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Deep Learning in the News



Deep Learning Revolutionized Computer Vision

Excellent empirical results

ILSVRC: ImageNet Large-Scale Visual Recognition Challenge



Deep Learning Revolutionized Speech Recognition

Excellent empirical results



Deep Learning Goes Great with Reinforcement Learning

Excellent empirical results obtained by deep reinforcement learning

- Superhuman performance in
playing Atari games
[Mnih et al, Nature 2015]

- Beating the world’s best Go player
[Silver et al, Nature 2016]



(Deep) Learning as A Di↵erent Way of Programming

We don’t understand how the human brain solves certain problems
- Face recognition
- Playing Atari games
- Speech recognition
- Picking the next move in the game of Go

We can nevertheless learn these tasks from data/experience

If the task changes, we simply re-train



Deep Learning Allows Many Branches of AI to Converge

Deep learning is now the principle approach in many di↵erent
branches of AI:

- Computer vision
- Speech recognition
- Natural language processing
- (Robotics)

The same general techniques apply in all of these fields
- Amazing potential for cross-fertilization
- Fields that drifted apart for decades have largely converged again

- E.g., in Freiburg:
close collaboration & joint reading group between machine learning,
computer vision, robotics, neurorobotics, and robot learning



Further Reasons for the Popularity of Deep Learning

Very quick to get good results for some problems
- Deep learning can handle raw data (images, speech, text, etc)
- Very well-engineered libraries handle the complex underpinnings
(Tensorflow, Pytorch, . . . )

- Very little machine learning knowledge is required to get started

Misconception: “it works like the brain”

Neural networks are very flexible models – this is the main content of
the lecture



Understanding deep learning

Neural networks are excellent function approximators
- They are dense in many function spaces; this is often called the
universal approximation property [Cybenko, Hornik]

- Approximation rates are known for many shallow and deep network
architectures

However, this only partially explains their success
- Generalization capability is needed in addition to approximation
capability

- Deep learning performs better than the theory predicts; this is the
oft-quoted unreasonable e↵ectiveness of deep learning in artificial
intelligence [Sejnowski]

Many interesting mathematical questions remain
- Mathematicians are ideally prepared for appreciating the abstract issues
involved in high-dimensional data analysis [Donoho]



Questions to Answer for Yourself / Discuss with Friends

Repetition: Why is deep learning so popular?

Discussion:
What might a mathematical theory of deep learning look like?

Relation to your interests:
What would you like to learn from this lecture?
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Learning

Learning or, more precisely, inductive inference:

Observe a phenomenon

Construct a model of that phenomenon

Make predictions using this model

Goals of learning theory and machine learning:

Machine learning: automize inference

Statistical learning theory: formalize inference

Nothing is more practical than a good theory. [Vapnik, Statistical
Learning Theory 1998]

Main assumption of statistical learning theory:

Test and training data are iid.

This distinguishes it from time series analysis (not independent) and
transfer learning (not the same distribution).



Formalization

Input and output spaces: measurable spaces X and Y.

Loss function: a measurable function L : Y ⇥ Y ! R.
Hypothesis class (aka. model class): a set H0 of measurable functions
f : X ! Y.

Observations: independent random variables (X1, Y1), . . . , (Xn, Yn),
defined on a probability space (⌦,F ,P), distributed according to a
probability measure P on X ⇥ Y.

Objective: Find a function f 2 H0 with low or minimal risk (aka. test
or generalization risk)

R(f) :=

Z
L(f(x), y)P (dx, dy)

in the situation where P is unknown and the only information is
contained in the observations.



Remarks

Applications:

Regression: Y = R and L(y1, y2) = (y1 � y2)2.

Classification: Y = {0, 1} and L(y1, y2) = {y1 6=y2}.

Useful hypothesis classes:

Linear functions, polynomials, Ck functions, splines, or, as in deep
learning, multilayer perceptrons.

Main challenge:

The distribution P of the data and consequently also the risk
functional R, which is to be minimized, are unknown.

Otherwise this would be a standard optimization problem.



Questions to Answer for Yourself / Discuss with Friends

Repetition: Describe the setup and goal of statistical learning theory.

Discussion: Which aspects of machine learning are well-described by
statistical learning theory? Which aren’t?
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Risk versus empirical risk

Risk: Recall that. . .

The objective in statistical learning theory is to minimize the risk

R(f) :=

Z
L(f(x), y)P (dx, dy)

over all f in the hypothesis class H0.

The problem is that the distribution P of the data is unknown.

Empirical risk:

As a substitute, define the empirical risk

Rn(f) :=
1

n

nX

i=1

L(f(Xi), Yi) =

Z
L(f(x), y)Pn(dx, dy),

where Pn := 1
n

P
n

i=1 �(Xi,Yi) is the empirical measure.



Algorithms

Empirical risk minimization (aka. supervised learning):

fn 2 arg min
f2H0

Rn(f).

Structural risk minimization:

fn 2 arg min
k2N
f2Hk

Rn(f) + p(k, n),

for some increasing sequence (Hk)k2N of hypothesis classes and a penalty
p(k, n) for the size or capacity of the class.

Regularization:
fn 2 arg min

f2H0

Rn(f) + kfk2
,

fn 2 arg min
f2H0

Rn(f) + kfk2 = arg max
f2H0

e
�Rn(f)�kfk2

,

for some suitable norm k · k (or some other form of penalty).



Algorithms (cont.)

Maximum likelihood:

fn 2 arg max
f2H0

e
�Rn(f)

p(f) = arg min
f2H0

Rn(f) � log p(f),

where p : H0 ! R+ is a probability density with respect to some reference
measure ⇡ on H0.

Posterior mean:

fn =
1

Zn

Z

H0

fe
�Rn(f)

p(f)⇡(df),

where Zn :=
R
H0

e
�Rn(f)

p(f)⇡(df) is a normalizing factor.

Gibbs sampling:

fn ⇠ 1

Zn

e
�Rnp⇡.



Questions to Answer for Yourself / Discuss with Friends

Transfer (optimization): What algorithms could be used to solve the
empirical risk minimization problem?

Transfer (statistics): What do the law of large numbers and the
central limit theorem say about the convergence of Rn(f) to R(f) for
fixed f 2 H0?
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Error decompositions

Notation: E and E denote expectations w/r to P and P , respectively, and:
f

⇤ solves R(f⇤) = inff : X!Y R(f),
f0 solves R(f0) = inff2H0 R(f), and
fn is an H0-valued random variable.

Approximation and estimation error:

R(fn) = R(f⇤)
| {z }

statistical risk

+
�
R(f0) � R(f⇤)

�
| {z }
approximation error

+
�
R(fn) � R(f0)

�
| {z }

estimation error

Empirical risk and generalization error:

R(fn) = Rn(fn)
| {z }
empirical risk

+
�
R(fn) � Rn(fn)

�
| {z }

generalization error

Bias and variance: for Y = R and L(y1, y2) = (y1 � y2)2,

E[R(fn)] = R(f⇤)
| {z }

statistical risk

+ E

h
E[fn(x) � f

⇤(x)]2
| {z }

bias

+ Var[fn(x)]
| {z }

variance

i



Proof of the bias-variance decomposition

Recall:

R(f⇤) := inff : X!Y R(f).

Y = R, L(y1, y2) = (y1 � y2)2.

Mean-square optimality of the mean: f⇤(x) = E[y|x].

Conditional risk of fn given (x,!):

E[(fn(x) � y)2 | x] = Var[fn(x) � y | x] + E[fn(x) � y | x]2

= E[(f⇤(x) � y)2 | x] + (fn(x) � f
⇤(x))2.

Expected risk of fn:

E[R(fn)] = R(f⇤) + E
⇥
E[(fn(x) � f

⇤(x))2]
⇤

= R(f⇤) + E
⇥
E[fn(x) � f

⇤(x)]2 + Var[fn(x)]
⇤
.



Questions to Answer for Yourself / Discuss with Friends

Repetition: Visualize the approximation, estimation, and
generalization error in a drawing.

Discussion: Can you guess which error terms increase or decrease with
respect to H0 and n?
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Error trade-o↵s

Decompositions versus trade-o↵s

A trade-o↵ occurs when one term in an error decomposition increases
while another term decreases with respect to a parameter.

Trade-o↵s in the choice of hypothesis class?

In general, there is no trade-o↵ in the above error decompositions
with respect to H0.

However, there may be trade-o↵s with respect to H0 in error bounds
(as opposed to the error itself).

Example: bias-variance decomposition

Conventional wisdom: The price to pay for achieving low bias is high
variance—a trade-o↵ in the choice of H0. [Geman et al. 1992].

However, this is false in over-parameterized regimes, which are
common in modern machine learning applications (see next slide).



Example: bias-variance decomposition

Traditional view of the bias-variance trade-o↵ (left) versus lack of any
trade-o↵ in MNIST character recognition using su�ciently wide ReLu
networks (right).

Figure 5.1. On the left is an illustration of the common intuition for the bias-variance
tradeo� (Fortmann-Roe, 2012). We find that both bias and variance decrease when we
increase network width on MNIST (right) and other datasets (Section 5.4). These results
seem to contradict the traditional intuition of a strict tradeo�.

A number of di�erent research directions have spawned in response to these findings.
Neyshabur et al. (2015) hypothesize the existence of an implicit regularization mechanism.
Some study the role that optimization plays (Soudry et al., 2018; Gunasekar et al., 2018).
Others suggest new measures of capacity (Liang et al., 2017; Neyshabur et al., 2019). All
approaches focus on test error, rather than studying bias and variance directly (Neyshabur
et al., 2019; Geiger et al., 2019a; Liang et al., 2017; Belkin et al., 2019a).

Test error analysis does not give a definitive answer on the lack of a bias-variance tradeo�.
Consider boosting: it is known that its test error often decreases with the number of rounds
(Schapire & Singer, 1999, Figures 8-10). In spite of this monotonicity in test error, Bühlmann
& Yu (2003) show that variance grows at an exponentially decaying rate, calling this an
“exponential bias-variance tradeo�” (see Section 4.3). To study the bias-variance tradeo�,
one has to isolate and measure bias and variance individually. To the best of our knowledge,
there has not been published work reporting such measurements on neural networks since
Geman et al. (1992).

We go back to basics and study bias and variance. We start by taking a closer look at
Geman et al. (1992, Figure 16 and Figure 8 (top))’s experiments with neural networks. We
notice that their experiments do not support their claim that “bias falls and variance increases
with the number of hidden units.” The authors attribute this inconsistency to convergence
issues and maintain their claim that the bias-variance tradeo� is universal. Motivated by this
inconsistency, we perform a set of bias-variance experiments with modern neural networks.

We measure prediction bias and variance of fully connected neural networks. These
measurements allow us to reason directly about whether there exists a tradeo� with respect
to network width. We find evidence that both bias and variance can decrease at the same
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Geman et al. (1992, Figure 16 and Figure 8 (top))’s experiments with neural networks. We
notice that their experiments do not support their claim that “bias falls and variance increases
with the number of hidden units.” The authors attribute this inconsistency to convergence
issues and maintain their claim that the bias-variance tradeo� is universal. Motivated by this
inconsistency, we perform a set of bias-variance experiments with modern neural networks.

We measure prediction bias and variance of fully connected neural networks. These
measurements allow us to reason directly about whether there exists a tradeo� with respect
to network width. We find evidence that both bias and variance can decrease at the same
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[Figures from Neal 2019]



Example: bias-variance decomposition (cont.)

Conjectured reconciliation: U-shaped risk curve in the underparameterized
regime and decreasing risk in the overparameterized regime [Belkin e.a.
2019]

R
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under-fitting over-fitting

R
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“modern”
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(a) (b)

Figure 1: Curves for training risk (dashed line) and test risk (solid line). (a) The classical
U-shaped risk curve arising from the bias-variance trade-o�. (b) The double descent risk curve,
which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed
behavior from using high capacity function classes (i.e., the “modern” interpolating regime), sep-
arated by the interpolation threshold. The predictors to the right of the interpolation threshold
have zero training risk.

When function class capacity is below the “interpolation threshold”, learned predictors exhibit
the classical U-shaped curve from Figure 1(a). (In this paper, function class capacity is identified
with the number of parameters needed to specify a function within the class.) The bottom of the
U is achieved at the sweet spot which balances the fit to the training data and the susceptibility
to over-fitting: to the left of the sweet spot, predictors are under-fit, and immediately to the
right, predictors are over-fit. When we increase the function class capacity high enough (e.g.,
by increasing the number of features or the size of the neural network architecture), the learned
predictors achieve (near) perfect fits to the training data—i.e., interpolation. Although the learned
predictors obtained at the interpolation threshold typically have high risk, we show that increasing
the function class capacity beyond this point leads to decreasing risk, typically going below the risk
achieved at the sweet spot in the “classical” regime.

All of the learned predictors to the right of the interpolation threshold fit the training data
perfectly and have zero empirical risk. So why should some—in particular, those from richer
functions classes—have lower test risk than others? The answer is that the capacity of the function
class does not necessarily reflect how well the predictor matches the inductive bias appropriate for
the problem at hand. For the learning problems we consider (a range of real-world datasets as well
as synthetic data), the inductive bias that seems appropriate is the regularity or smoothness of
a function as measured by a certain function space norm. Choosing the smoothest function that
perfectly fits observed data is a form of Occam’s razor: the simplest explanation compatible with
the observations should be preferred (cf. [38, 6]). By considering larger function classes, which
contain more candidate predictors compatible with the data, we are able to find interpolating
functions that have smaller norm and are thus “simpler”. Thus increasing function class capacity
improves performance of classifiers.

Related ideas have been considered in the context of margins theory [38, 2, 35], where a larger
function class H may permit the discovery of a classifier with a larger margin. While the margins
theory can be used to study classification, it does not apply to regression, and also does not pre-
dict the second descent beyond the interpolation threshold. Recently, there has been an emerging
recognition that certain interpolating predictors (not based on ERM) can indeed be provably sta-
tistically optimal or near-optimal [3, 5], which is compatible with our empirical observations in the
interpolating regime.

In the remainder of this article, we discuss empirical evidence for the double descent curve, the

3

Figure 4.4. Double descent curve, showing U-shaped risk curve in under-parameterized
regime and decreasing curve in over-parameterized regime (Belkin et al., 2019a).

regime; and there is a sharp transition from the under-parameterized regime to the over-
parameterized regime where the training error is 0. Belkin et al. (2019a) illustrate this in
Figure 4.4.

