Mathematics of Deep Learning, Summer Term 2020
Week 1

Deep Learning as Statistical Learning

Philipp Harms  Lars Niemann

University of Freiburg

UNI
|

FREIBURG



Overview of Week 1
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@ Error decompositions

© Error trade-offs

@ Error bounds
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Deep Learning in the News
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Deep Learning Revolutionized Computer Vision

@ Excellent empirical results

Object recognition
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Deep Learning Revolutionized Speech Recognition

@ Excellent empirical results

Speech recognition
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Deep Learning Goes Great with Reinforcement Learning

@ Excellent empirical results obtained by deep reinforcement learning

- Superhuman performance in
playing Atari games
[Mnih et al, Nature 2015]

- Beating the world's best Go player
[Silver et al, Nature 2016]




(Deep) Learning as A Different Way of Programming

@ We don't understand how the human brain solves certain problems
- Face recognition
- Playing Atari games

Speech recognition

- Picking the next move in the game of Go

@ We can nevertheless learn these tasks from data/experience

o If the task changes, we simply re-train



Deep Learning Allows Many Branches of Al to Converge

@ Deep learning is now the principle approach in many different
branches of Al:
- Computer vision
- Speech recognition
- Natural language processing
- (Robotics)

@ The same general techniques apply in all of these fields

- Amazing potential for cross-fertilization
- Fields that drifted apart for decades have largely converged again

- E.g., in Freiburg:
o close collaboration & joint reading group between machine learning,
computer vision, robotics, neurorobotics, and robot learning



Further Reasons for the Popularity of Deep Learning

@ Very quick to get good results for some problems

- Deep learning can handle raw data (images, speech, text, etc)
- Very well-engineered libraries handle the complex underpinnings
(Tensorflow, Pytorch, ...)

- Very little machine learning knowledge is required to get started
@ Misconception: “it works like the brain”

@ Neural networks are very flexible models — this is the main content of
the lecture



Understanding deep learning

@ Neural networks are excellent function approximators
- They are dense in many function spaces; this is often called the
universal approximation property [Cybenko, Hornik|
- Approximation rates are known for many shallow and deep network
architectures

@ However, this only partially explains their success
- Generalization capability is needed in addition to approximation
capability
- Deep learning performs better than the theory predicts; this is the
oft-quoted unreasonable effectiveness of deep learning in artificial
intelligence [Sejnowski]

@ Many interesting mathematical questions remain

- Mathematicians are ideally prepared for appreciating the abstract issues
involved in high-dimensional data analysis [Donoho]



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: Why is deep learning so popular?

@ Discussion:
What might a mathematical theory of deep learning look like?

@ Relation to your interests:
What would you like to learn from this lecture?
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Learning or, more precisely, inductive inference:
@ Observe a phenomenon
@ Construct a model of that phenomenon

@ Make predictions using this model

Goals of learning theory and machine learning:
@ Machine learning: automize inference

@ Statistical learning theory: formalize inference

Nothing is more practical than a good theory. [Vapnik, Statistical
Learning Theory 1998]

Main assumption of statistical learning theory:
@ Test and training data are iid.

@ This distinguishes it from time series analysis (not independent) and
transfer learning (not the same distribution).



Formalization

@ Input and output spaces: measurable spaces X’ and ).

@ Loss function: a measurable function L: Y x Y — R.

@ Hypothesis class (aka. model class): a set Hy of measurable functions
f: X =)

@ Observations: independent random variables (X1, Y1), ..., (X5, Yy),

defined on a probability space (€2, F,P), distributed according to a
probability measure P on X x ).

@ Objective: Find a function f € Hp with low or minimal risk (aka. test
or generalization risk)

R(f) = / L(f (), y)P(dz, dy)

in the situation where P is unknown and the only information is
contained in the observations.



Applications:

@ Regression: Y =R and L(y1,2) = (y1 — o).

o Classification: V) = {0, 1} and L(y1,y2) = Ly, £y.}-
Useful hypothesis classes:

e Linear functions, polynomials, C* functions, splines, or, as in deep
learning, multilayer perceptrons.

Main challenge:

@ The distribution P of the data and consequently also the risk
functional R, which is to be minimized, are unknown.

@ Otherwise this would be a standard optimization problem.



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: Describe the setup and goal of statistical learning theory.

