-layer perceptrons approximate a dictionary well, and the
dictionary approximates a signal class well, then multi-layer
perceptrons approximate the signal class well.

Theorem (Transfer of approximation)

Let C be a signal class in a normed space H of functions Rd → R. Assume
that multi-layer perceptrons of depth L with activation function ρ and at
most M weights approximate any function in a dictionary φ to arbitrary
accuracy:

∀ε > 0 ∀λ ∈ Λ ∃Φ : L(Φ) = L, M(Φ) ≤M, ‖φλ − R(Φ)‖H ≤ ε .

Then multi-layer perceptrons with Mn weights approximate C with error

σ({R(Φ) : L(Φ) = L,M(Φ) ≤Mn} , C) ≤ σ(Σn(φ), C).



Proof: Transfer of Approximation

Proof:

Given f ∈ C and ε > 0, there exists g ∈ Σn(φ) with

‖f − g‖H ≤ σ(Σn(φ), C) + ε.

After relabeling we may write g =
∑

i≤n ciφi for some ci ∈ R.

Given ε > 0, there exists neural networks Φi for i = 1, . . . , n with

L(Φi) = L, M(Φi) ≤M, ‖φi − R(Φi)‖H ≤
ε

n · ‖c‖∞
.

By the subsequent lemma on linear combinations of neural networks,
there exists a neural network Φ with

L(Φ) = L, M(Φ) ≤Mn,
∥∥∥∑
i≤n

ciφi − R(Φ)
∥∥∥
H
≤ ε .

Consequently R(Φ) approximates f with error

‖f −R(Φ)‖H ≤ ‖f − g‖H+‖g −R(Φ)‖H ≤ σ(Σn(φ), C)+2ε.



Linear combinations of networks

Lemma (Linear combinations of networks)

Let Φ1, . . . ,Φn be neural networks with depth L and input dimension d,
and let c1, . . . , cn ∈ R. Then there exists a neural network Φ with depth L
and input dimension d such that

R(Φ) =
∑
i≤n

ci R(Φi), M(Φ) ≤
∑
i≤n

M(Φi).

Proof:

Let c be the row vector (c1, . . . , cn) ∈ R1×n

Define the neural network Φ by

Φ = ((c, 0)) • P(Φ1, . . . ,Φn)

Count the number of layers and weights



Questions to Answer for Yourself / Discuss with Friends

Repetition: Recall the definitions of signal classes, dictionaries, and
approximation errors.

Check: Verify that the network Φ in the lemma on linear
combinations has indeed depth L and not L+ 1.

Check: Is the set Σn(φ), which consists of n-term linear combinations
in the dictionary φ, a linear space?

Transfer: How is the approximation error related to the one defined in
statistical learning theory?
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Univariate Splines

Definition (Univariate splines)

Let k ∈ N.

The univariate cardinal basis spline of order k on [0, k] is defined as

Nk(x) :=
1

(k − 1)!

k∑
l=0

(−1)l
(
k

l

)
(x− l)k−1

+ for x ∈ R

where (·)+ := max{0, ·}.
For t ∈ R and l ∈ N we define the univariate basis splines by
rescalings and translations:

Nl,t,k(x) := Nk(2l(x− t)) for x ∈ R .



Univariate Splines

Plots of the basis spline Nk (blue) and some translates of it (gray):
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Multivariate Splines

Definition (Multivariate splines)

Let d, k ∈ N.

For l ∈ N and t ∈ Rd we define the multivariate basis splines

N d
l,t,k(x) :=

d∏
i=1

Nl,ti,k(xi) for x = (x1, . . . xn) ∈ Rd .

The dictionary of dyadic basis splines of order k is

Bk := (N d
l,t,k)l∈N,t∈2−lZd .



Approximating Hölder Functions by Splines

Theorem

Let H = Lp([0, 1]d) for some d ∈ N and p ∈ (0,∞], let Bk denote the
dyadic basis splines of some order k ∈ N, and let C be the unit ball in
Cs([0, 1]d) for some s ∈ (0, k]. Then for any r < s/d, the dictionary Bk
achieves an approximation rate of (n−r)n∈N for the signal class C in H.

Remark:

The coefficients ci in the spline approximation of f ∈ C by∑
i≤n ciBi ∈ Bk can be chosen such that maxi |ci| . ‖f‖∞.

More generally, spline approximations of Besov Bs
p,q(Rd) functions

converge in Besov Bs′
p′,q′(R

d) norms at a rate of (nearly)

(n−(s−s′)/d)n∈N. For p ≥ p′, this follows from the constructive linear
theory with non-adaptive grids, whereas for p < p′ adaptive grids are
needed, and the approximation theory becomes non-constructive and
non-linear.



Questions to Answer for Yourself / Discuss with Friends

Repetition: What is the meaning of the parameters l, t, k, d of dyadic
basis splines N d

l,t,k?