In previous work, Advani & Saxe (2017) observed this phenomenon in linear student-
teacher 1 networks and with nonlinear networks on MNIST. In concurrent (to Chapter 5)
work, Spigler et al. (2018); Geiger et al. (2019b); Belkin et al. (2019a) also studied this
phenomenon. Spigler et al. (2018); Geiger et al. (2019b) described the cusp in the double
descent curve as corresponding to a phase transition and draw the analogy to the “jamming
transition” in particle systems. Belkin et al. (2019a) conjectured that this phenomenon is
fairly general (as opposed to just being restricted to neural networks). Belkin et al. (2019a)
showed the phenomenon in random forests, in addition to neural networks, and coined the
term “double descent.” Nakkiran et al. (2019) recently showed that this double descent
phenomenon is present in many state-of-the-art architectures such as convolutional neural
networks, ResNets, and transformers, as opposed to only being present in more toy settings.
The double descent phenomenon in simple settings such as shallow linear models can be seen
in work that dates as far back as 1995 (Opper, 1995, 2001; Bös & Opper, 1997).

Our work in Chapter 5 is consistent with the double descent curve. Although we were
not looking for the cusp in the double descent curve (can require dense sampling of model
sizes and specific experimental details), we do seem to see it in several variance figures in
Chapter 5. All the works on the double descent curve examine the risk (or test error). In order
to test the bias-variance hypothesis, it is important to actually measures bias and variance
because test error and bias can decrease while variance still increases at an exponentially
decaying rate (Section 4.3).

1. “Teacher” here refers to the fact that the data is generated by a neural network.

18

[Figure from Belkin e.a. 2019]



Questions to Answer for Yourself / Discuss with Friends

Discussion: Can you think of a reason (or an example) why the
variance might be decreasing in over-parameterized regimes?
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Bounding the approximation error

Notation:

f
⇤ solves R(f⇤) = inff : X!Y R(f), and

f0 solves R(f0) = inff2H0 R(f).

Approximation error: R(f0) � R(f⇤)

Decreases when H0 increases.

Depends on how closely f
⇤ can be approximated by functions in H0.

Is the main focus of this lecture.

Bound for quadratic loss functions:

0  R(f0) � R(f⇤) = E
⇥
(f0(x) � y)2 � (f⇤(x) � y)2

⇤

= E
⇥
(f0(x) + f

⇤(x) � 2y)(f0(x) � f
⇤(x))

⇤

 E
⇥
|f0(x) + f

⇤(x) � 2y|
⇤
sup
x2X

��f0(x) � f
⇤(x)

��.



Bounding the generalization error

Notation:

R(f) =
R
L(f(x), y)P (dx, dy),

Rn(f) =
R
L(f(x), y)Pn(dx, dy), and

fn is a random element of H0.

Generalization error: R(fn) � Rn(fn)

Is the di↵erence between a mean and an empirical mean:

R(fn) � Rn(fn) =

Z
L(fn(x), y)(P � Pn)(dx, dy).

Is of order n�1/2 by the central limit theorem for fixed fn ⌘ f .

Uniform generalization error: supf2H0
|R(f) � Rn(f)|

Increases when H0 increases.

Is the main focus of statistical learning theory.



Bounding the estimation error

Notation:

R(f) =
R
L(f(x), y)P (dx, dy),

Rn(f) =
R
L(f(x), y)Pn(dx, dy), and

fn is a random element of H0.

Estimation error: R(fn) � R(f0)

Is bounded by twice the uniform generalization error if fn minimizes
the empirical risk:

· · ·  R(fn) � Rn(fn)| {z }
generalization error

+Rn(fn) � Rn(f0)| {z }
0

+Rn(f0) � R(f0)| {z }
generalization error

.



A glimpse into statistical learning theory

Hö↵ding’s inequality: for any function g : X ⇥ Y ! [a, b], one has the
Gaussian tail estimate

P
⇥
|Png � Pg| > ✏

⇤
 2 exp

✓
� 2n✏2

(b � a)2

◆
, ✏ > 0.

Uniform risk bound: given H0 = {f1, . . . , fN}, assume that the losses
gi := L(fi(·), ·) take values in [a, b] and estimate

P

max
f2H0

|Rnf � Rf | > ✏

�
= P


max

i2{1,...,N}
|Pngi � Pgi| > ✏

�


NX

i=1

P
⇥
|Pngi � Pgi| > ✏

⇤
 2N exp

✓
� 2n✏2

(b � a)2

◆
.



A glimpse into statistical learning theory

Expected risk: deduce convergence of order n�1/2 via

E

max
f2H0

|Rnf � Rf |
�

=

Z 1

0
P

max
f2H0

|Rnf � Rf | > ✏

�
d✏

 N(b � a)

r
⇡

2n
.

Note that the right-hand side depends on the size N of H0.

Extension to infinite sets H0: Approximate H0 by finite sets of indicator
functions; the error can be controlled by the Vapnik–Cervonenkis (VC)
dimension of H0 or other capacity measures.

Further topics: unbounded loss functions and capacity measures for
specific hypothesis classes such as indicator functions or neural networks.

Caveat: deep learning performs better than predicted by this theory—once
more, the unreasonable e↵ectiveness of deep learning. . .



Questions to Answer for Yourself / Discuss with Friends

Discussion: Can you spot any points where the error analysis of
statistical learning theory might leave room for improvements?

Suggestion: Read up on Hö↵ding’s inequality and related large
deviations results or concentration inequalities.
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Team

Philipp Harms: Lecturer, main contact for lectures
www.stochastik.uni-freiburg.de/professoren/harms/

philipp-harms

Jakob Stiefel: Teaching Assistant, main contact for exercises

Lars Niemann: Teaching Assistant
www.stochastik.uni-freiburg.de/mitarbeiter/niemann



Web links

Lecture homepage for general information:
www.stochastik.uni-freiburg.de/lehre/ss-2020/

vorlesung-deep-learning-ss-2020

ILIAS for slides, videos, forum, and exercises: ilias.uni-freiburg.
de/goto.php?target=crs_1542865&client_id=unifreiburg

BigBlueButton: virtual meeting room vHarms with password
vHarms20206 at www.math.uni-freiburg.de/lehre/virtuelle_
veranstaltungen.html. Supported Browsers include Chrome and
Firefox on desktops and Chrome and Safari on mobiles.

HisInOne for administrative issues



Outlook on the lecture

Approximation theory for neural networks
- shallow/deep
- feed-forward/residual/recurrent

Using methods from
- functional analysis
- harmonic analysis
- di↵erential geometry
- probability theory
- stochastic analysis

Further topics
- For example, generalization capability, auto-encoders, variational
auto-encoders, adversarial networks, etc.

- Depending on your interests and how we do time-wise



Relation to other deep learning courses in Freiburg

This course: mathematical aspects of deep learning

At the Mathematical Institute:
- Angelika Rohde’s seminar about the mathematical foundations of
statistical learning: www.stochastik.uni-freiburg.de/
professoren/rohde/teaching

- Next term: Thorsten Schmidt’s lecture on Machine Learning

At the Department of Computer Science: in the groups on
- Computer Vision
- Machine Learning
- Statistical Pattern Recognition
- Artificial Intelligence



Parts of the course

Short videos and slides:
- Available on ILIAS every Tuesday night

Live discussion and further reading:
- Wednesdays 14:15-14:45 via BigBlueButton

Forum:
- Available on ILIAS for questions of all kinds
- Please answer a question if you know the answer

Graded exercises:
- Mathematical and programming tasks
- Solutions to be uploaded to ILIAS every two weeks
- Collaboration in groups of two is allowed and encouraged.
- Groups cannot be changed during the term.



Requirements and exam

Requirements:
- Solid background in probability theory and functional analysis
- Basic knowledge in di↵erential equations and stochastic analysis.
- Basic programming skills

Oral exam:
- 50% of exercise points required for participation
- Scope: content covered in the lecture, live discussions, and exercises
- Focus on conceptual understanding rather than learning by heart



Resources for Python

Python tutorials
- O�cial tutorial:
https://docs.python.org/3/tutorial/index.html

- For beginners: www.learnpython.org/
- For programmers:
http://stephensugden.com/crash_into_python/

- Many more: http://docs.python-guide.org/en/latest/intro/learning/

Python libraries:
- Numpy: http://wiki.scipy.org/Tentative_NumPy_Tutorial
- SciPy: http://docs.scipy.org/doc/scipy/reference/tutorial/
- Matplotlib: http://matplotlib.org/users/beginner.html
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Summary by learning goals

Having heard this lecture, you can now . . .

Describe why deep learning is so popular

Formulate the basic principles of statistical learning theory

Understand deep learning in the context of statistical learning theory



Outlook on this week’s discussion and reading session

Discussion:
- Questions and feedback, in both directions
- Administrative and IT issues, if any

Reading: related original literature
- Sejnowski (2020): The unreasonable e↵ectiveness of deep learning in
artificial intelligence

- Donoho (2000): High-Dimensional Data Analysis—the Curses and
Blessings of Dimensionality

- Vapnik (1999): An overview of statistical learning theory

Preparation:
- Watch the videos of the week
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Overview of Week 2

1 Multilayer Perceptrons

2 A Brief History of Deep Learning

3 Deep Learning as Representation Learning

4 Definition of Neural Networks

5 Operations on Neural Networks

6 Universality of Neural Networks

7 Discriminatory Activation Functions

8 Wrapup
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Mathematics of Deep Learning, Summer Term 2020

Week 2, Video 1

Multilayer Perceptrons

Philipp Harms Lars Niemann

University of Freiburg



McCulloch and Pitts Neuron

The first neural network was devised by McCulloch and Pitts (1943) in an
attempt to model a biological neuron.

Definition
A McCulloch and Pitts neuron is a function of the form

Rd 3 x 7! ⇢

 
dX

i=1

wixi � ✓

!
2 R

where d 2 N, ⇢ = R+ : R ! R, and wi, ✓ 2 R.

⇢ is called activation function,

✓ is called threshold,

wi are called weights, and

the neuron fires (i.e., returns 1) if the weighted sum of inputs exceeds
the threshold.



Multilayer Perceptron

A multilayer perceptron, as introduced by Rosenblatt (1958), links multiple
neurons together in the sense that the output of one neuron forms an
input to another.

Definition

Let d, L 2 N, L � 2 and ⇢ : R ! R. Then a multilayer perceptron (MLP)
with d-dimensional input, L layers, and activation function ⇢ : R ! R is a
function

F : Rd ! RNL , F = TL � ⇢ � TL�1 � · · · � ⇢ � T1,

where ⇢ is applied coordinate-wise and Tl : Rl�1 ! Rl is a�ne, for each
l 2 {1, . . . , L} and Nl 2 N with N0 = d.

Recall that an a�ne map is of the form x 7! Ax+ b for a matrix A and
vector b.



Multilayer Perceptron (cont.)

In contrast to the McCulloch and Pitts neuron, we now allow
arbitrary activation functions ⇢.
Notice that the MLP does not allow arbitrary connections between
neurons, but only between those, that are in adjacent layers, and only
from lower layers to higher layers.

[figure from Petersen, Ch. 1]



Activation Functions - Examples

Logistic sigmoid activation function:

glogistic(z) =
1

1 + exp(�z)

Logistic hyperbolic tangent
activation function:

gtanh(z) = tanh(z)

=
exp(z)� exp(�z)

exp(z) + exp(�z)



Activation Functions - Examples (cont.)

Linear activation function:

glinear(z) = z

Rectified Linear (ReLU) activation
function:

grelu(z) = max(0, z)



Deep learning

Definition
Deep learning is the use of multilayer perceptrons in learning tasks.

For example, supervised learning, i.e., empirical risk minimization:

Given observations (x1, y1), . . . , (xn, yn),

Find a multilayer perceptron f such that f(xi) ⇡ yi.



Questions to Answer for Yourself / Discuss with Friends

Repetition: What is a multi-layer perceptron?

Application of what you just learned:
What class of functions is represented by multi-layer perceptrons with
linear, polynomial, or ReLu activation functions?

Transfer: How do multi-layer perceptrons di↵er from spline or finite
element discretizations?
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Biological Inspiration of Artificial Neural Networks

Dendrites input information to the cell

Neuron fires (has action potential) if a certain threshold for the
voltage is exceeded

Output of information by axon

The axon is connected to dentrites of other cells via synapses

Learning: adaptation of the synapse’s e�ciency, its synaptical weight

AXON

dendrites
SYNAPSES

soma



History of Deep Learning

Deep Learning has developed in several waves

The early days, under the name of artificial neural networks/cybernetics

1942 Artificial neurons as a model of brain function [McCulloch/Pitts]

1949 Hebbian learning [Hebb]

1958 Rosenblatt perceptron [Rosenblatt]

1960 Adaline ! stochastic gradient descent [Widrow/Ho↵]

The first time the popularity of NNs declined

Negative result: linear models cannot represent the XOR function

Backlash against biologically inspired learning [Minsky/Papert, 1969]



History of Deep Learning

1980 - early 2000s (under the name of connectionism)

1980 Neocognitron [Fukushima]

1986 Multilayer Perceptrons and backpropagation [Rumelhart et al.]

1989 Autoencoders [Baldi and Hornik],
Convolutional neural networks [LeCun]

1997 LSTMs [Hochreiter and Schmidhuber]

The second time the popularity of NNs declined

Ventures based on NNs made unrealistically ambitious claims
- AI research could not fulfill these unreasonable expectations

Other fields of machine learning made advances
- E.g., SVMs and graphical models
- SVMs were the state of the art on many datasets (data was small),
specialized ConvNets held state of the art on MNIST but didn’t scale



History of Deep Learning and ANNs (cont.)

Mid 2000s, the field got re-invigorated:

Greedy layer-wise pretraining [Hinton, 2006]

- It was now possible to train much deeper networks

Several groups “resurrected” the idea of training large neural
networks supervisedly using large amounts of data.

