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Deep Learning in the News



Deep Learning Revolutionized Computer Vision

Excellent empirical results

ILSVRC: ImageNet Large-Scale Visual Recognition Challenge



Deep Learning Revolutionized Speech Recognition

Excellent empirical results



Deep Learning Goes Great with Reinforcement Learning

Excellent empirical results obtained by deep reinforcement learning

- Superhuman performance in
playing Atari games
[Mnih et al, Nature 2015]

- Beating the world’s best Go player
[Silver et al, Nature 2016]



(Deep) Learning as A Different Way of Programming

We don’t understand how the human brain solves certain problems

- Face recognition
- Playing Atari games
- Speech recognition
- Picking the next move in the game of Go

We can nevertheless learn these tasks from data/experience

If the task changes, we simply re-train



Deep Learning Allows Many Branches of AI to Converge

Deep learning is now the principle approach in many different
branches of AI:

- Computer vision
- Speech recognition
- Natural language processing
- (Robotics)

The same general techniques apply in all of these fields

- Amazing potential for cross-fertilization
- Fields that drifted apart for decades have largely converged again

- E.g., in Freiburg:

close collaboration & joint reading group between machine learning,
computer vision, robotics, neurorobotics, and robot learning



Further Reasons for the Popularity of Deep Learning

Very quick to get good results for some problems

- Deep learning can handle raw data (images, speech, text, etc)
- Very well-engineered libraries handle the complex underpinnings

(Tensorflow, Pytorch, . . . )
- Very little machine learning knowledge is required to get started

Misconception: “it works like the brain”

Neural networks are very flexible models – this is the main content of
the lecture



Understanding deep learning

Neural networks are excellent function approximators

- They are dense in many function spaces; this is often called the
universal approximation property [Cybenko, Hornik]

- Approximation rates are known for many shallow and deep network
architectures

However, this only partially explains their success

- Generalization capability is needed in addition to approximation
capability

- Deep learning performs better than the theory predicts; this is the
oft-quoted unreasonable effectiveness of deep learning in artificial
intelligence [Sejnowski]

Many interesting mathematical questions remain

- Mathematicians are ideally prepared for appreciating the abstract issues
involved in high-dimensional data analysis [Donoho]



Questions to Answer for Yourself / Discuss with Friends

Repetition: Why is deep learning so popular?

Discussion:
What might a mathematical theory of deep learning look like?

Relation to your interests:
What would you like to learn from this lecture?
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Learning

Learning or, more precisely, inductive inference:

Observe a phenomenon

Construct a model of that phenomenon

Make predictions using this model

Goals of learning theory and machine learning:

Machine learning: automize inference

Statistical learning theory: formalize inference

Nothing is more practical than a good theory. [Vapnik, Statistical
Learning Theory 1998]

Main assumption of statistical learning theory:

Test and training data are iid.

This distinguishes it from time series analysis (not independent) and
transfer learning (not the same distribution).



Formalization

Input and output spaces: measurable spaces X and Y.

Loss function: a measurable function L : Y × Y → R.

Hypothesis class (aka. model class): a set H0 of measurable functions
f : X → Y.

Observations: independent random variables (X1, Y1), . . . , (Xn, Yn),
defined on a probability space (Ω,F ,P), distributed according to a
probability measure P on X × Y.

Objective: Find a function f ∈ H0 with low or minimal risk (aka. test
or generalization risk)

R(f) :=

∫
L(f(x), y)P (dx, dy)

in the situation where P is unknown and the only information is
contained in the observations.



Remarks

Applications:

Regression: Y = R and L(y1, y2) = (y1 − y2)2.

Classification: Y = {0, 1} and L(y1, y2) = 1{y1 6=y2}.

Useful hypothesis classes:

Linear functions, polynomials, Ck functions, splines, or, as in deep
learning, multilayer perceptrons.

Main challenge:

The distribution P of the data and consequently also the risk
functional R, which is to be minimized, are unknown.

Otherwise this would be a standard optimization problem.



Questions to Answer for Yourself / Discuss with Friends

Repetition: Describe the setup and goal of statistical learning theory.

Discussion: Which aspects of machine learning are well-described by
statistical learning theory? Which aren’t?



