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McCulloch and Pitts Neuron

The first neural network was devised by McCulloch and Pitts (1943) in an
attempt to model a biological neuron.

Definition

A McCulloch and Pitts neuron is a function of the form

Rd 3 x 7→ ρ

(
d∑
i=1

wixi − θ

)
∈ R

where d ∈ N, ρ = 1R+ : R→ R, and wi, θ ∈ R.

ρ is called activation function,

θ is called threshold,

wi are called weights, and

the neuron fires (i.e., returns 1) if the weighted sum of inputs exceeds
the threshold.



Multilayer Perceptron

A multilayer perceptron, as introduced by Rosenblatt (1958), links multiple
neurons together in the sense that the output of one neuron forms an
input to another.

Definition

Let d, L ∈ N, L ≥ 2 and ρ : R→ R. Then a multilayer perceptron (MLP)
with d-dimensional input, L layers, and activation function ρ : R→ R is a
function

F : Rd → RNL , F = TL ◦ ρ ◦ TL−1 ◦ · · · ◦ ρ ◦ T1,

where ρ is applied coordinate-wise and Tl : Rl−1 → Rl is affine, for each
l ∈ {1, . . . , L} and Nl ∈ N with N0 = d.

Recall that an affine map is of the form x 7→ Ax+ b for a matrix A and
vector b.



Multilayer Perceptron (cont.)

In contrast to the McCulloch and Pitts neuron, we now allow
arbitrary activation functions ρ.

Notice that the MLP does not allow arbitrary connections between
neurons, but only between those, that are in adjacent layers, and only
from lower layers to higher layers.

[figure from Petersen, Ch. 1]



Activation Functions - Examples

Logistic sigmoid activation function:

glogistic(z) =
1

1 + exp(−z)
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Logistic hyperbolic tangent
activation function:

gtanh(z) = tanh(z)

=
exp(z)− exp(−z)
exp(z) + exp(−z)
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Activation Functions - Examples (cont.)

Linear activation function:

glinear(z) = z
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Rectified Linear (ReLU) activation
function:

grelu(z) = max(0, z)
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Deep learning

Definition

Deep learning is the use of multilayer perceptrons in learning tasks.

For example, supervised learning, i.e., empirical risk minimization:

Given observations (x1, y1), . . . , (xn, yn),

Find a multilayer perceptron f such that f(xi) ≈ yi.



Questions to Answer for Yourself / Discuss with Friends

Repetition: What is a multi-layer perceptron?

Application of what you just learned:
What class of functions is represented by multi-layer perceptrons with
linear, polynomial, or ReLu activation functions?

Transfer: How do multi-layer perceptrons differ from spline or finite
element discretizations?
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Biological Inspiration of Artificial Neural Networks

Dendrites input information to the cell

Neuron fires (has action potential) if a certain threshold for the
voltage is exceeded

Output of information by axon

The axon is connected to dentrites of other cells via synapses

Learning: adaptation of the synapse’s efficiency, its synaptical weight

AXON

dendrites

SYNAPSES

soma



History of Deep Learning

Deep Learning has developed in several waves

The early days, under the name of artificial neural networks/cybernetics

1942 Artificial neurons as a model of brain function [McCulloch/Pitts]

1949 Hebbian learning [Hebb]

1958 Rosenblatt perceptron [Rosenblatt]

1960 Adaline → stochastic gradient descent [Widrow/Hoff]

The first time the popularity of NNs declined

Negative result: linear models cannot represent the XOR function

Backlash against biologically inspired learning [Minsky/Papert, 1969]



History of Deep Learning

1980 - early 2000s (under the name of connectionism)

1980 Neocognitron [Fukushima]

1986 Multilayer Perceptrons and backpropagation [Rumelhart et al.]

1989 Autoencoders [Baldi and Hornik],
Convolutional neural networks [LeCun]

1997 LSTMs [Hochreiter and Schmidhuber]

The second time the popularity of NNs declined

Ventures based on NNs made unrealistically ambitious claims

- AI research could not fulfill these unreasonable expectations

Other fields of machine learning made advances

- E.g., SVMs and graphical models
- SVMs were the state of the art on many datasets (data was small),

specialized ConvNets held state of the art on MNIST but didn’t scale



History of Deep Learning and ANNs (cont.)

Mid 2000s, the field got re-invigorated:

Greedy layer-wise pretraining [Hinton, 2006]

- It was now possible to train much deeper networks

Several groups “resurrected” the idea of training large neural
networks supervisedly using large amounts of data.