- Most prominently [Krizhevsky et al., 2012] improved results on Imagenet
benchmark by large margin

Since then: exponential growth
- NeurIPS attendance has grown exponentially

In 2018, it sold out in 12 minutes; lottery system since then

- Some people are raising unrealistic expectations
- Let’s see how long this current wave persists



Questions to Answer for Yourself / Discuss with Friends

Discussion: How long will the current deep learning wave persist?
– What are reasons that it will continue?
– What are reasons that it will end?
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Some terminology

Supervised learning: given data (xi, yi), find a function f such that
f(xi) ⇡ yi

Classification: special case where f is an indicator function (aka.
classifier) and yi belong to {0, 1}
Data representation: a coordinate system for x

Feature: a coordinate

Linearly separable: yi equals the sign of a linear functional of xi



Definition: Representation learning

Representation learning

“a set of methods that allows a machine to be fed with raw data and to
automatically discover the representations needed for detection or
classification” - LeCun et al., 2015



Example for a Poor Representation: Roman Numbers

In particular, poor for the task of addition.
E.g., perform CCCLXIX + DCCCXLV (369 + 845)

1 Substitute for any subtractives : CCCLXVIIII + DCCCXXXXV

2 Concatenate: CCCLXVIIIIDCCCXXXXV

3 Sort : DCCCCCCLXXXXXVVIIII

4 Combine groups to obtain:
DCCCCCCLXXXXXXIIII
DCCCCCCLLXIIII
DCCCCCCCXIIII
DDCCXIIII
MCCXIIII

5 Re-Substitute any subtractives:
MCCXIV

In contrast, converting to our current number system: 369 + 845 = 1214.



Definition: Deep learning

Deep learning

“representation learning methods with multiple levels of representation,
obtained by composing simple but nonlinear modules that each transform
the representation at one level into a [...] higher, slightly more abstract
(one)” - LeCun et al., 2015



Standard Machine Learning Pipeline

Standard machine learning algorithms are based on high-level
attributes or features of the data

They require (often substantial) feature engineering, i.e., extraction
and selection of features.



Representation Learning Pipeline

Jointly learn features and classifier, directly from raw data

This is also referrred to as end-to-end learning



Shallow vs. Deep Learning



Shallow vs. Deep Learning

Image

Human Cat Dog Classes

Pixels

Edges

Contours

Object Parts

[Visualizations of network activations taken from Zeiler [2014]]

Deep Learning: learning a hierarchy of representations that build on
each other, from simple to complex

Features are learned in an end-to-end fashion, from raw data



Relation to More Traditional Learning Approaches



Questions to Answer for Yourself / Discuss with Friends

Relation to your interests:
What would be a good and a bad representation for a problem you
find interesting?

Discussion: Are deep networks always better than shallow ones?
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Neural Networks: Definition

Definition
Let d, L 2 N. A neural network with input dimension d and L layers is a
sequence of matrix-vector tuples

� =
�
(A1, b1), (A2, b2), . . . , (AL, bL)

�
,

where N0 := d, N1, . . . , NL 2 N, Al 2 RNl�1⇥Nl , and bl 2 RNl for
l 2 {1, . . . , L}.

According to this definition, neural networks are the coe�cients of
multi-layer perceptrons.

This distinction is useful but not always made in the literature.



Neural Networks: Definition (cont.)

Definition
The realization of a neural network � with activation function ⇢ : R ! R
is the function

R(�) : Rd ! RNL , R(�)(x) := xL,

where the output xL results from

x0 := x,

xl = ⇢(Alxl�1 + bl) for l 2 {1, . . . , L� 1},
xL := ALxL�1 + bL.

Here ⇢ is understood to act component-wise.

Thus, a multilayer perceptron is the realisation of a neural network.



Neural Networks: Definition (cont.)

Definition

We call N(�) := d+
PL

l=1Nl the number of neurons, L(�) := L the
number of layers or depth, and

M(�) :=
LX

l=1

Ml :=
LX

l=1

kAlk0 + kblk0

the number of weights. Here k · k0 denotes the number of non-zero entries
of a matrix or vector.



Neural Networks: Definition (cont.)

Definition

Let L 2 N. A vector S = (N0, . . . , NL) 2 NL+1 is called architecture of a
neural network

� = ((A1, b1), . . . , (AL, bL))

if Al 2 RNl�1⇥Nl for l = 1, . . . , L. Given such a vector S, we denote by
NN (S) the set of all neural networks with architecture S.

Note: NN (S) is a finite-dimensional linear space.



Questions to Answer for Yourself / Discuss with Friends

Check: Is k · k0 a norm?

Repetition: What are neural networks, and how do they di↵er from
multi-layer perceptrons?

Discussion: Is the realization map continuous in some sense?
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Operations on neural networks

Lemma (Operations)

Let �1 and �2 be two neural networks, and let � denote the diagonal
map x 7! (x, x).

If the composition R(�1) � R(�2) is well-defined, it can be
represented as the realization of a neural network �1 • �2.

The full parallelization
�
R(�1),R(�2)

�
can be represented as the

realization of a neural network FP(�1,�2).

If the parallelization
�
R(�1),R(�2)

�
�� is well-defined, it can be

represented as the realization of a neural network P(�1,�2).

The number of nodes satisfy
M(P(�1,�2)) = M(FP(�1,�2)) = M(�1) +M(�2).

Proof. The networks defined next have the desired properties.



Concatenation: Intuition

Composition of functions corresponds to concatenation of neural networks:

Concatenation [Figure from Petersen]



Concatenation: Definition

Definition (Concatenation)

Let L1, L2 2 N and let

�1 =
�
(A1

1, b
1
1), . . . , (A

1
L1
, b1L1

)
�

�2 =
�
(A2

1, b
2
1), . . . , (A

2
L2
, b2L2

)
�

be two neural networks such that the input layer of �1 has the same
dimension as the output layer of �2.

Then the concatenation of �1 and �2 is the neural network �1 • �2 with
L1 + L2 � 1 layers given by

�1 • �2 :=
�
(A2

1, b
2
1), . . . , (A

2
L2�1, b

2
L2�1),

(A1
1A

2
L2
, A1

1b
2
L2

+ b11), (A
1
2, b

1
2), . . . , (A

1
L1
, b1L1

)
�
.



Parallelisation: Intuition

The parallelization P(�1,�2) is a neural network with input
dimension d1 = d2, where the inputs are shared.

The full parallelization FP(�1,�2) is a neural network with input
dimension d1 + d2, where the inputs are not shared.

Parallelisation with shared inputs [Figure from Petersen]



Parallelisation: Definition

Definition

Let �1 and �2 be two neural networks with the same number L of layers
and input dimensions d1 and d2, respectively:

�1 =
�
(A1

l , b
1
l )
�
l2{1,...,L} , �2 =

�
(A2

l , b
2
l )
�
l2{1,...,L} .

Then the parallelization and full parallelization of �1 and �2 are the neural
networks

P(�1,�2) :=
⇣
(Â1, b̂1), (Ã2, b̃2), . . . , (ÃL, b̃L)

⌘
if d1 = d2,

FP(�1,�2) :=
⇣
(Ã1, b̃1), (Ã2, b̃2), . . . , (ÃL, b̃L)

⌘
for arbitrary d1, d2,

where for each l 2 {1, . . . , L},

Âl :=

✓
A1

l
A2

l

◆
, b̂l :=

✓
b1l
b2l

◆
, Ãl :=

✓
A1

l 0
0 A2

l

◆
, b̃l :=

✓
b11
b21

◆
.



Questions to Answer for Yourself / Discuss with Friends

Repetition: Take a pen and paper and verify that the network
concatenations and parallelizations satisfy the properties claimed in
the lemma.

Check: Can multiplication of functions be represented as an operation
on neural networks?

Discussion: Can you think of any further operations on neural
networks?
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Universality

Definition
Let d, L 2 N, and let ⇢ : R ! R be a continuous activation function. For
K ✓ Rd compact, denote by MLP(⇢, d, L;K) the set of multilayer
perceptrons with input dimension d, L layers and output dimension 1,
restricted to K.

We say that MLP(⇢, d, L;K) is universal if it is dense in C(K), the space
of real-valued continuous functions on K with the supremum norm.



Universal approximation theorem

Definition (Discriminatory activation functions)

Let d 2 N,K ✓ Rd compact. A continuous function ⇢ : R ! R is called
discriminatory (on K) if the only signed Radon measure µ on K with

Z

K
⇢(ax� b)dµ(x) = 0 (a 2 Rd, b 2 R)

is the zero measure µ = 0.

Theorem (Universal approximation theorem of Cybenko)

Let d 2 N,K ✓ Rd compact, and ⇢ : R ! R discriminatory. Then
MLP(⇢, d, 2;K) is universal.



Tool: Riesz–Markov–Kakutani representation

Notation

Let K be a compact Hausdor↵ topological space.

Denote by C(K) the Banach space of real-valued continuous
functions on K with the supremum norm.

Denote by M(K) the Banach space of finite signed Radon measures
on K with the total variation norm.

Recall that a Borel measure is called Radon if it is regular and locally
finite.

Theorem (Riesz–Markov–Kakutani representation)

On any compact Hausdor↵ topological space K, the topological dual of
C(K) is M(K).



Tool: Hahn–Banach extension

Theorem (Hahn–Banach extension)

If X is a normed space, M a linear subspace, and � a continuous linear
functional on M , then � can be extended to a functional ⇤ : X ! R such
that k�k = k⇤k.

Consequently, M is dense if and only if every continuous linear functional
on X that vanishes on M is trivial.



Proof of the universal approximation theorem

Note that MLP(⇢, d, 2;K) ✓ C(K) is a linear subspace

Assume for contradiction that MLP(⇢, d, 2;K) is not dense

By Hahn-Banach, there is a non-zero measure µ with
Z

K
fdµ = 0 (f 2 MLP(⇢, d, 2;K))

However, the functions fa,b(x) := ⇢(ax� b) belong to
MLP(⇢, d, 2;K) for all a 2 Rd and b 2 R.
As ⇢ is discriminatory, this gives the desired contradiction



Questions to Answer for Yourself / Discuss with Friends

Repetition: Recount the universal approximation theorem and its
proof.

Check: Verify that one has indeed
K 3 x 7! ⇢(ax� b) 2 MLP(⇢, d, 2;K) for a 2 Rd, b 2 R
Transfer: How does Cybenko’s universality theorem di↵er from the
Stone–Weierstrass approximation theorem?
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Sigmoidal functions

Definition

A continuous function ⇢ : R ! R is called sigmoidal, if ⇢(x) ! 1 for
x ! 1 and ⇢(x) ! 0 for x ! �1.

Example: The logistic (aka. sigmoidal) function x 7! (1 + e�x)�1 is sigmoidal

Theorem (Cybenko)

Let d 2 N,K ✓ Rd compact. Then every sigmoidal function ⇢ : R ! R is
discriminatory on K.



Proof that sigmoidal functions are discriminatory

Let µ 2 M(K) such that
R
K ⇢(ax� b)dµ(x) = 0 for a 2 Rd, b 2 R

For any ✓ 2 R,

lim
�!1

⇢(�(ax� b) + ✓) =

8
><

>:

1 ax� b > 0

⇢(✓) ax� b = 0

0 ax� b < 0

Thus, by dominated convergence,

µ({ax > b})+⇢(✓)µ({ax = b}) = lim
�!1

Z

K
⇢(�(ax�b)+✓)dµ(x) = 0

Taking the limit ✓ ! �1, we conclude that

µ({ax > b}) = 0 (a 2 Rd, b 2 R)



Proof that sigmoidal functions are discriminatory (cont.)

In particular, for any b1 < b2,

µ({ax > b1})� µ({ax > b2}) =
Z

K
(b1,b2](ax)dµ(x) = 0

This extends first by linearity to step functions and then by density to
continuous bounded functions:

Z

K
g(ax)dµ(x) = 0 (g 2 Cb(R))

By choosing g = sin and g = cos, we arrive at

0 =

Z

K
exp(iax)dµ(x) (a 2 Rd)

This means the Fourier transform of µ vanishes; whence µ = 0.



Extensions and variations

The above proof also works for other dual pairings such as e.g.
L1(Rd) and L1(Rd).

Alternatively, for activation functions ⇢ 2 {sin, cos, exp}, density of
{⇢(a ·+b); a 2 Rd, b 2 R} in C(K) follows directly from
Stone–Weierstrass.

Alternatively, for activation functions ⇢ with
R
⇢(x)dx 6= 0, density in

L1(K) can be shown using the Tauberian theorem of Wiener: any
translation-invariant subspace of L1(R), which contains for any ⇠ 2 R
a function f with f̂(⇠) 6= 0, is dense. [Cybenko]



Questions to Answer for Yourself / Discuss with Friends

Check: Are sigmoidal functions bounded?

Background: Do you recall the proof of the injectivity of the Fourier
transform on measures? (Hint: Stone–Weierstrass for trigonometric
polynomials.)
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Outlook on this week’s discussion and reading session

Reading:
- Hornik (1989): Multilayer Feedforward Networks are Universal
Approximators

- Cybenko (1989): Approximation by superpositions of a sigmoidal
function

- Hornik (1991): Approximation capabilities of multilayer feedforward
networks



Summary by learning goals

Having heard this lecture, you can now . . .

Describe the structure of multi-layer perceptrons and neural networks

Sketch a brief history of deep learning and put it into the perspective
of representation learning.

State the universal approximation theorem and understand its elegant
proof
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Overview of Week 3

1 Introduction to Dictionary Learning

2 Approximating Hölder Functions by Splines

3 Approximating Univariate Splines by Multi-Layer Perceptrons

4 Approximating Products by Multi-Layer Perceptrons

5 Approximating Multivariate Splines by Multi-Layer Perceptrons

6 Approximating Hölder Functions by Multi-Layer Perceptrons

7 Wrapup
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Signal classes

Definition (Signal class, approximation error)

Let H be a normed space.

A signal class is a subset C of H.

The approximation error of signal class C by signal class A is

�(A, C) = sup
f2C

inf
g2A

kf � gk
H
.

A function g 2 A which realizes the above infimum is called best
approximation of f .

Example:

H = L
2(⌦) for some ⌦ ✓ Rd.

C = C
s(⌦) or Hs(⌦) for some s 2 R

A is a set of multi-layer perceptrons, splines, or wavelets



Dictionaries

Definition (Dictionaries)

Let H be a normed space, and let ⇤ be a countable index set.

A dictionary is a collection � = (��)�2⇤ of elements in H.

The set of n-term linear combinations in � is defined for any n 2 N as

⌃n(�) =

(
X

�2⇤

c��� : c 2 R⇤
, kck0  n

)
,

where k·k0 denotes the number of non-zero entries.

The n-term approximation error of signal class C by dictionary � is

�(⌃n(�), C) = sup
f2C

inf
g2⌃n(�)

kf � gkH.

A function g which realizes the above infimum is called best n-term
approximation of f .



Approximation Rates

Definition (Approximation Rates)

Let C be a signal class, and let h 2 RN.

A sequence (An)n2N of signal classes achieves an approximation rate
of h for C if

�(An, C) = O(hn) as n ! 1 .

A dictionary � achieves an approximation rate of h for C if

�(⌃n(�), C) = O(hn) as n ! 1 .

Remark:

Bounds on the approximation rate are typically more easily obtained
than bounds on the approximation error for finite n.