Mathematics of Deep Learning, Summer Term 2020

Week 1, Video 3

Empirical risk minimization and related algorithms

Philipp Harms Lars Niemann

University of Freiburg



Risk versus empirical risk

Risk: Recall that. . .

The objective in statistical learning theory is to minimize the risk

R(f) :=

∫
L(f(x), y)P (dx, dy)

over all f in the hypothesis class H0.

The problem is that the distribution P of the data is unknown.

Empirical risk:

As a substitute, define the empirical risk

Rn(f) :=
1

n

n∑
i=1

L(f(Xi), Yi) =

∫
L(f(x), y)Pn(dx, dy),

where Pn := 1
n

∑n
i=1 δ(Xi,Yi) is the empirical measure.



Algorithms

Empirical risk minimization (aka. supervised learning):

fn ∈ arg min
f∈H0

Rn(f).

Structural risk minimization:

fn ∈ arg min
k∈N
f∈Hk

Rn(f) + p(k, n),

for some increasing sequence (Hk)k∈N of hypothesis classes and a penalty
p(k, n) for the size or capacity of the class.

Regularization:
fn ∈ arg min

f∈H0

Rn(f) + ‖f‖2,

fn ∈ arg min
f∈H0

Rn(f) + ‖f‖2 = arg max
f∈H0

e−Rn(f)−‖f‖2 ,

for some suitable norm ‖ · ‖ (or some other form of penalty).



Algorithms (cont.)

Maximum likelihood:

fn ∈ arg max
f∈H0

e−Rn(f)p(f) = arg min
f∈H0

Rn(f)− log p(f),

where p : H0 → R+ is a probability density with respect to some reference
measure π on H0.

Posterior mean:

fn =
1

Zn

∫
H0

fe−Rn(f)p(f)π(df),

where Zn :=
∫
H0
e−Rn(f)p(f)π(df) is a normalizing factor.

Gibbs sampling:

fn ∼
1

Zn
e−Rnpπ.



Questions to Answer for Yourself / Discuss with Friends

Transfer (optimization): What algorithms could be used to solve the
empirical risk minimization problem?

Transfer (statistics): What do the law of large numbers and the
central limit theorem say about the convergence of Rn(f) to R(f) for
fixed f ∈ H0?



Mathematics of Deep Learning, Summer Term 2020

Week 1, Video 4

Error decompositions

Philipp Harms Lars Niemann

University of Freiburg



Error decompositions

Notation: E and E denote expectations w/r to P and P , respectively, and:

f∗ solves R(f∗) = inff : X→Y R(f),
f0 solves R(f0) = inff∈H0 R(f), and
fn is an H0-valued random variable.

Approximation and estimation error:

R(fn) = R(f∗)︸ ︷︷ ︸
statistical risk

+
(
R(f0)−R(f∗)

)︸ ︷︷ ︸
approximation error

+
(
R(fn)−R(f0)

)︸ ︷︷ ︸
estimation error

Empirical risk and generalization error:

R(fn) = Rn(fn)︸ ︷︷ ︸
empirical risk

+
(
R(fn)−Rn(fn)

)︸ ︷︷ ︸
generalization error

Bias and variance: for Y = R and L(y1, y2) = (y1 − y2)2,

E[R(fn)] = R(f∗)︸ ︷︷ ︸
statistical risk

+ E
[
E[fn(x)− f∗(x)]2︸ ︷︷ ︸

bias

+ Var[fn(x)]︸ ︷︷ ︸
variance

]



Proof of the bias-variance decomposition

Recall:

R(f∗) := inff : X→Y R(f).

Y = R, L(y1, y2) = (y1 − y2)2.

Mean-square optimality of the mean: f∗(x) = E[y|x].

Conditional risk of fn given (x, ω):

E[(fn(x)− y)2 | x] = Var[fn(x)− y | x] + E[fn(x)− y | x]2

= E[(f∗(x)− y)2 | x] + (fn(x)− f∗(x))2.

Expected risk of fn:

E[R(fn)] = R(f∗) + E
[
E[(fn(x)− f∗(x))2]

]
= R(f∗) + E

[
E[fn(x)− f∗(x)]2 + Var[fn(x)]

]
.