- Most prominently [Krizhevsky et al., 2012] improved results on Imagenet
benchmark by large margin

Since then: exponential growth
- NeurIPS attendance has grown exponentially

In 2018, it sold out in 12 minutes; lottery system since then

- Some people are raising unrealistic expectations
- Let’s see how long this current wave persists



Questions to Answer for Yourself / Discuss with Friends

Discussion: How long will the current deep learning wave persist?

– What are reasons that it will continue?
– What are reasons that it will end?
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Some terminology

Supervised learning: given data (xi, yi), find a function f such that
f(xi) ≈ yi
Classification: special case where f is an indicator function (aka.
classifier) and yi belong to {0, 1}
Data representation: a coordinate system for x

Feature: a coordinate

Linearly separable: yi equals the sign of a linear functional of xi



Definition: Representation learning

Representation learning

“a set of methods that allows a machine to be fed with raw data and to
automatically discover the representations needed for detection or
classification” - LeCun et al., 2015



Example for a Poor Representation: Roman Numbers

In particular, poor for the task of addition.
E.g., perform CCCLXIX + DCCCXLV (369 + 845)

1 Substitute for any subtractives : CCCLXVIIII + DCCCXXXXV

2 Concatenate: CCCLXVIIIIDCCCXXXXV

3 Sort : DCCCCCCLXXXXXVVIIII

4 Combine groups to obtain:
DCCCCCCLXXXXXXIIII
DCCCCCCLLXIIII
DCCCCCCCXIIII
DDCCXIIII
MCCXIIII

5 Re-Substitute any subtractives:
MCCXIV

In contrast, converting to our current number system: 369 + 845 = 1214.



Definition: Deep learning

Deep learning

“representation learning methods with multiple levels of representation,
obtained by composing simple but nonlinear modules that each transform
the representation at one level into a [...] higher, slightly more abstract
(one)” - LeCun et al., 2015



Standard Machine Learning Pipeline

Standard machine learning algorithms are based on high-level
attributes or features of the data

They require (often substantial) feature engineering, i.e., extraction
and selection of features.



Representation Learning Pipeline

Jointly learn features and classifier, directly from raw data

This is also referrred to as end-to-end learning



Shallow vs. Deep Learning



Shallow vs. Deep Learning

Image

Human Cat Dog Classes

Pixels

Edges

Contours

Object Parts

[Visualizations of network activations taken from Zeiler [2014]]

Deep Learning: learning a hierarchy of representations that build on
each other, from simple to complex

Features are learned in an end-to-end fashion, from raw data



Relation to More Traditional Learning Approaches



Questions to Answer for Yourself / Discuss with Friends

Relation to your interests:
What would be a good and a bad representation for a problem you
find interesting?

Discussion: Are deep networks always better than shallow ones?
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Neural Networks: Definition

Definition

Let d, L ∈ N. A neural network with input dimension d and L layers is a
sequence of matrix-vector tuples

Φ =
(
(A1, b1), (A2, b2), . . . , (AL, bL)

)
,

where N0 := d, N1, . . . , NL ∈ N, Al ∈ RNl−1×Nl , and bl ∈ RNl for
l ∈ {1, . . . , L}.

According to this definition, neural networks are the coefficients of
multi-layer perceptrons.

This distinction is useful but not always made in the literature.



Neural Networks: Definition (cont.)

Definition

The realization of a neural network Φ with activation function ρ : R→ R
is the function

R(Φ): Rd → RNL , R(Φ)(x) := xL,

where the output xL results from

x0 := x,

xl = ρ(Alxl−1 + bl) for l ∈ {1, . . . , L− 1},
xL := ALxL−1 + bL.

Here ρ is understood to act component-wise.

Thus, a multilayer perceptron is the realisation of a neural network.



Neural Networks: Definition (cont.)

Definition

We call N(Φ) := d+
∑L

l=1Nl the number of neurons, L(Φ) := L the
number of layers or depth, and

M(Φ) :=

L∑
l=1

Ml :=

L∑
l=1

‖Al‖0 + ‖bl‖0

the number of weights. Here ‖ · ‖0 denotes the number of non-zero entries
of a matrix or vector.



Neural Networks: Definition (cont.)

Definition

Let L ∈ N. A vector S = (N0, . . . , NL) ∈ NL+1 is called architecture of a
neural network

Φ = ((A1, b1), . . . , (AL, bL))

if Al ∈ RNl−1×Nl for l = 1, . . . , L. Given such a vector S, we denote by
NN (S) the set of all neural networks with architecture S.

Note: NN (S) is a finite-dimensional linear space.



Questions to Answer for Yourself / Discuss with Friends

Check: Is ‖ · ‖0 a norm?

Repetition: What are neural networks, and how do they differ from
multi-layer perceptrons?