A “good” dictionary needs more than just a good approximation rate.
Indeed, any dense sequence � in H achieves any approximation rate
for any signal class but is ill-suited for e�cient encoding of functions.



Dictionary Learning: Transfer of Approximation

Motivation: show a result of the following type

If multi-layer perceptrons approximate a dictionary well, and the
dictionary approximates a signal class well, then multi-layer
perceptrons approximate the signal class well.

Theorem (Transfer of approximation)

Let C be a signal class in a normed space H of functions Rd ! R. Assume
that multi-layer perceptrons of depth L with activation function ⇢ and at
most M weights approximate any function in a dictionary � to arbitrary
accuracy:

8✏ > 0 8� 2 ⇤ 9� : L(�) = L, M(�)  M, k�� � R(�)k
H
 ✏ .

Then multi-layer perceptrons with Mn weights approximate C with error

�({R(�) : L(�) = L,M(�)  Mn} , C)  �(⌃n(�), C).



Proof: Transfer of Approximation

Proof:

Given f 2 C and ✏ > 0, there exists g 2 ⌃n(�) with

kf � gk
H
 �(⌃n(�), C) + ✏.

After relabeling we may write g =
P

in ci�i for some ci 2 R.
Given ✏ > 0, there exists neural networks �i for i = 1, . . . , n with

L(�i) = L, M(�i)  M, k�i � R(�i)kH  ✏

n · kck
1

.

By the subsequent lemma on linear combinations of neural networks,
there exists a neural network � with

L(�) = L, M(�)  Mn,

���
X

in

ci�i � R(�)
���
H

 ✏ .

Consequently R(�) approximates f with error

kf �R(�)k
H
 kf � gk

H
+kg �R(�)k

H
 �(⌃n(�), C)+2✏.



Linear combinations of networks

Lemma (Linear combinations of networks)

Let �1, . . . ,�n be neural networks with depth L and input dimension d,
and let c1, . . . , cn 2 R. Then there exists a neural network � with depth L

and input dimension d such that

R(�) =
X

in

ciR(�i), M(�) 
X

in

M(�i).

Proof:

Let c be the row vector (c1, . . . , cn) 2 R1⇥n

Define the neural network � by

� = ((c, 0)) • P(�1, . . . ,�n)

Count the number of layers and weights



Questions to Answer for Yourself / Discuss with Friends

Repetition: Recall the definitions of signal classes, dictionaries, and
approximation errors.

Check: Verify that the network � in the lemma on linear
combinations has indeed depth L and not L+ 1.

Check: Is the set ⌃n(�), which consists of n-term linear combinations
in the dictionary �, a linear space?

Transfer: How is the approximation error related to the one defined in
statistical learning theory?
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Univariate Splines

Definition (Univariate splines)

Let k 2 N.
The univariate cardinal basis spline of order k on [0, k] is defined as

Nk(x) :=
1

(k � 1)!

kX

l=0

(�1)l
✓
k

l

◆
(x� l)k�1

+ for x 2 R

where (·)+ := max{0, ·}.
For t 2 R and l 2 N we define the univariate basis splines by
rescalings and translations:

Nl,t,k(x) := Nk(2
l(x� t)) for x 2 R .



Univariate Splines

Plots of the basis spline Nk (blue) and some translates of it (gray):

0 2
0

1

k = 2
0 3
0

1

k = 3
0 4
0

1

k = 4



Multivariate Splines

Definition (Multivariate splines)

Let d, k 2 N.
For l 2 N and t 2 Rd we define the multivariate basis splines

N d
l,t,k(x) :=

dY

i=1

Nl,ti,k(xi) for x = (x1, . . . xn) 2 Rd
.

The dictionary of dyadic basis splines of order k is

Bk := (N d
l,t,k)l2N,t22�lZd .



Approximating Hölder Functions by Splines

Theorem

Let H = L
p([0, 1]d) for some d 2 N and p 2 (0,1], let Bk denote the

dyadic basis splines of some order k 2 N, and let C be the unit ball in
C

s([0, 1]d) for some s 2 (0, k]. Then for any r < s/d, the dictionary Bk

achieves an approximation rate of (n�r)n2N for the signal class C in H.

Remark:

The coe�cients ci in the spline approximation of f 2 C byP
in ciBi 2 Bk can be chosen such that maxi |ci| . kfk1.

More generally, spline approximations of Besov B
s
p,q(Rd) functions

converge in Besov B
s0
p0,q0(Rd) norms at a rate of (nearly)

(n�(s�s0)/d)n2N. For p � p
0, this follows from the constructive linear

theory with non-adaptive grids, whereas for p < p
0 adaptive grids are

needed, and the approximation theory becomes non-constructive and
non-linear.



Questions to Answer for Yourself / Discuss with Friends

Repetition: What is the meaning of the parameters l, t, k, d of dyadic
basis splines N d

l,t,k?

Background: Read up on the definition of Hölder functions and
splines if needed.

Transfer: Cubic interpolating splines are the solution of a linear
best-approximation problem—which one?
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Sigmoidal Functions of Higher Order

Definition

A function ⇢ : R ! R is called sigmoidal of order q 2 N, if ⇢ 2 C
q�1(R)

and the following three conditions are met:
⇢(x)
xq ! 0 for x ! �1 .

⇢(x)
xq ! 1 for x ! 1 .

|⇢(x)| . (1 + |x|)q for x 2 R .

Example:

Sigmoidal functions are sigmoidal of order 0.

The ReLu function x 7! (x)+ is sigmoidal of order 1.

The power unit x 7! (x)q+ is sigmoidal of order q 2 N.
Goal:

Approximation of univariate splines by multi-layer perceptrons with
sigmoidal activation functions of order q � 2.



Approximating Power Units by Multi-Layer Perceptrons

Notation:

dxe 2 Z denotes the the smallest integer greater than or equal to x.

Theorem
Let k 2 N, and let ⇢ : R ! R sigmoidal of order q � 2. Then there exists a
constant C > 0 such that for every ✏,K > 0, there is a neural network �
with

⌃
max{logq(k), 0}

⌥
+ 1 layers and C weights satisfying

sup
x2[�K,K]

���R(�)(x)� (x)k+

���  ✏ .

Remark:

Two layers su�ce for the approximation of square units.



Proof: Approximating Power Units by MLPs

Proof:

Let n :=
⌃
max{logq(k), 0}

⌥
, let p := q

n � k, and let f� be the n-fold
composition of ⇢, rescaled by � > 0:

f�(x) := �
�p

⇢
n(�x) for x 2 R.

Then f� converges to the p-th power unit:

8K > 0 : lim
�!1

sup
x2[�K,K]

��f�(x)� (x)p+
�� = 0.

The di↵erence quotient converges to the (p� 1)-th power unit:

8K > 0 : lim
�!0
�!1

sup
x2[�K,K]

����
f�(x+ �)� f�(x)

�
� p(x)p�1

+

���� = 0,

and similarly for higher-order di↵erence quotients and derivatives.

These di↵erence quotients are realizations of neural networks � with⌃
max{logq(k), 0}

⌥
+ 1 layers.



Approximating Univariate Basis Splines by MLPs

Corollary

Any univariate basis spline of degree k 2 N can be approximated uniformly
on compacts by neural networks with sigmoidal activation function of
order q � 2 and architecture depending only on k and q.

Proof:

Univariate basis splines Nl,t,k are linear combinations of translated
and rescaled power units:

Nl,t,k(x) = Nk(2
l(x� t)),

Nk(x) =
1

(k � 1)!

kX

l=0

(�1)l
✓
k

l

◆
(x� l)k�1

+ .

Approximate the power units by multi-layer perceptrons, apply
translations and scalings using the subsequent lemma, and take linear
combinations.



Shifting and rescaling neural networks

Lemma (Shifting and rescaling neural networks)

Let � be a neural networks of input dimension d 2 N.

For any t 2 Rd and � 2 R, there exists a neural network  with the same
architecture as � and at most d additional weights such that

R( )(x) = R(�)(�x+ t) for x 2 Rd
.

Proof:

Define the neural network  as

 = � • ((� IdRd , t))

Count the number of layers and weights



Questions to Answer for Yourself / Discuss with Friends

Repetition: What are power units and how are they related to splines?

Repetition: What are sigmoidal functions of higher order what are
they useful for?

Check: Verify the claims about uniform convergence on compacts of
rescaled sigmoidal functions to power units!
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Representing Products by Square Units

Theorem

Let d 2 N, and let ⇢ be the square unit x 7! (x)2+. Then there exists a
neural network � with dlog2(d)e+ 1 layers such that

R(�)(x) =
dY

i=1

xi for x 2 Rd
.

Remark:

Note that this representation is exact; no approximation is needed.

However, approximation is needed to allow for more general activation
functions.



Proof: Representing Products by Square Units

Proof:

Multiplication of 2 variables can be represented as a network of depth
2 and width 6 thanks to polarization:

2x1x2 = (x1+x2)
2
++(�x1�x2)

2
+�(x1)

2
+�(�x1)

2
+�(x2)

2
+�(�x2)

2
+

Parallelize and concatenate to achieve multiplication of 2n variables:

[Figure from Petersen]



Approximating Products by Multi-Layer Perceptrons

Corollary

Let d 2 N, and let ⇢ be sigmoidal of order q � 2. Then there exists a
constant C such that for every ✏,K > 0, there exists a neural network �
with dlog2(d)e+ 1 layers and C weights satisfying

sup
x2[�K,K]d

�����R(�)(x)�
dY

i=1

xi

�����  ✏.

Proof:

Represent the product by a network with square-unit activation
function as above.

Approximate each square unit (i.e., each red dot in the previous
figure) by a 2-layer network of fixed size and note that this does not
increase the overall network depth.



Questions to Answer for Yourself / Discuss with Friends

Repetition: How can the product of two or more variables be
represented or approximated by multi-layer perceptrons?

Check: What does the multiplication network look like when the
number of variables is not a power of 2?

Discussion: Is it possible to build multiplication networks with
activation function x 7! x

2?
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Approximating Multivariate Basis Splines by MLPs

Theorem
Let k, d 2 N, and let ⇢ : R ! R be sigmoidal of order q � 2. Then there
exists a constant C > 0 such that for every basis spline f 2 Bk and every
✏,K > 0 there is a neural network � with
dlog2(d)e+

⌃
max{logq(k � 1), 0}

⌥
+ 1 layers and C weights satisfying

kR(�)� fkL1([�K,K]d)  ✏ .



Proof: Approximating Multivariate Basis Splines by MLPs

Proof: Combine the approximations of power units and multiplication:

Let f 2 Bk be a dyadic basis spline, i.e.,

f(x) = N d
l,t,k(x) =

dY

i=1

Nk(2
l(xi � ti)) for x 2 Rd

,

where Nk is the univariate basis spline of order k, i.e.,

Nk(x) :=
1

(k � 1)!

kX

l=0

(�1)l
✓
k

l

◆
(x� l)k�1

+

Approximate the univariate basis splines xi 7! Nk(2l(xi � ti)) by
networks  i with

⌃
max{logq(k � 1), 0}

⌥
+ 1 layers.

Approximate multiplication Rd ! R by a network  0 with
dlog2(d)e+ 1 layers.

Define � :=  0 • FP( 1, . . . , d).



Questions to Answer for Yourself / Discuss with Friends

Repetition: Outline the structure of the proof above: How can
multivariate splines be approximated by multi-layer perceptrons?

Discussion: Where is sigmoidality of higher order used?
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Approximating Hölder Functions by MLPs

Theorem

Let d 2 N, s > 0, r < s/d, and p 2 (0,1]. Moreover, let ⇢ : R ! R be
sigmoidal of order q � 2. Then there exists a constant C > 0 such that, for
every f in the unit ball of Cs([0, 1]d) and every ✏ 2 (0, 1/2), there exists a
neural network � with depth L = dlog2(d)e+

⌃
max{logq(s� 1), 0}

⌥
+ 1

and number of weights M  C✏
�r satisfying

kf � R(�)kLp  ✏.

Deep networks are needed to approximate high-dimensional functions
using sigmoidal activation functions of low order compared to the
regularity of the function.

The approximation rate is inversely proportional to the dimension d.
This is often called the curse of dimensionality.



Proof: Approximating Hölder Functions by MLPs

Proof: Transfer of approximation:

Let C be the unit ball in C
s([0, 1]d), let H := L

p([0, 1]d), and let Bk

be the dictionary of dyadic basis splines.

Multi-layer perceptrons of depth L with activation function ⇢ and at
most M weights approximate any function in the dictionary Bk

uniformly on compacts and consequently also in H to arbitrary
accuracy.

The dictionary Bk approximates the signal class C at rate (n�r)n2N.

By the transfer-of-approximation theorem,

�({R(�) : L(�) = L,M(�)  Mn}, C)  �(⌃n(Bk), C) . n
�r

.

Equivalently, an error of ✏ can be achieved using networks with
O(✏�1/r) weights.



Questions to Answer for Yourself / Discuss with Friends

Repetition: Explain dictionary learning in the context of splines and
Hölder functions.

Discussion: What are strengths and weaknesses of the result when
applied to function approximation or encoding?
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Outlook on this week’s discussion and reading session

Reading:
– Oswald (1990): On the degree of nonlinear spline approximation in

Besov-Sobolev spaces

– DeVore (1998): Nonlinear approximation



Summary by learning goals

Having heard this lecture, you can now . . .

Describe signal classes, dictionaries, and related notions of
approximation and transfer of approximation.

Approximate products and power units by multi-layer perceptrons.

Establish approximation rates for Hölder functions by multi-layer
perceptrons.
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Overview of Week 4

1 Hilbert’s 13th Problem

2 Kolmogorov–Arnold Representation

3 Approximate Hashing for Specific Functions

4 Approximate Hashing for Generic Functions

5 Proof of the Kolmogorov–Arnold Theorem

6 Approximation by Networks of Bounded Size

7 Wrapup
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Hilbert’s 13th Problem

Hilbert’s 13th problem

Can the roots of the equation

x7 + ax3 + bx2 + cx + 1 = 0

be represented as superpositions of continuous functions of two variables?

Remark:

This is the general form of a septic equation after some algebraic
transformations. The roots are functions of (a, b, c).

A single superposition is w
�
u(a, b), v(b, c)

�
, and a double

superposition is w
⇣
u
�
p(a, b), q(b, c)

�
, v

�
r(b, c), s(c, a)

�⌘
.

More generally, the question becomes: Do functions of three variables
exist at all, or can they be represented as superpositions of functions
of less than three variables?