Questions to Answer for Yourself / Discuss with Friends

Repetition: Visualize the approximation, estimation, and
generalization error in a drawing.

Discussion: Can you guess which error terms increase or decrease with
respect to H0 and n?
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Error trade-offs

Decompositions versus trade-offs

A trade-off occurs when one term in an error decomposition increases
while another term decreases with respect to a parameter.

Trade-offs in the choice of hypothesis class?

In general, there is no trade-off in the above error decompositions
with respect to H0.

However, there may be trade-offs with respect to H0 in error bounds
(as opposed to the error itself).

Example: bias-variance decomposition

Conventional wisdom: The price to pay for achieving low bias is high
variance—a trade-off in the choice of H0. [Geman et al. 1992].

However, this is false in over-parameterized regimes, which are
common in modern machine learning applications (see next slide).



Example: bias-variance decomposition

Traditional view of the bias-variance trade-off (left) versus lack of any
trade-off in MNIST character recognition using sufficiently wide ReLu
networks (right).

Figure 5.1. On the left is an illustration of the common intuition for the bias-variance
tradeo� (Fortmann-Roe, 2012). We find that both bias and variance decrease when we
increase network width on MNIST (right) and other datasets (Section 5.4). These results
seem to contradict the traditional intuition of a strict tradeo�.

A number of di�erent research directions have spawned in response to these findings.
Neyshabur et al. (2015) hypothesize the existence of an implicit regularization mechanism.
Some study the role that optimization plays (Soudry et al., 2018; Gunasekar et al., 2018).
Others suggest new measures of capacity (Liang et al., 2017; Neyshabur et al., 2019). All
approaches focus on test error, rather than studying bias and variance directly (Neyshabur
et al., 2019; Geiger et al., 2019a; Liang et al., 2017; Belkin et al., 2019a).

Test error analysis does not give a definitive answer on the lack of a bias-variance tradeo�.
Consider boosting: it is known that its test error often decreases with the number of rounds
(Schapire & Singer, 1999, Figures 8-10). In spite of this monotonicity in test error, Bühlmann
& Yu (2003) show that variance grows at an exponentially decaying rate, calling this an
“exponential bias-variance tradeo�” (see Section 4.3). To study the bias-variance tradeo�,
one has to isolate and measure bias and variance individually. To the best of our knowledge,
there has not been published work reporting such measurements on neural networks since
Geman et al. (1992).

We go back to basics and study bias and variance. We start by taking a closer look at
Geman et al. (1992, Figure 16 and Figure 8 (top))’s experiments with neural networks. We
notice that their experiments do not support their claim that “bias falls and variance increases
with the number of hidden units.” The authors attribute this inconsistency to convergence
issues and maintain their claim that the bias-variance tradeo� is universal. Motivated by this
inconsistency, we perform a set of bias-variance experiments with modern neural networks.

We measure prediction bias and variance of fully connected neural networks. These
measurements allow us to reason directly about whether there exists a tradeo� with respect
to network width. We find evidence that both bias and variance can decrease at the same
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measurements allow us to reason directly about whether there exists a tradeo� with respect
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[Figures from Neal 2019]



Example: bias-variance decomposition (cont.)

Conjectured reconciliation: U-shaped risk curve in the underparameterized
regime and decreasing risk in the overparameterized regime [Belkin e.a.
2019]
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Figure 1: Curves for training risk (dashed line) and test risk (solid line). (a) The classical
U-shaped risk curve arising from the bias-variance trade-o�. (b) The double descent risk curve,
which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed
behavior from using high capacity function classes (i.e., the “modern” interpolating regime), sep-
arated by the interpolation threshold. The predictors to the right of the interpolation threshold
have zero training risk.

When function class capacity is below the “interpolation threshold”, learned predictors exhibit
the classical U-shaped curve from Figure 1(a). (In this paper, function class capacity is identified
with the number of parameters needed to specify a function within the class.) The bottom of the
U is achieved at the sweet spot which balances the fit to the training data and the susceptibility
to over-fitting: to the left of the sweet spot, predictors are under-fit, and immediately to the
right, predictors are over-fit. When we increase the function class capacity high enough (e.g.,
by increasing the number of features or the size of the neural network architecture), the learned
predictors achieve (near) perfect fits to the training data—i.e., interpolation. Although the learned
predictors obtained at the interpolation threshold typically have high risk, we show that increasing
the function class capacity beyond this point leads to decreasing risk, typically going below the risk
achieved at the sweet spot in the “classical” regime.