@ Discussion: Which aspects of machine learning are well-described by
statistical learning theory? Which aren’t?
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Risk versus empirical risk

Risk: Recall that. ..

@ The objective in statistical learning theory is to minimize the risk

R(P)i= [ L(f(@).0)Plds,dy)
over all f in the hypothesis class Hy.
@ The problem is that the distribution P of the data is unknown.

Empirical risk:

@ As a substitute, define the empirical risk

Ru(f) = S LU Y = [ (@), )P, dy),

where P, := 157 d(x,,v;) is the empirical measure.



Algorithms

Empirical risk minimization (aka. supervised learning):

fn € argmin R, (f).
f€H

Structural risk minimization:

fn € argmin Ry (f) + p(k, n),
keN
feHy
for some increasing sequence (Hy)ken of hypothesis classes and a penalty
p(k,n) for the size or capacity of the class.

Regularization:
fn € argmin Ry (f) + || f]%,

fe€Ho

fn € argmin R, (f) + || f||> = arg maxe_R"(f)_Hf||2,
fEHO fEHo

for some suitable norm || - || (or some other form of penalty).



Algorithms (cont.)

Maximum likelihood:

fn € argmaxe_R"(f)p(f) = argmin R, (f) — log p(f),
feHO fEHo

where p: Hy — R is a probability density with respect to some reference
measure ™ on Hj.

Posterior mean: 1

fo=7- | Fe B p(f)n(ah),
n 0
where Z,, := fHo e BN p(f)m(df) is a normalizing factor.
Gibbs sampling:
Jn ~ ieiRnpﬂ'-



Questions to Answer for Yourself / Discuss with Friends

e Transfer (optimization): What algorithms could be used to solve the
empirical risk minimization problem?

o Transfer (statistics): What do the law of large numbers and the
central limit theorem say about the convergence of R, (f) to R(f) for
fixed f € Hy?
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Error decompositions

Notation: E and E denote expectations w/r to [P and P, respectively, and:
o f* solves R(f*) =inf;. x5y R(f),
o fo solves R(fo) = inftcm, R(f), and
e f, is an Hy-valued random variable.

Approximation and estimation error:
R(fa) = R(f") +(R(fo) = R(f*)) + (R(fn) — R(f0))
N——

~
statistical risk approximation error estimation error

Empirical risk and generalization error:

——

J/

empirical risk generalization error
Bias and variance: for Y = R and L(y1,2) = (y1 — y2)?,
E[R(f)] = R(Y) +B|Elfa(@) = @) + Varlfu(2)] |

——
statistical risk bias variance




Proof of the bias-variance decomposition

Recall:
o R(f*) = inff: X—=)Y R(f)
o V=R, L(y1,y2) = (y1 — 12)*.

Mean-square optimality of the mean: f*(z) = E|y|z].

Conditional risk of f,, given (z,w):

E(fa(x) = y)* | 2] = Var(fa(z) —y | 2] + Efa() —y | 2]’
= B[(f*(z) = y)* | 2] + (fu(z) — f*(2))*.

Expected risk of fi,:

E[R(fn)] = R(f*) + E[E[(fa(z) = f*(2))?]]



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: Visualize the approximation, estimation, and
generalization error in a drawing.

@ Discussion: Can you guess which error terms increase or decrease with
respect to Hy and n?
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Error trade-offs

Decompositions versus trade-offs

@ A trade-off occurs when one term in an error decomposition increases
while another term decreases with respect to a parameter.

Trade-offs in the choice of hypothesis class?

@ In general, there is no trade-off in the above error decompositions
with respect to Hy.

@ However, there may be trade-offs with respect to Hy in error bounds
(as opposed to the error itself).

Example: bias-variance decomposition

@ Conventional wisdom: The price to pay for achieving low bias is high
variance—a trade-off in the choice of Hy. [Geman et al. 1992].

@ However, this is false in over-parameterized regimes, which are
common in modern machine learning applications (see next slide).



Example: bias-variance decomposition

Traditional view of the bias-variance trade-off (left) versus lack of any
trade-off in MNIST character recognition using sufficiently wide RelLu
networks (right).
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Example: bias-variance decomposition (cont.)