Hilbert’s Conjecture

Conjecture: Hilbert conjectured that such reductions to smaller numbers
of variables are impossible. The strongest supporting evidence is:

Theorem (Vitushkin 1955)

There is a polynomial such that neither the polynomial itself nor any
function su�ciently close to it (in the sense of uniform convergence) can
be decomposed into a simple superposition of continuous functions of two
variables in any region or in any system of coordinates.



Dimension theory

Remark: Kolmogorov interpreted Hilbert’s problem using dimension
theory:

Let N(✏) be the smallest number of ✏-balls needed to cover a metric
space X.

On X = [0, 1]n one has dim(X) := lim inf✏!0
� logN(✏)

log ✏ = n.

On X = Cs([0, 1]n) one has

dim(X) := lim inf✏!0
� log logN(✏)

log ✏ = n/s.

In this sense, Hölder functions of 3 variables are strictly richer than
Hölder functions of 2 variables.

However, as we will see, this argument does not generalize to
continuous functions.



Reduction to three variables

Theorem (Kolmogorov 1956)

Any continuous function f of n 2 N variables can be represented as a
finite number of superpositions of functions of 3 variables. For instance,
for n = 4 one has

f(x1, x2, x3, x4) =
4X

i=1

gi
�
u(x1, x2, x3), v(x1, x2, x3), x4

�

for some continuous functions gi, u, v : R3 ! R.



Sketch of Proof: Reduction to three variables

Sketch of Proof:
The level sets (aka. contour lines) of a continuous function form a
tree (Kronrod, Menger):

On the representation of functions of several variables 7

3. However, in the domain of all continuous functions Hilbert’s conjecture
has proved to be false.

In the spring of 1956 Kolmogorov succeeded in showing that every contin-
uous function of n variables (n � 4) defined on an n-cube is a superposition
of continuous functions of the three variables.12 The main tool in his con-
struction is the one-dimensional tree of components of level sets of a function
introduced by Kronrod.13

Fig. 1. Fig. 2.

By the level set of a function we mean the collection of all points in the
domain of the function at which the function takes some fixed value. For
example, if the function of a point of part of the land surface represents the
height at this point above sea level, then the level set will consist of all points
of the locality having the same height above sea level; in topography these
level sets are called contour lines. In Figs. 1 and 2 we have depicted simple
functions of two variables and the ‘maps’ of the level sets of these functions
(that is, a partition of the squares on which the functions are defined into

12 Kolmogorov, A.N.: On the representation of continuous functions of several vari-
ables by superpositions of continuous functions of a smaller number of variables.
Dokl. Akad. Nauk SSSR 108, 179–182(1956); English transl. in Amer. Math Soc.
transl. Ser. 2, vol. 17, 369–373 (1961).

13 Kronrod, A.S.: On functions of two variables. Usp. Mat. Nauk 5, No.1, 24–134
(1950).
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Figure: Figure from Arnold (1956)



Sketch of Proof: Reduction to three variables (cont.)

Any continuous function of n variables can be written as a sum of
n + 1 continuous functions with standard trees, i.e., trees which do
not depend on the given function (Kolmogorov):

f(x1, . . . , xn) =
n+1X

i=1

f i(x1, . . . , xn).

Each of function fi can be written as a one-parameter family of
functions of n � 1 variables:

f(x1, . . . , xn) =
n+1X

i=1

f i
xn

(x1, . . . , xn�1)



Sketch of Proof: Reduction to three variables (cont.)

Each of the functions f i
xn

factors through a function on the
corresponding standard tree:

f(x1, . . . , xn) =
n+1X

i=1

gixn
(`i(x1, . . . , xn�1)).

C1 B1

B2
C2

A

C1
C2

B1
B2

A

' '

'

B

A

C

ℓ g

Figure: Figure from Arnold (1956)



Sketch of Proof: Reduction to three variables (cont.)

Embedding the trees in a plane with a two-dimensional coordinate
system (u, v) transforms this into:

f(x1, . . . , xn) =
n+1X

i=1

gixn

�
ui(x1, . . . , xn�1), v

i(x1, . . . , xn�1)
�
.

This yields 3-variate functions gi and (n � 1)-variate functions ui, vi:

f(x1, . . . , xn) =
n+1X

i=1

gi
�
ui(x1, . . . , xn�1), v

i(x1, . . . , xn�1), xn
�
.

Applying this construction iteratively to ui and vi yields the reduction
to superpositions of functions of 3 variables.



Questions to Answer for Yourself / Discuss with Friends

Repetition: State Hilbert’s 13th problem and describe how
Kolmogorov cast it in the frameworks of dimension and graph theory.

Check: What happens to Hilbert’s problem when continuous
functions are replaced by measurable or arbitrary functions?

Background: Find out about generalizations, limitations, and open
problems related to Hilbert’s thirteenth problem.
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Kolmogorov–Arnold Representation

Theorem (Kolmogorov–Arnold 1956–1957)

For every n 2 N�2, there exist 'i,j 2 C([0, 1]) such that any
f 2 C([0, 1]n) can be represented as

f(x1, . . . , xn) =
2n+1X

i=1

gi

0

@
nX

j=1

'i,j(xj)

1

A ,

for some gi 2 C(R).

Remark:

This disproves Hilbert’s conjecture and shows that “the only”
multivariate function is a sum.

The inner functions 'i,j are universal, i.e., they do not depend on f .

The outer functions gi can be learned by linear regression.



Sprecher’s Refinement: Universal Inner Function

Theorem (Sprecher 1965, Köppen 2002)

For every n 2 N�2, there exists a continuous function ' : R ! R and
constants a,�j 2 R such that any f 2 C([0, 1]n) can be represented as

f(x1, . . . , xn) =
2n+1X

i=1

gi

0

@
nX

j=1

�j'(xj + ia)

1

A ,

for some gi 2 C(R).

Remark:

The function ' and the constants �j and a can be constructed
explicitly and are universal, i.e., independent of f .

Sprecher’s representation can be interpreted as a neural network.

There are many further versions of the Kolmogorov–Arnold theorem
with varying regularity and structural assumptions.



Sprecher’s Refinement: Universal Inner Function

Figure 2. Plot of function  for � = 10, from
[2].

Figure 3. Plot of the hash function � for d = 2
and � = 10, from [1].

each dimension. Figure 4 represents a tilage section of a 2D
space: 2d + 1 = 5 different superposed tilages can be seen,
displaced by a.

Figure 4. Section of the tilage for a 2D space
and a base � = 10 (5 different layers). From
[1].

For a 2D space, a hypercube is associated with a couple
dkr = (dkr1, dkr2). The hypercube Skr (dkr) is associated
with an interval Tkr(dkr) by the function �. The image of a
hypercube S is an interval T by function �, see figure 5.

Internal functions  and � have been determined. Ex-
ternal functions gn cannot be directly evaluated. Sprecher
builds r functions gr

n, such that their sum converges to the

Figure 5. Function � associates each paving
block with an interval Tk in [0, 1].

external function gn. The algorithm iteratively evaluates an
external function gr

n, in three steps. At each step r, the pre-
cision, noted kr, must be determined. The decomposition of
real numbers dk can be reduced to only kr digits (see equa-
tion 2). Function fr defines the approximation error, that
tends to 0 when r increases. The algorithm is initialized
with f0 = f and r = 1.

3.1. first step: determination of the preci-
sion kr and tilage construction

For two coordinates xi and x�
i that belong to two sets,

referencing the same dimension i and located at a given dis-
tance, the distance between the two sets x and x� obtained
with f must be smaller than the N th of the oscillation of f ,
i.e.:

if |xi � x�
i| � 1

�kr ,��fr�1(x1, ..., xd) � fr�1(x�
1, ..., x

�
d)

�� � ✏ kfr�1k .

Once kr has been determined, the tilage dn
kr1, ..., d

n
krd is

calculated by:

8i 2 �1, d�, dn
kri = dkri + n

krX

r=2

1

�r
.

3.2. second step: internal functions  and �

For n from 0 to m, determine  (dn
kr

) and
�(dn

kr1, ..., d
n
krd) using equations 2 and 3.

3.3. third step: determination of the ap-
proximation error

8n 2 �0, m�, evaluate:

gr
n � �(x1 + an, ..., xd + an) =

1
m+1

P
dn

kr1,...,dn
krd

fr�1

�
dkr1, ..., dkrd

�
�dn

kr

�
�(x1 + an, ..., xd + an)

�
,

where � is defined in equation 4. Then, evaluate:

fr(x1, ..., xd) = f(x1, ..., xd)
�

Pm
n=0

Pr
j=1 gj

n � �(x1 + an, ..., xd + an).
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n, in three steps. At each step r, the pre-
cision, noted kr, must be determined. The decomposition of
real numbers dk can be reduced to only kr digits (see equa-
tion 2). Function fr defines the approximation error, that
tends to 0 when r increases. The algorithm is initialized
with f0 = f and r = 1.

3.1. first step: determination of the preci-
sion kr and tilage construction

For two coordinates xi and x�
i that belong to two sets,

referencing the same dimension i and located at a given dis-
tance, the distance between the two sets x and x� obtained
with f must be smaller than the N th of the oscillation of f ,
i.e.:

if |xi � x�
i| � 1
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1, ..., x

�
d)
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kr1, ..., d
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) and
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�
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where � is defined in equation 4. Then, evaluate:
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Figure: Sprecher’s universal inner functions ' (left) and  1 (right), where
 i(x1, x2) := �1'(x1 + ia) + �2'(x2 + ia) for some constants �1,�2, a. [Leni
Fougerolle Truchetet 2008]



Hashing

Remark:

The inner functions in the Kolmogorov–Arnold representation
theorem can be interpreted as hash functions.

Background:

Hash functions are widely used in computer science for array indexing
operations.

They map high-dimensional/unstructured/variable-length data to
scalar hash values.

Hash functions should be fast to compute and should be “nearly”
injective, i.e., minimize duplication of output values.



Hashing and Kolmogorov–Arnold Representation

Lemma

For each i 2 {1, . . . , 2n + 1}, Sprecher’s inner function

 i : [0, 1]n 3 (x1, . . . , xn) 7!
nX

j=1

�j'(xj + ia) 2 R

is injective on a countable dense subset D ✓ [0, 1]n.

Remark:

It is su�cient to establish injectivity of  (x) :=
P

j �j'(xj) on D.

This follows from the following two facts: � takes rational values on
D, and the coe�cients �j are independent over the rational numbers.

Of course,  is not injective everywhere; otherwise the
Kolmogorov–Arnold theorem would be trivial.



Space-filling curves

Intuitively, the inverse of a hash function [0, 1]n ! [0, 1] is a
space-filling curve, i.e., a surjective continuous map [0, 1] ! [0, 1]n.

For Sprecher’s hash function, this is made precise as follows: By
carefully examining the properties of  , one may construct an
“inverse” map � : [0, 1] ! [0, 1]n with the following properties:

Lemma
1 The map � : [0, 1] ! [0, 1]n is a space-filling curve.

2 Its image may be approximated by discrete curves ⇤k as k ! 1.

Remark:

By the Hahn–Mazurkiewicz theorem, a non-empty Hausdor↵
topological space is a continuous image of the unit interval if and only
if it is compact, connected, locally connected, and second-countable.



Space-filling curves

!"#$%&%'$ () !"# !! $%&%'%(%

!!"""! # ! *"!

!!"""! ! )# !# ! ""!

!! ! $!"""! # $ %!"*"! #

!! ! &!"""! # %$" $
'!"""! !*"!$

! #

*++"#,-./ 0" 01-2 ,34.-0-".% 35+1 6577-./ ! ! -2 28+1 01509

!! ! &""! ! ""!$
! # $ %!"*"! #! '!"""! ! *"!$

! #

()*) %+,-./-,0 %) (,12/3.3 4 5-6,17 5-89:,!; <= >?@@?A =BCDB:&

!-/; <; =13 7501 "> ?"-.-./ 013 7"-.02 *"& ;

!-/; @; =13 7501 "> ?"-.-./ 013 7"-.02 *"$ ;

Figure: An approximation ⇤k of the space-filling curve �. [Sprecher Draghici 2002]



Questions to Answer for Yourself / Discuss with Friends

Repetition: Recall and compare the presented versions of the
Kolmogorov–Arnold Theorem.

Check: Why exactly does the Kolmogorov–Arnold representation
theorem disprove Hilbert’s conjecture?

Check: Show that there is no continuous bijection [0, 1]n ! [0, 1] for
any n � 2.

Discussion: How would you implement Sprecher’s theorem using
neural networks? Do you think this could work well for supervised
learning?
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Hashing rational numbers

Lemma
There exists a linear map ` : Rn ! R whose restriction to rational
numbers is injective.

Proof:

n = 2 : Set `(x, y) = x + �y for any irrational number �.

n � 2: Set `(x1, . . . , xn) := �1x1 + · · · + �nxn, where �i are
independent over Q, e.g. �i = ⇡i�1 or some other powers of any
transcendental number.

Remark:

Thus, any f : Qn ! R can be written as f = g � `, where ` is the
above linear hashing function. However, g cannot be chosen
continuously, and the approximation error cannot be controlled on
non-rational numbers—a more elaborate construction is needed.

We fix an irrational number � 2 R \ Q throughout this section.



Approximate Hashing for a Specific Function

Remark:

The key step in the proof of the Kolmogorov–Arnold theorem is the
construction of approximate hashing functions.

This is done here for a given specific function and in the next section
for generic functions.

We restrict ourselves to bivariate functions.

Definition (Approximate hashing functions, specific f)

A function ' 2 C([0, 1],R5) is called approximate hashing function for
f 2 C([0, 1]2) if there exists g 2 C(R) such that

sup
t2R

|g(t)|  1/7, sup
x,y2[0,1]

�����f(x, y) �
5X

i=1

g
�
'i(x) + �'i(y)

�
����� < 7/8.



Approximate Hashing for a Specific Function

Lemma

For any f 2 C2([0, 1]2) with kfk1  1, the set of approximate hashing
functions for f is open and dense in C([0, 1],R5).

Proof:

The set is open, since if g works for a particular ', it does so for
every nearby '.

It remains to show that the set is dense in C([0, 1],R5).

Thus, given ✏ > 0 and � 2 C([0, 1],R5), we have to find an
approximate hashing function ' for f such that k'� �k  ✏.



Proof: Approximate Hashing for a Specific Function

Divide [0, 1] into N 2 N intervals, cut out the i-th fifth of each
interval, and color all remaining intervals red.
Approximate �i (gray) by functions 'i (blue), which are constant on
red intervals of type i.

i = 1

i = 5

i = 4

i = 3

i = 2



Proof: Approximate Hashing for a Specific Function

It can be arranged that each function 'i assumes distinct rational
numbers on each of the red intervals, and that these numbers are
distinct for di↵erent i.