All of the learned predictors to the right of the interpolation threshold fit the training data
perfectly and have zero empirical risk. So why should some—in particular, those from richer
functions classes—have lower test risk than others? The answer is that the capacity of the function
class does not necessarily reflect how well the predictor matches the inductive bias appropriate for
the problem at hand. For the learning problems we consider (a range of real-world datasets as well
as synthetic data), the inductive bias that seems appropriate is the regularity or smoothness of
a function as measured by a certain function space norm. Choosing the smoothest function that
perfectly fits observed data is a form of Occam’s razor: the simplest explanation compatible with
the observations should be preferred (cf. [38, 6]). By considering larger function classes, which
contain more candidate predictors compatible with the data, we are able to find interpolating
functions that have smaller norm and are thus “simpler”. Thus increasing function class capacity
improves performance of classifiers.

Related ideas have been considered in the context of margins theory [38, 2, 35], where a larger
function class H may permit the discovery of a classifier with a larger margin. While the margins
theory can be used to study classification, it does not apply to regression, and also does not pre-
dict the second descent beyond the interpolation threshold. Recently, there has been an emerging
recognition that certain interpolating predictors (not based on ERM) can indeed be provably sta-
tistically optimal or near-optimal [3, 5], which is compatible with our empirical observations in the
interpolating regime.

In the remainder of this article, we discuss empirical evidence for the double descent curve, the
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Figure 4.4. Double descent curve, showing U-shaped risk curve in under-parameterized
regime and decreasing curve in over-parameterized regime (Belkin et al., 2019a).

regime; and there is a sharp transition from the under-parameterized regime to the over-
parameterized regime where the training error is 0. Belkin et al. (2019a) illustrate this in
Figure 4.4.

In previous work, Advani & Saxe (2017) observed this phenomenon in linear student-
teacher 1 networks and with nonlinear networks on MNIST. In concurrent (to Chapter 5)
work, Spigler et al. (2018); Geiger et al. (2019b); Belkin et al. (2019a) also studied this
phenomenon. Spigler et al. (2018); Geiger et al. (2019b) described the cusp in the double
descent curve as corresponding to a phase transition and draw the analogy to the “jamming
transition” in particle systems. Belkin et al. (2019a) conjectured that this phenomenon is
fairly general (as opposed to just being restricted to neural networks). Belkin et al. (2019a)
showed the phenomenon in random forests, in addition to neural networks, and coined the
term “double descent.” Nakkiran et al. (2019) recently showed that this double descent
phenomenon is present in many state-of-the-art architectures such as convolutional neural
networks, ResNets, and transformers, as opposed to only being present in more toy settings.
The double descent phenomenon in simple settings such as shallow linear models can be seen
in work that dates as far back as 1995 (Opper, 1995, 2001; Bös & Opper, 1997).

Our work in Chapter 5 is consistent with the double descent curve. Although we were
not looking for the cusp in the double descent curve (can require dense sampling of model
sizes and specific experimental details), we do seem to see it in several variance figures in
Chapter 5. All the works on the double descent curve examine the risk (or test error). In order
to test the bias-variance hypothesis, it is important to actually measures bias and variance
because test error and bias can decrease while variance still increases at an exponentially
decaying rate (Section 4.3).

1. “Teacher” here refers to the fact that the data is generated by a neural network.
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[Figure from Belkin e.a. 2019]



Questions to Answer for Yourself / Discuss with Friends

Discussion: Can you think of a reason (or an example) why the
variance might be decreasing in over-parameterized regimes?
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Bounding the approximation error

Notation:

f∗ solves R(f∗) = inff : X→Y R(f), and

f0 solves R(f0) = inff∈H0 R(f).

Approximation error: R(f0)−R(f∗)

Decreases when H0 increases.

Depends on how closely f∗ can be approximated by functions in H0.

Is the main focus of this lecture.