Conjectured reconciliation: U-shaped risk curve in the underparameterized

regime and decreasing risk in the overparameterized regime [Belkin e.a.
2019]

under-parameterized

Test risk
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- Training risk

. _interpolation threshold
= “~

Capacity of H

[Figure from Belkin e.a. 2019]



Questions to Answer for Yourself / Discuss with Friends

@ Discussion: Can you think of a reason (or an example) why the
variance might be decreasing in over-parameterized regimes?
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Bounding the approximation error

Notation:
o f* solves R(f*) =inf;. x,y R(f), and
o fo solves R(fy) = infrcn, R(f).

Approximation error: R(fo) — R(f*)
@ Decreases when Hj increases.
@ Depends on how closely f* can be approximated by functions in Hy.

@ Is the main focus of this lecture.

Bound for quadratic loss functions:

0 < R(fo) = R(f*) = E[(folx) —y)* = (f*(x) = y)?]
= E[(fo(z) + f*(z) = 2y)(fo(z) — f*(x))]
< E[|fo(z) + f*(z) — 2y|] s sup | fo(x) = f*(2)]-



Bounding the generalization error

Notation:

fL (dw dy),
fL P,(dz,dy), and
° fn is a random eIement of Hy.

Generalization error: R(fn) — Ru(fn)

@ Is the difference between a mean and an empirical mean:

R(fa) — Ru(fy) = / L(fu(),)(P — Py)(de, dy).

o Is of order n1/2 by the central limit theorem for fixed f, = f.

Uniform generalization error: sup ¢ g, [R(f) — Ru(f)|
@ Increases when H increases.

@ Is the main focus of statistical learning theory.



Bounding the estimation error

Notation:

f L(f (dm dy),
fL P,(dz,dy), and
° fn is a random eIement of Hj.

Estimation error: R(f,) — R(fo)

@ |Is bounded by twice the uniform generalization error if f,, minimizes
the empirical risk:

- < R(fn) - Rn(fn) +Rn(fn) - Rn(fO)/‘i‘Rn(fO) - R(fO)-

v v
generalization error <0 generalization error




A glimpse into statistical learning theory

Hoffding's inequality: for any function g: X x ) — [a, b], one has the
Gaussian tail estimate

2ne?
IP’[|Png—Pg| >e} < 2exp <_(b—a)2)’ e > 0.
Uniform risk bound: given Hy = {f1,..., fn}, assume that the losses

gi = L(fi(+),) take values in [a,b] and estimate

P ax |R,f — Rf| > =P a P,g; — Pg;| >
L{réhgél [ — Rf| 6] Le{TXN}' g gil e]

20ty

N
2ne?
=1



A glimpse into statistical learning theory

Expected risk: deduce convergence of order n~1/2 via

E R.f—Rfl|=] P R.f — Rf| > €| d
L{gg};l f fl] /0 Lr}g;gl f— Rf| 6} €

< N(b_a)\/;

Note that the right-hand side depends on the size NV of Hy.

Extension to infinite sets Hy: Approximate Hj by finite sets of indicator
functions; the error can be controlled by the Vapnik—Cervonenkis (VC)
dimension of Hy or other capacity measures.

Further topics: unbounded loss functions and capacity measures for
specific hypothesis classes such as indicator functions or neural networks.

Caveat: deep learning performs better than predicted by this theory—once
more, the unreasonable effectiveness of deep learning. ..



Questions to Answer for Yourself / Discuss with Friends

@ Discussion: Can you spot any points where the error analysis of
statistical learning theory might leave room for improvements?

@ Suggestion: Read up on Hoffding's inequality and related large
deviations results or concentration inequalities.
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Team

@ Philipp Harms: Lecturer, main contact for lectures
www.stochastik.uni-freiburg.de/professoren/harms/

philipp-harms
@ Jakob Stiefel: Teaching Assistant, main contact for exercises

@ Lars Niemann: Teaching Assistant
www.stochastik.uni-freiburg.de/mitarbeiter/niemann


www.stochastik.uni-freiburg.de/professoren/harms/philipp-harms
www.stochastik.uni-freiburg.de/professoren/harms/philipp-harms
www.stochastik.uni-freiburg.de/mitarbeiter/niemann

Web links

@ Lecture homepage for general information:
www.stochastik.uni-freiburg.de/lehre/ss-2020/
vorlesung-deep-learning-ss-2020

@ ILIAS for slides, videos, forum, and exercises: ilias.uni-freiburg.
de/goto.php?target=crs_1542865&client_id=unifreiburg

o BigBlueButton: virtual meeting room vHarms with password
vHarms20206 at www.math.uni-freiburg.de/lehre/virtuelle
veranstaltungen.html. Supported Browsers include Chrome and
Firefox on desktops and Chrome and Safari on mobiles.