Moreover, for su�ciently large N , k'� �k  ✏, as desired.

Furthermore, by the uniform continuity of f on [0, 1]2, we can make
N even larger to get

��f(x, y) � f(x0, y0)
��  1/7 whenever max{

��x � x0�� ,
��y � y0

��}  4/N.



Proof: Approximate Hashing for a Specific Function

The function  i(x, y) := 'i(x) + �'i(y) is constant on red rectangles
of type i, which are defined as products of red intervals of type i.

The irrational numbers, which the functions  i assume on rectangles
of type i, are all distinct for di↵erent rectangles and/or di↵erent i.

Thus, there is g 2 C(R) such that g( i(x, y)) = ±1/7 if (x, y)
belongs to a red rectangle of type i where f ? 0.

Without loss of generality, kgk  1/7.

Intuitively, g tracks the sign of f on each rectangle.



Proof: Approximate Hashing for a Specific Function

For any point (x, y), consider the approximation error

�����f(x, y) �
5X

i=1

g
�
 i(x, y)

�
����� . (⇤)

If f(x, y) ? 1/7, then f ? 0 on each red rectangle containing (x, y).

There are at least 3 such rectangles because out of 5 types, one may
fail on the x-axis and another one on the y-axis.

Thus, the majority of the summands in (⇤) tracks the sign of f
correctly, and the approximation error is bounded by 6/7.

If |f(x, y)|  1/7, the approximation error is again bounded by 6/7,
regardless of correct or incorrect tracking.

As 6/7 < 7/8, we have shown that ' is an approximate hashing
function, which is ✏-close to �.



Questions to Answer for Yourself / Discuss with Friends

Repetition: Recall the definition of and main result on approximate
hashing.

Background: Refresh your memory of algebraic closures and the
definition of algebraic and transcendental numbers, if necessary.

Check: Draw the red rectangles of types 1 to 5 and verify that each
point is contained in at least three rectangles.

Check: What is the role of the numbers 5 and 1/7 in the lemma?
Can they be altered?
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Approximate Hashing for Generic Functions

Remark:

As before, we fix an irrational number � 2 R \ Q.

Definition (Approximate hashing functions)

A function ' 2 C([0, 1],R5) is called approximate hashing function if for
any f 2 C([0, 1]2), there exists g 2 C(R) such that

kgk1  1

7
kfk1 ,

�����f �
5X

i=1

g �  i

�����
1

 8

9
kfk1 ,

where  i(x, y) = 'i(x) + �'i(y).

Remark:

Compared to hashing for specific functions f , this definition imposes
the hashing property simultaneously for all f and with a slightly worse
error bound.



Approximate Hashing for Generic Functions

Lemma

The set of approximate hashing functions is dense in C([0, 1],R5).

Proof:

Let Uk be the sets of approximate hashing functions of fk, for some
dense sequence (fk)k2N in the unit sphere of C([0, 1]2).

The sets Uk are open and dense. By Baire’s category theorem, its
intersection U is dense.

Any function ' 2 U is an approximate hashing function: for any f
with kfk1  1, there exists fk and g such that

���f �
X

i

g �  i

���
1

 kf � fkk1 +
���fk �

X

i

g �  i

���
1


�
8
9 � 7

8

�
+ 7

8 = 8
9 .

Extend to general f by scaling.



Questions to Answer for Yourself / Discuss with Friends

Repetition: What is the di↵erence between hashing for specific versus
generic functions, and how does the former imply the latter?

Background: Refresh your memory of the Baire category theorem if
necessary.

Discussion: Can you strengthen the proof to get monotonically
increasing approximate hashing functions?
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Kolmogorov–Arnold Representation, Refined Version

Remark: The approximate hashing results imply the following refined
version of the Kolmogorov–Arnold representation theorem:

Theorem (Kolmogorov–Arnold representation, refined version)

For any n 2 N�2, there exist �1, . . . ,�n 2 R and '1, . . . ,'2n+1 2 C([0, 1])
such that any f 2 C([0, 1]n) admits a representation

f(x1, . . . , xn) =
2n+1X

i=1

g
�
�1'i(x1) + · · · + �n'i(xn)

�

for some continuous function g.

Remark: The di↵erence to Kolmogorov’s original result is that g does not
depend on i.



Proof: Kolmogorov–Arnold Representation for n = 2

Proof: Iterative improvement of the approximate hashing representation

Let ' 2 C([0, 1],R5) be an approximate hashing function, define
 i(x, y) = �1'i(x) + �2'i(y) for �1 := 1 and �2 irrational, and
define Tg :=

P5
i=1 g �  i.

Set f1 := f and find g1 with kg1k1  1
7kf1k1 and

kf1 � Tg1k1  7
8kf1k1.

Set f2 := f1 � Tg1 and find g2 with kg2k1  1
7kf2k1 and

kf2 � Tg2k1  7
8kf2k1.

Continue to eternity. When done, set g =
P

k gk and note that
f = Tg as required.



Questions to Answer for Yourself / Discuss with Friends

Repetition: Recall the proof of the Kolmogorov–Arnold theorem via
the construction of approximate hashing functions.

Discussion: How does the proof work in higher dimensions?
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Approximation by Networks of Bounded Size

Theorem
There exists a continuous, piece-wise polynomial activation function
⇢ : R ! R which allows one to approximate continuous multivariate
functions by realizations of neural networks with bounded size, that is, for
all n 2 N there exists a constant C = C(n) such that

8✏ > 0 8f 2 C([0, 1]n) 9� : L(�) = 3, M(�)  C(n), kf � R(�)k1  ✏ .

Remark:

This theorem is in a sense “too good” because it provides an
approximate representation of continuous functions by finitely many
real numbers.

It highlights the influence of the choice of activation function on the
resulting approximation theory.

It also points to the importance of asking for bounded weights.



Approximation by Networks of Bounded Size

Lemma (Univariate case)

The theorem holds in the univariate case n = 1: there exists a continuous,
piecewise polynomial activation function ⇢ : R ! R such that

8✏ > 0 8f 2 C([0, 1]) 9� : L(�) = 2, M(�)  3, kf � R(�)k1  ✏ .

Remark: By translation and scaling, this extends to continuous functions f
on every closed interval [a, b] ✓ R.



Proof: Approximation by Networks of Bounded Size

Proof of the lemma:

Recall that the set ⇧ of polynomials with rational coe�cients is dense
in the Polish space C([0, 1]), and let (⇡i)i2Z be an enumeration of ⇧.

Define the activation function ⇢ by

⇢(x) :=

(
⇡i(x � 2i), x 2 [2i, 2i + 1]

⇡i(1)(2i + 2 � x) + ⇡i+1(0)(x � 2i � 1), x 2 (2i + 1, 2i + 2) .

Note that, by the very definition of ⇢, one has ⇢(x + 2i) = ⇡i(x) for
x 2 [0, 1].

Hence, the neural network � := ((1, 2i), (1, 0)) has the desired
properties.



Proof: Approximation by Networks of Bounded Size

Proof of the theorem:

By the Kolmogorov–Arnold theorem (refined version),

f =
2n+1X

i=1

g �  i,  i(x1, . . . , xn) = �1'i(x1) + · · · + �n'i(xn).

for some g 2 C(R), �1, . . . ,�n 2 R and '1, . . . ,'2n+1 2 C([0, 1]).

By the previous lemma, 'i ⇡ R(�i) 2 C([0, 1]) for some networks �i

and a piece-wise polynomial activation function ⇢, where ⇡ denotes
approximation up to arbitrary accuracy.

Then  i ⇡ R( i) 2 C([0, 1]n) for each i 2 {1, . . . , 2n + 1}, where

 i = (((�1, . . . ,�n), 0)) • FP(�i, . . . ,�i).



Proof: Approximation of Multivariate Functions (cont.)

By the previous lemma, g ⇡ R(⌅) 2 C([�K, K]), where K is
su�ciently large such that  i([0, 1]n) ✓ [�K, K].

Then the network

� := (((1, . . . , 1), 0)) • FP(⌅, . . . ,⌅) • P( 1, . . . , 2n+1).

has the desired number of layers and weights.

Moreover, f ⇡ R(�) thanks to the estimate

kf � R(�)k 
X

i

kR(⌅) � R( i) � g �  ik


X

i

kR(⌅) � R( i) � R(⌅) �  ik + kR(⌅) �  i � g �  ik ,

and thanks to the uniform continuity of R(⌅) on [�K, K].



Questions to Answer for Yourself / Discuss with Friends

Repetition: Recall the approximation of univariate and multivariate
functions by networks of bounded size.

Check: Verify that the activation function ⇢ constructed in the
univariate case is continuous.

Discussion: What are theoretical implications to approximation theory
and practical implications to supervised learning?
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Outlook on this week’s discussion and reading session

Reading:
– Arnold (1958): On the representation of functions of several variables
– Bar-Natan (2009): Hilberts 13th problem, in full color
– Hecht-Nielsen (1987): Kolmogorov’s mapping neural network existence

theorem



Summary by learning goals

Having heard this lecture, . . .

You can describe the Kolmogorov–Arnold representation theorem and
its proof.

You can appreciate the fundamental distinction between inner and
outer network layers.

You are aware that di↵erent choices of activation functions may lead
to very di↵erent approximation theories.
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Overview of Week 5

1 Banach frames

2 Group representations

3 Signal representations

4 Regular Coorbit Spaces

5 Duals of Coorbit Spaces

6 General Coorbit Spaces

7 Discretization

8 Wrapup
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Bases in Banach spaces

Definition (Schauder 1927)

Let X be a Banach space. A Schauder basis is a sequence (ek)k2N in X

with the following property: for every f 2 X there exists a unique scalar

sequence (ck(f))k2N such that

f =
1X

k=1

ck(f)ek.

The Schauder basis is called unconditional if this sum converges

unconditionally.

Remark:

Any Banach space with a Schauder basis is necessarily separable.

Not all separable Banach spaces have a Schauder basis (Enflo 1972).

The coe�cient functionals ck are continuous, i.e., belong to X
⇤
.



Translations, Modulations, and Scalings

Remark: Many useful bases are constructed by translations, modulations,

and scalings of a given “mother wavelet.”

Lemma

The following are unitary operators on L
2(R), which depend strongly

continuously on their parameters a, b 2 R and c 2 R \ {0}:
Translation: Taf(x) := f(x� a).

Modulation: Ebf(x) := e
2⇡ibx

f(x).

Scaling (aka. dilation): Dcf(x) := c
�1/2

f(xc�1).

Remark:

These are actually group representations; more on this later.



Examples of Bases

Example: Fourier series

The functions (Ek1)k2Z are an orthonormal basis in L
2([0, 1]).

Example: Gabor bases

The functions (EkTn [0,1])k,n2Z are an orthonormal basis in L
2(R).

Example: Haar bases

The functions (D2jTk )j,k2Z are an orthonormal basis of L
2(R).

Here  is the Haar wavelet

 (x) =

8
><

>:

1, 0  x <
1
2 ,

� 1, 1
2  x < 1,

0, otherwise.

Example: Wavelet bases

Replace  by functions with better smoothness or support properties



Limitations of Bases

Requirements: continuous operations for

Analysis: encoding f into basis coe�cients (ck)

Synthesis: decoding f from basis coe�cients (ck)

Reconstruction: writing f =
P

k
ckek.

Limitations:

It is often impossible to construct bases with special properties

Even a slight modification of a Schauder basis might destroy the basis

property

Idea: use “over-complete” bases, aka. frames

Drop linear independence of (ek) and uniqueness of (ck)

Require continuity of the analysis and synthesis operators

Get additional benefits such as noise suppression and localization in

time and frequency



Banach Frames

Definition (Gröchenig 1991)

Let X be a Banach space, and let Y be a Banach space of sequences

indexed by N. A Banach frame for X with respect to Y is given by

Analysis: A bounded linear operator A : X ! Y , and

Synthesis: A bounded linear operator S : Y ! X, such that

Reconstruction: S �A = IdX .

Remark:

The k-th frame coe�cient is ck := evk �A 2 X
⇤
.

If the unit vectors (�k)k2N are a Schauder basis in Y , one obtains an

atomic decomposition into frames ek := S�k 2 X as follows:

8f 2 X : f =
X

k2N
ck(f)ek.

Every separable Banach space has a Banach frame.



Examples of Banach frames

Example: Hilbert frames

A Banach frame on a Hilbert space H with respect to `
2
is a

sequence (ek)k2N s.t. for all f 2 H,

kfk2H .
X

k2N
|hf, ekiH |2 . kfk2H .

Example: Projections

The projection of a Schauder basis to a subspace is a Banach frame.

E.g., the functions (Ek1)k2Z are a frame but not a basis in L
2(I) for

any I ( [0, 1].

Example: Wavelet frames

If  2 L
2(R) \ C

1(R) is required to have exponential decay and

bounded derivatives, then (D2jTk )j,k2Z cannot be a basis but can

be a frame.



Questions to Answer for Yourself / Discuss with Friends

Repetition: What are Schauder bases versus frames?

Repetition: Give some examples of frames constructed via

translations, scalings, and modulations.

Check: Is a Schauder basis a basis?

Check: Verify the strong continuity of the translation, scaling, and

modulation group actions.
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Locally compact groups

Definition (Locally compact group)

A locally compact group is a group endowed with a Hausdor↵ topology

such that the group operations are continuous and every point has a

compact neighborhood.

Theorem (Haar 1933)

Every locally compact group has a left Haar measure, i.e., a non-zero

Radon measure which is invariant under left-multiplication. This measure

is unique up to a constant. Similarly for right Haar measures.

Definition (Unimodular groups)

A group is unimodular if its left Haar measure is right-invariant.



Convolutions

Lemma (Young inequality)

For any p 2 [1,1], f 2 L
1(G), and g 2 L

p(G), the convolution

f ⇤ g(x) :=
Z

G

f(y)g(y�1
x)dy =

Z

G

f(xy)g(y�1)dy

is well-defined, belongs to L
p
, and kf ⇤ gkLp(G)  kfkL1(G)kgkLp(G).

Proof: This follows from Minkowski’s integral inequality,

����
Z

G

f(y)g(y�1·)dy
����
Lp(G)


Z

G

|f(y)| kg(y�1·)kLp(G)dy,

and from the invariance of the L
p
norm.

Remark: The same conclusion holds for g ⇤ f if G is unimodular or f has

compact support.