Bound for quadratic loss functions:

0 ≤ R(f0)−R(f∗) = E
[
(f0(x)− y)2 − (f∗(x)− y)2

]
= E

[
(f0(x) + f∗(x)− 2y)(f0(x)− f∗(x))

]
≤ E

[
|f0(x) + f∗(x)− 2y|

]
sup
x∈X

∣∣f0(x)− f∗(x)
∣∣.



Bounding the generalization error

Notation:

R(f) =
∫
L(f(x), y)P (dx, dy),

Rn(f) =
∫
L(f(x), y)Pn(dx, dy), and

fn is a random element of H0.

Generalization error: R(fn)−Rn(fn)

Is the difference between a mean and an empirical mean:

R(fn)−Rn(fn) =

∫
L(fn(x), y)(P − Pn)(dx, dy).

Is of order n−1/2 by the central limit theorem for fixed fn ≡ f .

Uniform generalization error: supf∈H0
|R(f)−Rn(f)|

Increases when H0 increases.

Is the main focus of statistical learning theory.



Bounding the estimation error

Notation:

R(f) =
∫
L(f(x), y)P (dx, dy),

Rn(f) =
∫
L(f(x), y)Pn(dx, dy), and

fn is a random element of H0.

Estimation error: R(fn)−R(f0)

Is bounded by twice the uniform generalization error if fn minimizes
the empirical risk:

· · · ≤ R(fn)−Rn(fn)︸ ︷︷ ︸
generalization error

+Rn(fn)−Rn(f0)︸ ︷︷ ︸
≤0

+Rn(f0)−R(f0)︸ ︷︷ ︸
generalization error

.



A glimpse into statistical learning theory

Höffding’s inequality: for any function g : X × Y → [a, b], one has the
Gaussian tail estimate

P
[
|Png − Pg| > ε

]
≤ 2 exp

(
− 2nε2

(b− a)2

)
, ε > 0.

Uniform risk bound: given H0 = {f1, . . . , fN}, assume that the losses
gi := L(fi(·), ·) take values in [a, b] and estimate

P
[

max
f∈H0

|Rnf −Rf | > ε

]
= P

[
max

i∈{1,...,N}
|Pngi − Pgi| > ε

]
≤

N∑
i=1

P
[
|Pngi − Pgi| > ε

]
≤ 2N exp

(
− 2nε2

(b− a)2

)
.



A glimpse into statistical learning theory

Expected risk: deduce convergence of order n−1/2 via

E
[

max
f∈H0

|Rnf −Rf |
]

=

∫ ∞
0

P
[

max
f∈H0

|Rnf −Rf | > ε

]
dε

≤ N(b− a)

√
π

2n
.

Note that the right-hand side depends on the size N of H0.

Extension to infinite sets H0: Approximate H0 by finite sets of indicator
functions; the error can be controlled by the Vapnik–Cervonenkis (VC)
dimension of H0 or other capacity measures.

Further topics: unbounded loss functions and capacity measures for
specific hypothesis classes such as indicator functions or neural networks.

Caveat: deep learning performs better than predicted by this theory—once
more, the unreasonable effectiveness of deep learning. . .



Questions to Answer for Yourself / Discuss with Friends

Discussion: Can you spot any points where the error analysis of
statistical learning theory might leave room for improvements?

Suggestion: Read up on Höffding’s inequality and related large
deviations results or concentration inequalities.
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Team

Philipp Harms: Lecturer, main contact for lectures
www.stochastik.uni-freiburg.de/professoren/harms/

philipp-harms

Jakob Stiefel: Teaching Assistant, main contact for exercises

Lars Niemann: Teaching Assistant
www.stochastik.uni-freiburg.de/mitarbeiter/niemann

www.stochastik.uni-freiburg.de/professoren/harms/philipp-harms
www.stochastik.uni-freiburg.de/professoren/harms/philipp-harms
www.stochastik.uni-freiburg.de/mitarbeiter/niemann


Web links

Lecture homepage for general information:
www.stochastik.uni-freiburg.de/lehre/ss-2020/

vorlesung-deep-learning-ss-2020

ILIAS for slides, videos, forum, and exercises: ilias.uni-freiburg.

de/goto.php?target=crs_1542865&client_id=unifreiburg

BigBlueButton: virtual meeting room vHarms with password
vHarms20206 at www.math.uni-freiburg.de/lehre/virtuelle_
veranstaltungen.html. Supported Browsers include Chrome and
Firefox on desktops and Chrome and Safari on mobiles.