Discussion: Is the realization map continuous in some sense?
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Operations on neural networks

Lemma (Operations)

Let Φ1 and Φ2 be two neural networks, and let ∆ denote the diagonal
map x 7→ (x, x).

If the composition R(Φ1) ◦ R(Φ2) is well-defined, it can be
represented as the realization of a neural network Φ1 • Φ2.

The full parallelization
(
R(Φ1),R(Φ2)

)
can be represented as the

realization of a neural network FP(Φ1,Φ2).

If the parallelization
(
R(Φ1),R(Φ2)

)
◦∆ is well-defined, it can be

represented as the realization of a neural network P(Φ1,Φ2).

The number of nodes satisfy
M(P(Φ1,Φ2)) = M(FP(Φ1,Φ2)) = M(Φ1) + M(Φ2).

Proof. The networks defined next have the desired properties.



Concatenation: Intuition

Composition of functions corresponds to concatenation of neural networks:

Concatenation [Figure from Petersen]



Concatenation: Definition

Definition (Concatenation)

Let L1, L2 ∈ N and let

Φ1 =
(
(A1

1, b
1
1), . . . , (A

1
L1
, b1L1

)
)

Φ2 =
(
(A2

1, b
2
1), . . . , (A

2
L2
, b2L2

)
)

be two neural networks such that the input layer of Φ1 has the same
dimension as the output layer of Φ2.

Then the concatenation of Φ1 and Φ2 is the neural network Φ1 • Φ2 with
L1 + L2 − 1 layers given by

Φ1 • Φ2 :=
(
(A2

1, b
2
1), . . . , (A

2
L2−1, b

2
L2−1),

(A1
1A

2
L2
, A1

1b
2
L2

+ b11), (A
1
2, b

1
2), . . . , (A

1
L1
, b1L1

)
)
.



Parallelisation: Intuition

The parallelization P(Φ1,Φ2) is a neural network with input
dimension d1 = d2, where the inputs are shared.

The full parallelization FP(Φ1,Φ2) is a neural network with input
dimension d1 + d2, where the inputs are not shared.

Parallelisation with shared inputs [Figure from Petersen]



Parallelisation: Definition

Definition

Let Φ1 and Φ2 be two neural networks with the same number L of layers
and input dimensions d1 and d2, respectively:

Φ1 =
(
(A1

l , b
1
l )
)
l∈{1,...,L} , Φ2 =

(
(A2

l , b
2
l )
)
l∈{1,...,L} .

Then the parallelization and full parallelization of Φ1 and Φ2 are the neural
networks

P(Φ1,Φ2) :=
(

(Â1, b̂1), (Ã2, b̃2), . . . , (ÃL, b̃L)
)

if d1 = d2,

FP(Φ1,Φ2) :=
(

(Ã1, b̃1), (Ã2, b̃2), . . . , (ÃL, b̃L)
)

for arbitrary d1, d2,

where for each l ∈ {1, . . . , L},

Âl :=

(
A1
l

A2
l

)
, b̂l :=

(
b1l
b2l

)
, Ãl :=

(
A1
l 0

0 A2
l

)
, b̃l :=

(
b11
b21

)
.



Questions to Answer for Yourself / Discuss with Friends

Repetition: Take a pen and paper and verify that the network
concatenations and parallelizations satisfy the properties claimed in
the lemma.

Check: Can multiplication of functions be represented as an operation
on neural networks?

Discussion: Can you think of any further operations on neural
networks?
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Universality

Definition

Let d, L ∈ N, and let ρ : R→ R be a continuous activation function. For
K ⊆ Rd compact, denote by MLP(ρ, d, L;K) the set of multilayer
perceptrons with input dimension d, L layers and output dimension 1,
restricted to K.

We say that MLP(ρ, d, L;K) is universal if it is dense in C(K), the space
of real-valued continuous functions on K with the supremum norm.



Universal approximation theorem

Definition (Discriminatory activation functions)

Let d ∈ N,K ⊆ Rd compact. A continuous function ρ : R→ R is called
discriminatory (on K) if the only signed Radon measure µ on K with∫

K
ρ(ax− b)dµ(x) = 0 (a ∈ Rd, b ∈ R)

is the zero measure µ = 0.

Theorem (Universal approximation theorem of Cybenko)

Let d ∈ N,K ⊆ Rd compact, and ρ : R→ R discriminatory. Then
MLP(ρ, d, 2;K) is universal.



Tool: Riesz–Markov–Kakutani representation

Notation

Let K be a compact Hausdorff topological space.

Denote by C(K) the Banach space of real-valued continuous
functions on K with the supremum norm.

Denote by M(K) the Banach space of finite signed Radon measures
on K with the total variation norm.