Group Representations

Definition (Representation)

Let G be a locally compact group, and let H be a Hilbert space.

A representation of G on H is a strongly continuous group

homomorphism ⇡ : G ! L(H).

⇡ is unitary if it takes values in U(H).

⇡ is irreducible if {0} and H are the only invariant closed subspaces

of H, where invariance of V ✓ H means ⇡g(V ) ✓ V for all g 2 G.

⇡ is integrable if it is unitary, irreducible, and
R
G
|h⇡gf, fiH |dg < 1

for some f 2 H. Similarly for square integrability.

Remark: Unless stated otherwise, all integrals over G are with respect to

the left Haar measure.



Questions to Answer for Yourself / Discuss with Friends

Repetition: What is a square integrable representation of a locally

compact group?

Check: What condition is more stringent, integrability or square

integrability? Hint: g 7! h⇡gf, fiH is continuous and bounded.

Check: Suppose that ⇡ is reducible, can you extract a

subrepresentation? Can you reduce it further down to an irreducible

subrepresentation?

Background: How are group representations related to group actions?

Background: Look up the proof of Young’s and Minkowski’s

inequalities!
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Voice transform

Setting: Throughout, we fix a square-integrable representation

⇡ : G ! U(H) of a locally compact group G on a Hilbert space H.

Definition (Voice transform)

For any  2 H, the voice transform (aka. representation coe�cient) is the

linear map

V : H ! C(G), V f(g) = hf,⇡g iH .

Remark:

The voice transform represents signals in H as coe�cients in C(G).

For any  6= 0, injectivity of V is equivalent to irreducibility of ⇡.



Orthogonality Relations

Theorem (Duflo–Moore 1976)

There exists a unique densely defined positive self-adjoint operator

A : D(A) ✓ H ! H such that

V ( ) 2 L
2(G) if and only if  2 D(A), and

For all f1, f2 2 H and  1, 2 2 D(A),

hV 1f1, V 2f2iL2(G) = hf1, f2iHhA 2, A 1iH .

G is unimodular if and only if A is bounded, and in this case A is a

multiple of the identity.

Remark:

This is wrong without the square-integrability assumption on ⇡.

This is di�cult to show in general but easy in many specific cases.

An immediate consequence is the existence (even density) of such  .

V : H ! L
2(G) is isometric for any  2 D(A) with kA k = 1.



Equivalence to the regular representation

Definition (Regular representation)

The left-regular representation of G is the map

L : G ! U(L2(G)), LgF = F (g�1·).

Lemma
⇡ is unitarily equivalent to a sub-representation of the left-regular

representation, i.e., there exists an isometry V : H ! L
2(G) such that

V � ⇡g = Lg � V holds for all g 2 G.

Proof: Set V = V for some  2 D(A) with kA k = 1 and use that

V � ⇡g1(f)(g2) = h⇡g1f,⇡g2 iH = hf,⇡
g
�1
1 g2

 iH = Lg1 � V (f)(g2).



Analysis, Synthesis, and Reconstruction

Lemma

Let  2 D(A) with kA k = 1.

Analysis: V : H ! L
2(G) is an isometry onto its range,

V (H) = {F 2 L
2(G) : F = F ⇤ V  }.

Synthesis: The adjoint of V is given by the weak integral

V
⇤
 
: L2(G) ! H, V

⇤
 
(F ) =

Z

G

F (g)⇡g dg.

Reconstruction: Every f 2 H satisfies f = V
⇤
 
V f .

Remark:

This can be seen as a continuous Banach frame.

The coe�cient space is the reproducing kernel Hilbert space V (H).



Proof: Analysis, Synthesis, and Reconstruction

Proof:

V is isometric thanks to the orthogonality relation and kA kH = 1.

V
⇤
 
is given by the above weak integral because

hF, V fiL2(G) =

Z

G

F (g)h⇡g , fiHdg =

⌧Z

G

F (g)⇡g dg, f

�

H

.

V V
⇤
 
F = F ⇤ V  because

V V
⇤
 
F (g) = hV ⇤

 
F,⇡g iH = hF, V (⇡g )iL2(G)

= hF,LgV  iL2(G) = (F ⇤ V  )(g).

As V is isometric, V
⇤
 
V = IdH and V V

⇤
 
is the orthogonal

projection onto the range of V , which equals the range of V V
⇤
 
.



Questions to Answer for Yourself / Discuss with Friends

Repetition: What is the voice transform, and how does it lead to

signal representations?

Check: Where is square integrability of the representation used?

Background: There is a definition of continuous frames—can you

guess what it is and/or find it in the literature?

Transfer: What is a reproducing kernel Hilbert space, and what is the

relation to the condition F ⇤ V  = F?
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Orbits and Coorbits

Setting: ⇡ : G ! U(H) is a square integrable representation of a locally

compact group G on a Hilbert space H, and A is the Duflo–Moore

operator of ⇡.

Remark:

The orbit of ⇡ through  2 H is {⇡g : g 2 G}.
V

⇤
extends the action ⇡ : G⇥H ! H to

V
⇤ : L2(G)⇥D(A) ! H, V

⇤
 
F =

Z

G

F (g)⇡g dg.

Definition

Let X be a Banach subspace of L
2(G), and let  2 D(A).

The orbit space associated to X and  is the subset {V ⇤
 
F : F 2 X}

of H with norm kfk := inf{kFk : F 2 X,V
⇤
 
F = f}.

The coorbit space associated to X and  is the set of all f 2 H such

that V f 2 X with norm kfk := kV fkX .



Weighted Spaces

Remark:

The definitions of orbit and coorbit spaces work best when further

structure is imposed on X.

The main examples for X are weighted L
p
spaces.

Definition
A weight function is a continuous function w : G ! R+ which is

submultiplicative and symmetric, i.e.,

w(gh)  w(g)w(h), w(g) = w(g�1).

The weighted space L
p
w(G), p 2 [1,1], is defined as

L
p

w(G) := {F : Fw 2 L
p(G)}, kFk

L
p
w(G) := kFwkLp(G).

Remark: L
p
w(G) makes sense for arbitrary measurable functions w.



Properties of Weighted Spaces

Lemma

Let w be a weight function and p 2 [1,1].

1 L
p
w(G) is continuously included in L

p(G).

2 The space L
p
w(G) is L-invariant.

3 L acts strongly continuously on L
p
w(G).

Proof:

1 The symmetry of w implies w(g)2 = w(g)w(g�1) � w(e) � 1.

2 The submodularity of w implies that

kLgFk
L
p
w(G) = k(LgF )wkLp(G) = kF (Lg�1w)kLp(G)

 w(g)kFwkLp(G) = w(g)kFk
L
p
w(G).

3 It su�ces to verify limg!e kLgF � FkL2(G) = 0 for F 2 Cc(G).



Regular Coorbit Spaces

Remark:

The following coorbit space H1,w plays the role of test functions in

the theory of distributions.

More general coorbit spaces, which are not subspaces of H, are

defined later on.

Definition
Let w be a weight function.

An analyzing vector is a function  2 D(A) with kA kH = 1 such

that V  2 L
1
w(G).

H1,w is defined as the coorbit space associated to L
1
w(G) and an

analyzing vector  , i.e.,

H1,w := {f 2 H : V f 2 L
1
w(G)}, kfkH1,w := kV fkL1

w(G).



Correspondence Principle

Setting: We fix a weight function w and an analyzing vector  .

Theorem
The voice transform is an isometric isomorphism

V : H1,w ! {F 2 L
1
w(G) : F = F ⇤ V  }.

Proof:

X := {F 2 L
1
w(G) : F = F ⇤ V  } is well-defined and a Banach

subspace of L
2(G) thanks to Young’s inequality and w � 1:

kF ⇤ V  kL2(G)  kFkL1(G)kV  kL2(G)  kFkL1
w(G)kV  kL2(G).

The definition of the orbit and coorbit spaces is una↵ected when

L
1
w(G) is replaced by X.



Independence of the Analyzing Vector

Lemma
H1,w does not depend on the choice of analyzing vector  .

Proof:

Let  1, 2, 3 be analyzing vectors. We will show that V 1f 2 L
1
w(G)

implies V 3f 2 L
1
w(G).

By the orthogonality relations, one has for any g 2 G that

V 1f ⇤ V 2 2(g) = hV 1f, LgV 2 2iL2(G) = hV 1f, V 2(⇡g 2)iL2(G)

= hA 2, A 1iHhf,⇡g 2iH = hA 2, A 1iHV 2f(g),

V 1f ⇤ V 2 2 ⇤ V 3 3 = hA 2, A 1iHV 2f ⇤ V 3 3

= hA 2, A 1iHhA 3, A 2iHV 3f.

The left-hand side belongs to L
1
w(G) by Young’s inequality. Assuming

wlog. that  2 satisfies hA 1, A 2iH 6= 0 6= hA 2, A 3iH , one

deduces that V 3f on the right-hand side belongs to L
1
w(G).



Further Properties

Lemma
H1,w is ⇡-invariant, and ⇡ acts strongly continuously on it.

Proof: Correspondence H1,w
⇠= X := {F 2 L

1
w(G) : F = F ⇤ V  }

H1,w is ⇡-invariant because X is L-invariant.

⇡ acts strongly continuously on H1,w because L acts strongly

continuously on X.

Lemma

H1,w coincides with the orbit space associated to L
1
w(G) and  .

Proof:

H1,w is an orbit space because H1,w = V
⇤
 
V H1,w = V

⇤
 
L
1
w(G).



Questions to Answer for Yourself / Discuss with Friends

Repetition: What is a (regular) coorbit space?

Check: Are weighted L
p
spaces Banach? Do they increase or

decrease in p?

Check: If limg!e kLgF � FkL2(G) = 0 holds for all F in a dense

subset of L
2(G), why does it then hold for all F?
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Gelfand triples

Definition

A Gelfand triple is a triple (K,H,K
⇤), where K is a topological vector

space, which is densely and continuously included in a Hilbert space H.

Lemma

Let (K,H,K
⇤) be a Gelfand triple. Then the inner product h·, ·iH extends

to a sesquilinear form on K
⇤ ⇥K.

Proof: Let i : K ! H be the inclusion, and let j = h·, ·iH : H ! H
⇤
.

Then i
⇤ : H⇤ ! K

⇤
is injective because i has dense range, i

⇤ � j includes

H into K
⇤
, and the desired extension is just the duality K

⇤ ⇥K ! R.



Gelfand Triples of Coorbit Spaces

Setting: ⇡ : G ! U(H) is a square-integrable representation with

Duflo–Moore operator A, w is a weight function, and  is an analyzing

vector.

Lemma

The spaces (H1,w, H,H
⇤
1,w) form a Gelfand triple.

Proof:

H1,w is isomorphic via the voice transform to the space

{F 2 L
1
w(G) : F = F ⇤ V  }, which is continuously included in the

space {F 2 L
2(G) : F = F ⇤ V  }, which is isomorphic via the

inverse voice transform to H.

H1,w contains the orbit {⇡g : g 2 G} because

k⇡g kH1,w = kV (⇡g kL1
w(G) = kLgV  kL1

w(G) . kV  kL1
w(G) < 1.

The orbit is dense in H because ⇡ is irreducible.



Duals of Coorbit Spaces

Remark: As H1,w plays the role of test functions, H
⇤
1,w plays the role of

distributions.

Definition
The extended voice transform is defined for any f 2 H

⇤
1,w and g 2 G as

V (f)(g) := hf,⇡g iH⇤
1,w⇥H1,w .

Remark: This extends the voice transform on H because the dual pairing

between H
⇤
1,w and H1,w extends the inner product on H.



Correspondence Principle

Remark: L
1
w(G)⇤ = L

1
1/w(G).

Theorem (Correspondence principle)

V : H⇤
1,w ! {F 2 L

1
1/w : F = F ⇤ V  } is an isometric isomorphism.

Proof: In the proof of the correspondence principle for the regular voice

transform, replace the Hilbert inner product on H by the dual pairing

between H
⇤
1,w and H1,w.



Questions to Answer for Yourself / Discuss with Friends

Repetition: How does the voice transform extend to duals of coorbit

spaces?

Check: If (K,H,K
⇤) is a Gelfand triple, and H is seen as a subspace

of K
⇤
, how are elements of H applied to elements of K?

Check: Prove that the topological dual of L
1
w(G) is L1

1/w(G).

Transfer: What Gelfand triples are used to define distributions and

tempered distributions?
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Weighted Spaces

Setting: ⇡ : G ! U(H) is a square-integrable representation with

Duflo–Moore operator A, w is a weight function, and  is an analyzing

vector subject to some further conditions.
1

Definition
A w-moderate weight is a continuous function m : G ! R+ satisfying

m(ghk)  w(g)m(h)w(k), g, h, k 2 G.

The weighted space L
p
m(G) is defined for any p 2 [1,1] as

L
p

m(G) := {F : Fm 2 L
p(G)}, kFk

L
p
m(G) := kFmkLp(G).

Remark:

This extends the def. of L
p
w(G) since w is a w-moderate weight.

k · k
L
p
w(G) is a norm, but k · k

L
p
m(G) may be only a seminorm.

1See Theorem 3.12 in Dahlke, De Mari, Grohs, Labatte (2015).



Coorbit Spaces

Setting: We fix a w-moderate weight m.

Definition
The coorbit space Hp,m is defined as

Hp,m := {F 2 H
⇤
1,w : V (F ) 2 L

p

m(G)} .

Remark:

This extends the definition of H1,w, and H = H2,1.

Hp,m is independent of the choice of analyzing vector  .

Hp,m coincides as a set with an orbit space.

Theorem (Correspondence principle)

Under an additional condition on  , the voice transform

V : Hp,m ! {F 2 L
p
m(G) : F = F ⇤ V  } is an isometric isomorphism.



Structure of Coorbit Spaces

Uniqueness: Hp1,m1 = Hp2,m2 if and only if p1 = p2 and m1 . m2 . m1.

Duality: H
⇤
p,m = Hq,1/m for any p 2 [1,1) and 1

p
+ 1

q
= 1.

Embeddings: Hp,m is increasing in p and decreasing in m.

Compact Embeddings: Hp1,m1 embeds compactly in Hp2,m2 if

m1/m2 2 L
r(G) for some r  1

p2
� 1

p1
> 0.

Complex Interpolation: For any ✓ 2 [0, 1] and p1 < 1,

[Hp1,m1 , Hp2,m2 ]✓ = Hp,m with
1
p
= 1�✓

p1
+ ✓

p2
and m = m

1�✓
1 m

✓

2.