HisInOne for administrative issues

www.stochastik.uni-freiburg.de/lehre/ss-2020/vorlesung-deep-learning-ss-2020
www.stochastik.uni-freiburg.de/lehre/ss-2020/vorlesung-deep-learning-ss-2020
ilias.uni-freiburg.de/goto.php?target=crs_1542865&client_id=unifreiburg
ilias.uni-freiburg.de/goto.php?target=crs_1542865&client_id=unifreiburg
www.math.uni-freiburg.de/lehre/virtuelle_veranstaltungen.html
www.math.uni-freiburg.de/lehre/virtuelle_veranstaltungen.html


Outlook on the lecture

Approximation theory for neural networks

- shallow/deep
- feed-forward/residual/recurrent

Using methods from

- functional analysis
- harmonic analysis
- differential geometry
- probability theory
- stochastic analysis

Further topics

- For example, generalization capability, auto-encoders, variational
auto-encoders, adversarial networks, etc.

- Depending on your interests and how we do time-wise



Relation to other deep learning courses in Freiburg

This course: mathematical aspects of deep learning

At the Mathematical Institute:

- Angelika Rohde’s seminar about the mathematical foundations of
statistical learning: www.stochastik.uni-freiburg.de/

professoren/rohde/teaching

- Next term: Thorsten Schmidt’s lecture on Machine Learning

At the Department of Computer Science: in the groups on

- Computer Vision
- Machine Learning
- Statistical Pattern Recognition
- Artificial Intelligence

www.stochastik.uni-freiburg.de/professoren/rohde/teaching
www.stochastik.uni-freiburg.de/professoren/rohde/teaching


Parts of the course

Short videos and slides:

- Available on ILIAS every Tuesday night

Live discussion and further reading:

- Wednesdays 14:15-14:45 via BigBlueButton

Forum:

- Available on ILIAS for questions of all kinds
- Please answer a question if you know the answer

Graded exercises:

- Mathematical and programming tasks
- Solutions to be uploaded to ILIAS every two weeks
- Collaboration in groups of two is allowed and encouraged.
- Groups cannot be changed during the term.



Requirements and exam

Requirements:

- Solid background in probability theory and functional analysis
- Basic knowledge in differential equations and stochastic analysis.
- Basic programming skills

Oral exam:

- 50% of exercise points required for participation
- Scope: content covered in the lecture, live discussions, and exercises
- Focus on conceptual understanding rather than learning by heart



Resources for Python

Python tutorials

- Official tutorial:
https://docs.python.org/3/tutorial/index.html

- For beginners: www.learnpython.org/

- For programmers:
http://stephensugden.com/crash_into_python/

- Many more: http://docs.python-guide.org/en/latest/intro/learning/

Python libraries:

- Numpy: http://wiki.scipy.org/Tentative_NumPy_Tutorial

- SciPy: http://docs.scipy.org/doc/scipy/reference/tutorial/

- Matplotlib: http://matplotlib.org/users/beginner.html

https://docs.python.org/3/tutorial/index.html
www.learnpython.org/
http://stephensugden.com/crash_into_python/
http://wiki.scipy.org/Tentative_NumPy_Tutorial
http://docs.scipy.org/doc/scipy/reference/tutorial/
http://matplotlib.org/users/beginner.html
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Summary by learning goals

Having heard this lecture, you can now . . .

Describe why deep learning is so popular

Formulate the basic principles of statistical learning theory

Understand deep learning in the context of statistical learning theory



Outlook on this week’s discussion and reading session

Discussion:

- Questions and feedback, in both directions
- Administrative and IT issues, if any

Reading: related original literature

- Sejnowski (2020): The unreasonable effectiveness of deep learning in
artificial intelligence

- Donoho (2000): High-Dimensional Data Analysis—the Curses and
Blessings of Dimensionality

- Vapnik (1999): An overview of statistical learning theory

Preparation:

- Watch the videos of the week
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