@ HislnOne for administrative issues


www.stochastik.uni-freiburg.de/lehre/ss-2020/vorlesung-deep-learning-ss-2020
www.stochastik.uni-freiburg.de/lehre/ss-2020/vorlesung-deep-learning-ss-2020
ilias.uni-freiburg.de/goto.php?target=crs_1542865&client_id=unifreiburg
ilias.uni-freiburg.de/goto.php?target=crs_1542865&client_id=unifreiburg
www.math.uni-freiburg.de/lehre/virtuelle_veranstaltungen.html
www.math.uni-freiburg.de/lehre/virtuelle_veranstaltungen.html

Outlook on the lecture

@ Approximation theory for neural networks

- shallow/deep
- feed-forward/residual /recurrent

@ Using methods from

- functional analysis
- harmonic analysis
differential geometry
- probability theory
- stochastic analysis

@ Further topics

- For example, generalization capability, auto-encoders, variational
auto-encoders, adversarial networks, etc.
- Depending on your interests and how we do time-wise



Relation to other deep learning courses in Freiburg

@ This course: mathematical aspects of deep learning

o At the Mathematical Institute:

- Angelika Rohde’s seminar about the mathematical foundations of
statistical learning: www.stochastik.uni-freiburg.de/
professoren/rohde/teaching

- Next term: Thorsten Schmidt's lecture on Machine Learning

@ At the Department of Computer Science: in the groups on

Computer Vision

- Machine Learning

Statistical Pattern Recognition
- Artificial Intelligence


www.stochastik.uni-freiburg.de/professoren/rohde/teaching
www.stochastik.uni-freiburg.de/professoren/rohde/teaching

Parts of the course

Short videos and slides:
- Available on ILIAS every Tuesday night

@ Live discussion and further reading:
- Wednesdays 14:15-14:45 via BigBlueButton

e Forum:

- Available on ILIAS for questions of all kinds
- Please answer a question if you know the answer

o Graded exercises:

- Mathematical and programming tasks

- Solutions to be uploaded to ILIAS every two weeks
Collaboration in groups of two is allowed and encouraged.
- Groups cannot be changed during the term.



Requirements and exam

@ Requirements:
- Solid background in probability theory and functional analysis
- Basic knowledge in differential equations and stochastic analysis.
- Basic programming skills

@ Oral exam:
- 50% of exercise points required for participation
- Scope: content covered in the lecture, live discussions, and exercises
- Focus on conceptual understanding rather than learning by heart



Resources for Python

@ Python tutorials
- Official tutorial:
https://docs.python.org/3/tutorial/index.html
- For beginners: www.learnpython.org/
- For programmers:
http://stephensugden.com/crash_into_python/
- Many more: http://docs.python-guide.org/en/latest/intro/learning/

@ Python libraries:

- Numpy: http://wiki.scipy.org/Tentative_NumPy_Tutorial
- SciPy: http://docs.scipy.org/doc/scipy/reference/tutorial/
- Matplotlib: http://matplotlib.org/users/beginner.html


https://docs.python.org/3/tutorial/index.html
www.learnpython.org/
http://stephensugden.com/crash_into_python/
http://wiki.scipy.org/Tentative_NumPy_Tutorial
http://docs.scipy.org/doc/scipy/reference/tutorial/
http://matplotlib.org/users/beginner.html

Mathematics of Deep Learning, Summer Term 2020
Week 1, Video 8

Wrapup

Philipp Harms  Lars Niemann

University of Freiburg

UNI
|

FREIBURG



Summary by learning goals

Having heard this lecture, you can now ...
@ Describe why deep learning is so popular
@ Formulate the basic principles of statistical learning theory

@ Understand deep learning in the context of statistical learning theory



Outlook on this week's discussion and reading session

@ Discussion:
- Questions and feedback, in both directions
- Administrative and IT issues, if any

@ Reading: related original literature
- Sejnowski (2020): The unreasonable effectiveness of deep learning in
artificial intelligence
- Donoho (2000): High-Dimensional Data Analysis—the Curses and
Blessings of Dimensionality
- Vapnik (1999): An overview of statistical learning theory

@ Preparation:
- Watch the videos of the week
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