Background: Read up on the definition of Hölder functions and
splines if needed.

Transfer: Cubic interpolating splines are the solution of a linear
best-approximation problem—which one?
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Sigmoidal Functions of Higher Order

Definition

A function ρ : R→ R is called sigmoidal of order q ∈ N, if ρ ∈ Cq−1(R)
and the following three conditions are met:

ρ(x)
xq → 0 for x→ −∞ .

ρ(x)
xq → 1 for x→∞ .

|ρ(x)| . (1 + |x|)q for x ∈ R .

Example:

Sigmoidal functions are sigmoidal of order 0.

The ReLu function x 7→ (x)+ is sigmoidal of order 1.

The power unit x 7→ (x)q+ is sigmoidal of order q ∈ N.

Goal:

Approximation of univariate splines by multi-layer perceptrons with
sigmoidal activation functions of order q ≥ 2.



Approximating Power Units by Multi-Layer Perceptrons

Notation:

dxe ∈ Z denotes the the smallest integer greater than or equal to x.

Theorem

Let k ∈ N, and let ρ : R→ R sigmoidal of order q ≥ 2. Then there exists a
constant C > 0 such that for every ε,K > 0, there is a neural network Φ
with

⌈
max{logq(k), 0}

⌉
+ 1 layers and C weights satisfying

sup
x∈[−K,K]

∣∣∣R(Φ)(x)− (x)k+

∣∣∣ ≤ ε .
Remark:

Two layers suffice for the approximation of square units.



Proof: Approximating Power Units by MLPs

Proof:

Let n :=
⌈
max{logq(k), 0}

⌉
, let p := qn ≥ k, and let fλ be the n-fold

composition of ρ, rescaled by λ > 0:

fλ(x) := λ−pρn(λx) for x ∈ R.

Then fλ converges to the p-th power unit:

∀K > 0 : lim
λ→∞

sup
x∈[−K,K]

∣∣fλ(x)− (x)p+
∣∣ = 0.

The difference quotient converges to the (p− 1)-th power unit:

∀K > 0 : lim
δ→0
λ→∞

sup
x∈[−K,K]

∣∣∣∣fλ(x+ δ)− fλ(x)

δ
− p(x)p−1

+

∣∣∣∣ = 0,

and similarly for higher-order difference quotients and derivatives.

These difference quotients are realizations of neural networks Φ with⌈
max{logq(k), 0}

⌉
+ 1 layers.



Approximating Univariate Basis Splines by MLPs

Corollary

Any univariate basis spline of degree k ∈ N can be approximated uniformly
on compacts by neural networks with sigmoidal activation function of
order q ≥ 2 and architecture depending only on k and q.

Proof:

Univariate basis splines Nl,t,k are linear combinations of translated
and rescaled power units:

Nl,t,k(x) = Nk(2l(x− t)),

Nk(x) =
1

(k − 1)!

k∑
l=0

(−1)l
(
k

l

)
(x− l)k−1

+ .

Approximate the power units by multi-layer perceptrons, apply
translations and scalings using the subsequent lemma, and take linear
combinations.



Shifting and rescaling neural networks

Lemma (Shifting and rescaling neural networks)

Let Φ be a neural networks of input dimension d ∈ N.

For any t ∈ Rd and λ ∈ R, there exists a neural network Ψ with the same
architecture as Φ and at most d additional weights such that

R(Ψ)(x) = R(Φ)(λx+ t) for x ∈ Rd.

Proof:

Define the neural network Ψ as

Ψ = Φ • ((λ IdRd , t))

Count the number of layers and weights



Questions to Answer for Yourself / Discuss with Friends

Repetition: What are power units and how are they related to splines?

Repetition: What are sigmoidal functions of higher order what are
they useful for?

Check: Verify the claims about uniform convergence on compacts of
rescaled sigmoidal functions to power units!
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Representing Products by Square Units

Theorem

Let d ∈ N, and let ρ be the square unit x 7→ (x)2
+. Then there exists a

neural network Φ with dlog2(d)e+ 1 layers such that

R(Φ)(x) =

d∏
i=1

xi for x ∈ Rd.

Remark:

Note that this representation is exact; no approximation is needed.

However, approximation is needed to allow for more general activation
functions.



Proof: Representing Products by Square Units

Proof:

Multiplication of 2 variables can be represented as a network of depth
2 and width 6 thanks to polarization:

2x1x2 = (x1+x2)2
++(−x1−x2)2

+−(x1)2
+−(−x1)2

+−(x2)2
+−(−x2)2

+

Parallelize and concatenate to achieve multiplication of 2n variables:

[Figure from Petersen]



Approximating Products by Multi-Layer Perceptrons

Corollary

Let d ∈ N, and let ρ be sigmoidal of order q ≥ 2. Then there exists a
constant C such that for every ε,K > 0, there exists a neural network Φ
with dlog2(d)e+ 1 layers and C weights satisfying

sup
x∈[−K,K]d

∣∣∣∣∣R(Φ)(x)−
d∏
i=1

xi

∣∣∣∣∣ ≤ ε.
Proof:

Represent the product by a network with square-unit activation
function as above.