Recall that a Borel measure is called Radon if it is regular and locally
finite.

Theorem (Riesz–Markov–Kakutani representation)

On any compact Hausdorff topological space K, the topological dual of
C(K) is M(K).



Tool: Hahn–Banach extension

Theorem (Hahn–Banach extension)

If X is a normed space, M a linear subspace, and λ a continuous linear
functional on M , then λ can be extended to a functional Λ: X → R such
that ‖λ‖ = ‖Λ‖.

Consequently, M is dense if and only if every continuous linear functional
on X that vanishes on M is trivial.



Proof of the universal approximation theorem

Note that MLP(ρ, d, 2;K) ⊆ C(K) is a linear subspace

Assume for contradiction that MLP(ρ, d, 2;K) is not dense

By Hahn-Banach, there is a non-zero measure µ with∫
K
fdµ = 0 (f ∈ MLP(ρ, d, 2;K))

However, the functions fa,b(x) := ρ(ax− b) belong to
MLP(ρ, d, 2;K) for all a ∈ Rd and b ∈ R.

As ρ is discriminatory, this gives the desired contradiction



Questions to Answer for Yourself / Discuss with Friends

Repetition: Recount the universal approximation theorem and its
proof.

Check: Verify that one has indeed
K 3 x 7→ ρ(ax− b) ∈ MLP(ρ, d, 2;K) for a ∈ Rd, b ∈ R
Transfer: How does Cybenko’s universality theorem differ from the
Stone–Weierstrass approximation theorem?
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Sigmoidal functions

Definition

A continuous function ρ : R→ R is called sigmoidal, if ρ(x)→ 1 for
x→∞ and ρ(x)→ 0 for x→ −∞.
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Example: The logistic (aka. sigmoidal) function x 7→ (1 + e−x)−1 is sigmoidal

Theorem (Cybenko)

Let d ∈ N,K ⊆ Rd compact. Then every sigmoidal function ρ : R→ R is
discriminatory on K.



Proof that sigmoidal functions are discriminatory

Let µ ∈M(K) such that
∫
K ρ(ax− b)dµ(x) = 0 for a ∈ Rd, b ∈ R

For any θ ∈ R,

lim
λ→∞

ρ(λ(ax− b) + θ) =


1 ax− b > 0

ρ(θ) ax− b = 0

0 ax− b < 0

Thus, by dominated convergence,

µ({ax > b})+ρ(θ)µ({ax = b}) = lim
λ→∞

∫
K
ρ(λ(ax−b)+θ)dµ(x) = 0

Taking the limit θ → −∞, we conclude that

µ({ax > b}) = 0 (a ∈ Rd, b ∈ R)



Proof that sigmoidal functions are discriminatory (cont.)

In particular, for any b1 < b2,

µ({ax > b1})− µ({ax > b2}) =

∫
K
1(b1,b2](ax)dµ(x) = 0

This extends first by linearity to step functions and then by density to
continuous bounded functions:∫

K
g(ax)dµ(x) = 0 (g ∈ Cb(R))

By choosing g = sin and g = cos, we arrive at

0 =

∫
K

exp(iax)dµ(x) (a ∈ Rd)

This means the Fourier transform of µ vanishes; whence µ = 0.



Extensions and variations

The above proof also works for other dual pairings such as e.g.
L1(Rd) and L∞(Rd).

Alternatively, for activation functions ρ ∈ {sin, cos, exp}, density of
{ρ(a ·+b); a ∈ Rd, b ∈ R} in C(K) follows directly from
Stone–Weierstrass.

Alternatively, for activation functions ρ with
∫
ρ(x)dx 6= 0, density in

L1(K) can be shown using the Tauberian theorem of Wiener: any
translation-invariant subspace of L1(R), which contains for any ξ ∈ R
a function f with f̂(ξ) 6= 0, is dense. [Cybenko]



Questions to Answer for Yourself / Discuss with Friends

Check: Are sigmoidal functions bounded?

Background: Do you recall the proof of the injectivity of the Fourier
transform on measures? (Hint: Stone–Weierstrass for trigonometric
polynomials.)
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Outlook on this week’s discussion and reading session

Reading:

- Hornik (1989): Multilayer Feedforward Networks are Universal
Approximators

- Cybenko (1989): Approximation by superpositions of a sigmoidal
function

- Hornik (1991): Approximation capabilities of multilayer feedforward
networks



Summary by learning goals

Having heard this lecture, you can now . . .

Describe the structure of multi-layer perceptrons and neural networks

Sketch a brief history of deep learning and put it into the perspective
of representation learning.

State the universal approximation theorem and understand its elegant
proof
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