Approximate each square unit (i.e., each red dot in the previous
figure) by a 2-layer network of fixed size and note that this does not
increase the overall network depth.



Questions to Answer for Yourself / Discuss with Friends

Repetition: How can the product of two or more variables be
represented or approximated by multi-layer perceptrons?

Check: What does the multiplication network look like when the
number of variables is not a power of 2?

Discussion: Is it possible to build multiplication networks with
activation function x 7→ x2?
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Approximating Multivariate Basis Splines by MLPs

Theorem

Let k, d ∈ N, and let ρ : R→ R be sigmoidal of order q ≥ 2. Then there
exists a constant C > 0 such that for every basis spline f ∈ Bk and every
ε,K > 0 there is a neural network Φ with
dlog2(d)e+

⌈
max{logq(k − 1), 0}

⌉
+ 1 layers and C weights satisfying

‖R(Φ)− f‖L∞([−K,K]d) ≤ ε .



Proof: Approximating Multivariate Basis Splines by MLPs

Proof: Combine the approximations of power units and multiplication:

Let f ∈ Bk be a dyadic basis spline, i.e.,

f(x) = N d
l,t,k(x) =

d∏
i=1

Nk(2l(xi − ti)) for x ∈ Rd,

where Nk is the univariate basis spline of order k, i.e.,

Nk(x) :=
1

(k − 1)!

k∑
l=0

(−1)l
(
k

l

)
(x− l)k−1

+

Approximate the univariate basis splines xi 7→ Nk(2l(xi − ti)) by
networks Ψi with

⌈
max{logq(k − 1), 0}

⌉
+ 1 layers.

Approximate multiplication Rd → R by a network Ψ0 with
dlog2(d)e+ 1 layers.

Define Φ := Ψ0 • FP(Ψ1, . . . ,Ψd).



Questions to Answer for Yourself / Discuss with Friends

Repetition: Outline the structure of the proof above: How can
multivariate splines be approximated by multi-layer perceptrons?

Discussion: Where is sigmoidality of higher order used?



Mathematics of Deep Learning, Summer Term 2020

Week 3, Video 6
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Approximating Hölder Functions by MLPs

Theorem

Let d ∈ N, s > 0, r < s/d, and p ∈ (0,∞]. Moreover, let ρ : R→ R be
sigmoidal of order q ≥ 2. Then there exists a constant C > 0 such that, for
every f in the unit ball of Cs([0, 1]d) and every ε ∈ (0, 1/2), there exists a
neural network Φ with depth L = dlog2(d)e+

⌈
max{logq(s− 1), 0}

⌉
+ 1

and number of weights M ≤ Cε−r satisfying

‖f − R(Φ)‖Lp ≤ ε.

Deep networks are needed to approximate high-dimensional functions
using sigmoidal activation functions of low order compared to the
regularity of the function.

The approximation rate is inversely proportional to the dimension d.
This is often called the curse of dimensionality.



Proof: Approximating Hölder Functions by MLPs

Proof: Transfer of approximation:

Let C be the unit ball in Cs([0, 1]d), let H := Lp([0, 1]d), and let Bk
be the dictionary of dyadic basis splines.

Multi-layer perceptrons of depth L with activation function ρ and at
most M weights approximate any function in the dictionary Bk
uniformly on compacts and consequently also in H to arbitrary
accuracy.

The dictionary Bk approximates the signal class C at rate (n−r)n∈N.

By the transfer-of-approximation theorem,

σ({R(Φ) : L(Φ) = L,M(Φ) ≤Mn}, C) ≤ σ(Σn(Bk), C) . n−r.

Equivalently, an error of ε can be achieved using networks with
O(ε−1/r) weights.



Questions to Answer for Yourself / Discuss with Friends

Repetition: Explain dictionary learning in the context of splines and
Hölder functions.

Discussion: What are strengths and weaknesses of the result when
applied to function approximation or encoding?
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Outlook on this week’s discussion and reading session

Reading:

– Oswald (1990): On the degree of nonlinear spline approximation in
Besov-Sobolev spaces

– DeVore (1998): Nonlinear approximation



Summary by learning goals

Having heard this lecture, you can now . . .

Describe signal classes, dictionaries, and related notions of
approximation and transfer of approximation.

Approximate products and power units by multi-layer perceptrons.

Establish approximation rates for Hölder functions by multi-layer
perceptrons.
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