Generalizations: L
p
m(G) is a left- and right-invariant solid Banach function

space on G, and coorbit spaces can be defined for such spaces.



Questions to Answer for Yourself / Discuss with Friends

Repetition: How are (general) coorbit spaces Hp,m defined?

Check: Hp,m ✓ H
⇤
1,w implies L

p
m(G) ✓ L

1
w(G)⇤—how can this be

seen directly? Hint: show that m(e) = m(gg�1) . m(g)w(g�1).

Background: Read up on duality, embedding, and interpolation

properties of L
p
spaces.
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Towards Banach Frames on Coorbit Spaces

Setting: ⇡ : G ! U(H) is a square-integrable representation with

Duflo–Moore operator A, w is a weight function, m is a w-moderate

weight, p 2 [1,1], and  is an analyzing vector subject to some further

conditions.
2

Strategy:

Define a Banach frame for {F 2 L
p
m(G) : F = F ⇤ V  } via

left-translations of the kernel V  , i.e., by writing

F =
X

k

ck(F )LgkV  

for a well-chosen sequence of gk 2 G.

Get a Banach frame for Hp,m via the correspondence principle.

2See Theorem 3.19 in Dahlke, De Mari, Grohs, Labatte (2015).



Density and Separation

Remark: Intuitively, translations of a kernel by (gk) are a frame if (gk)
spreads out over all of G and does not accumulate anywhere.

Definition

A sequence (gk)k2N in G is called

U -dense if U is a compact neighborhood of e 2 G and
S

k
LgkU = G.

separated if there exists a compact neighborhood U of e 2 G such

that LgkU \ LglU = ; for k 6= l.

relatively separated if it is a finite union of separated sequences.



Banach Frames on Weighted Spaces

Definition

The weighted sequence space `
p
m is defined as

`
p

m
:= {� : �m 2 `

p}, k�k
`
p
m
:= k�mk`p .

Theorem

If U is a su�ciently small neighborhood of e 2 G and (gk) is a U -dense

and relatively separated sequence in G, then (LgkV  )k2N is a Banach

frame for X := {F 2 L
p
m(G) : F = F ⇤ V  } with respect to `

p
m.

Remark: the frame coe�cients are specified in the proof.



Proof: Banach Frames on Weighted Spaces

Proof for p = 1 and m = w:

Let ( k) be a partition of unity subordinated to (LgkU).
We define some preliminary analysis and synthesis operators:

X 3 F 7! (h k, F iL2(G))k2N 2 `
1
w, `

1
w 3 � 7!

X

k

�kLgkV  2 X.

These operators are well-defined and continuous: letting

C := supg2U w(z), one has

k(h k, F iL2(G))k2Nk`1w =
X

k

|h k, F iL2(G)|w(gk)

 C

X

k

h k, |F |wiL2(G) = CkFkL1
w(G),

���
X

k

�kLgkV  

���
L1
w(G)


X

k

|�k|kLgkV  kL1
w(G)


X

k

|�k|w(gk)kV  kL1
w(G) = k�k`1wkV  kL1

w(G).



Proof: Banach Frames on Weighted Spaces (cont.)

The reconstruction operator (i.e., analysis followed by synthesis),

R : X ! X, RF :=
X

k2N
hF, kiLgkV  ,

tends to IdX as U tends to {e} because for any F 2 X,

���F ⇤ V  �
X

k

h k, F iL2(G)LgkV  

���
L1
w(G)

=
���
X

k

Z

G

F (g) k(g)(Lg � Lgk)V  dg
���
L1
w(G)


X

k

h k, |F |iL2(G) sup
g2LgkU

k(Lg � Lgk)V  kL1
w(G)


X

k

h k, |F |iL2(G)w(gk) sup
u2U

k(Lu � Id)V  kL1
w(G)

 CkFkL1
w(G) sup

u2U
k(Lu � Id)V  kL1

w(G) ! 0.



Proof: Banach Frames on Weighted Spaces (cont.)

R is invertible for su�ciently small U because IdX is invertible and

invertible operators are open.

Any F 2 X can be written as

F = RR
�1

F =
X

k2N
h k, R

�1
F iL2(G)LgkV  .

Thus, the desired Banach frame for X with respect to `
1
w is

ek := LgkV  2 X, ck := h k, R
�1(·)iL2(G) 2 X

⇤
, k 2 N.



Banach Frames for Coorbit Spaces

Corollary

If U is a su�ciently small neighborhood of e 2 G and (gk) is a U -dense

and relatively separated sequence in G, then (⇡gk )k2N is a Banach frame

for Hp,m with respect to `
p
m.

Proof: Apply the isomorphism V
�1
 

: X ! Hp,m.



Harmonic Analysis and Neural Networks

Let G be a sub-group of the a�ne group GL(Rd)n Rd
, and define

⇡ : G ! U(L2(Rd)), ⇡(A,b)(f)(x) = det(A)�1/2
f(A�1(x� b)).

Then coorbit theory provides continuous and discrete representations

f(x) =

Z

G

F (A, b) det(A)�1/2
 (A�1(x� b))dAdb

=
X

k

ck det(Ak)
�1/2

 (A�1
k

(x� bk)),

where  is a suitable analyzing vector, with an equivalence of norms

kFk
L
p
m(G) ' kckk`pm ' kfkHp,m .

These representations can be interpreted as infinite-width multi-layer

perceptrons with activation function  .



Questions to Answer for Yourself / Discuss with Friends

Repetition: How are Banach frames of weighted spaces and coorbit

spaces constructed?

Background: Refresh your memory of the definition and construction

of partitions of unity.

Check: Why is the set of invertible operators open in the set of

bounded linear operators?

Discussion: How could coorbit theory be used to derive approximation

bounds of neural networks?
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Outlook on this week’s discussion and reading session

Reading:

– Feichtinger Groechenig (1988): A unified approach to atomic

decompositions

– Dahlke, De Mari, Grohs, Labatte (2015): Harmonic and Applied

Analysis

Numerical Example:

– Some wavelet transforms in image analysis.



Summary by learning goals

Having heard this lecture, you can now. . .

Describe bases and frames in Hilbert and Banach spaces.

Build signal representations from group representations.

Interpret such representations as multi-layer perceptrons.
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Overview of Week 6

1 Coorbit Theory, Signal Analysis, and Deep Learning

2 Heisenberg Group

3 Modulation Spaces

4 A�ne Group

5 Wavelet Spaces

6 Shearlet Group

7 Shearlet Coorbit Spaces

8 Wrapup
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Harmonic Analysis

Setting: ⇡ : G ! U(H) is a strongly continuous irreducible unitary

representation of a locally compact group G on a Hilbert space H

such that
R
|h⇡gf, fiH |2dg < 1 for some  2 H.

Voice transform: For any  2 H, the voice transform is the linear map

V : H ! C(G), V f(g) = hf,⇡g iH .

Admissibility: the voice transform V is isometric for all  2 D(A)
with kA kH = 1, where A is the Duflo–Moore operator. These  are

called admissible.

Reproducing kernel spaces: for any admissible  , the voice transform

is an isometric isomorphism onto the space

{F 2 L
2(G) : F ⇤ V  = F}

with reproducing kernel V  .



Coorbit Theory

Weighted spaces: for exponents p 2 [1,1] and w-moderate weight

functions m : G ! R+, one defines weighted spaces L
p
w(G) and

L
p
m(G), respectively.

Analyzing vectors are defined as admissible  with V  2 L
1
w(G).

Coorbit spaces Hp,m are constructed by requiring the voice transform

to be an isomorphism for some (equivalently, all) analyzing vectors  :

V : Hp,m

⇠=�! {F 2 L
p

m(G) : F ⇤ V  = F}.

Banach frames: for suitable analyzing vectors  2 D(A) and group

elements (gk)k2N, one obtains a Banach frame (⇡gk )k2N for the

coorbit space Hp,m with respect to a weighted sequence space `
p
m.

Proof by correspondence principle: (LgkV  )k2N is a Banach frame

for {F 2 L
p
m(G) : F ⇤ V  = F} with respect to `

p
m.



Abelian Groups are not Interesting for Coorbit Theory

Theorem
Abelian groups have only one-dimensional irreducible representations.

Lemma (Schur)

⇡ : G ! U(H) is irreducible if and only if its centralizer is trivial, i.e.,

{T 2 L(H) : ⇡gT = T⇡g for all g 2 G} = span{IdH}.

Proof of the Theorem:

The centralizer of ⇡ is trivial because ⇡ is irreducible.

The operators ⇡g belong to the centralizer because G is Abelian.

Thus, the operators ⇡g are multiples of the identity.

Thus, all one-dimensional subspaces are invariant.



Signal analysis and Deep Learning

Signal Analysis:

There are many di↵erent group representations with associated voice

transforms.

These have a variety of applications in signal analysis such as

time-frequency analysis, multi-resolution analysis, and edge detection.

The interpretation varies strongly from case to case.

Deep learning inherits many of the strengths of signal analysis:

Many voice transforms are implementable via shallow nets with

activation function equal to the analyzing function.

Alternatively, via dictionary learning, they are implementable via deep

nets with other activation functions.

In this case, deep learning can adaptively select (i.e., learn) a suitable

analyzing function.



Questions to Answer for Yourself / Discuss with Friends

Repetition: Refresh your memory of the voice transform and the

construction of coorbit spaces.

Check: As the translation group is Abelian, its representation on

L
2(Rd) must be reducible—can you find a subrepresentation?

Check: Same question for the modulation group. Hint: apply the

Fourier transform.

Check: How can dictionary learning be applied to implement signal

transforms via deep networks?

Background: Look up the proof of Schur’s lemma. For instance, in

[Christensen], [Dahlke e.a.], or [Folland].
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Structure

Definition

The Heisenberg group is the set G := Rd ⇥ Rd ⇥ S
1

equipped with the

product topology and the composition

(a1, b1, t1) · (a2, b2, t2) := (a1 + a2, b1 + b2, t1t2e
2⇡ib1a2) .

Properties:

The Heisenberg group is not Abelian.

The Haar measure is the product measure of the three involved

Lebesgue measures.

The Heisenberg group is unimodular.



Representation

Definition

The Schrödinger representation ⇡ : G ! U(L2(Rd)) is defined as

⇡(a, b, t)f(x) := te
2⇡ib(x�a)

f(x� a) ,

where f 2 L
2(Rd), (a, b, t) 2 G, and x 2 Rd

.

Remark:

⇡ can be expressed in terms of translation and modulation as

⇡(a, b, t)f = te
�2⇡iab

EbTaf .

Translations are time shifts, and modulations are frequency shifts.

⇡ is irreducible and integrable.

All unit vectors in L
2(Rd) are admissible because G is unimodular.



Gabor Transform

Remark:

The Gabor transform or short-time Fourier transform is the voice

transform of the Schrödinger representation.

The torus component t 2 S
1

can (and will) be ignored for all practical

purposes.

Definition

For any admissible  2 L
2(Rd), the Gabor transform

V : L2(Rd) ! L
2(R2d) is given by

V f(a, b) :=

Z

Rd
f(x) (x� a)e�2⇡ixb

dx = hf,EbTa iL2(Rd),

where f 2 L
2(Rd) and a, b 2 Rd

.



Questions to Answer for Yourself / Discuss with Friends

Repetition: Describe the Schrödinger representation of the Heisenberg

group. Think about a way of memorizing the group structure.

Check: Why can the torus component be ignored for the purpose of

signal analysis?
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Analyzing Functions

Setting: We consider the Schrödinger representation ⇡ of the Heisenberg

group G on L
2(Rd).

Lemma

Let w be a weight function on G. A function  2 L
2(Rd) is an analyzing

vector for w if and only if k k = 1 and

Z

Rd

Z

Rd
|h , EbTa i|w(a, b) da db < 1 .

Remark:

The Feichtinger algebra S0 is defined as the subspace of L
2(Rd)

described by the above integrability condition with w ⌘ 1.

The Gauss function is analyzing
1

for all polynomial weight functions

w(a, b) := (1 + kbk)|s|, s 2 R.

1See [Feichtinger Gröchenig 1988, Section 7.1].



Gabor coorbit spaces

Remark: Gabor coorbit spaces are called modulation spaces:

Definition
Let d 2 N, let m be a w-moderate weight, and let  be an analyzing

vector for w. For any 1  p, q  1, the modulation space M
p,q
m consists

of all tempered distributions f 2 S 0
such that

Z ✓Z
|hf,EbTa i|pm(a, b)pda

◆
q/p

db < 1 ,

with the usual modifications for p, q 2 {1}.

Remark:

This definition is independent of the choice of w and  .

For p = q, we write M
p
m := M

p,p
m .



Properties and Examples

The Feichtinger algebra provides a rich repertoire of analyzing vectors

because it

Contains all f 2 Cc(Rd) with Ff 2 L
1(Rd).

Contains the Schwartz space of rapidly decreasing functions.

Is invariant under the Heisenberg group and the Fourier transform.

Modulation spaces with constant weights m ⌘ 1:

M
1
m is the Feichtinger algebra S0.

M
2
m is the space L

2(Rd).

Modulation spaces with polynomial weights m(a, b) := (1 + kbk)s:
M

2
m is the Sobolev (aka. Bessel potential) space H

s(Rd), for any

s 2 R. This follows from the respective characterization via frames.



Gabor Frames

Theorem

Let p 2 [1,1), let s 2 R, let w(a, b) := (1 + kbk)|s|, and let
m(a, b) := (1 + kbk)s. For any  2 M

1,1
w \ {0} and su�ciently small

↵,� > 0, the vectors (E�bT↵a )a,b2Zd form a Banach frame for Mp
m with

respect to the sequence space

`
p

m
:=

n
(�a,b)a,b2Zd : k�kp

`
p
m
:=

X

a,b2Zd

|�a,b|p(1 + kbk)sp < 1
o
.

Proof: For this choice of weight function, no further conditions
2

on the

analyzing vector  are needed.

Remark: The result is independent of the enumeration of a, b 2 Zd

because the sum in the `
p
m norm converges unconditionally.

2See Theorem 3.19 in Dahlke, De Mari, Grohs, Labatte (2015).



Gabor Frames for Time-Frequency Analysis

Remark: Gabor frames (equivalently, the short-time Fourier transform)

define a uniform tiling of the time-frequency domain:

Figure: [www.ndt.net/article/v07n09/08]



Gabor Frames for Time-Frequency Analysis

22

A Typical Musical STFT

Hans G. Feichtinger WIENER AMALGAMS and GABOR ANALYSIS

Figure: Intensity (color-coded) of an audio signal, plotted over time (horizontal)

and frequency (vertical). [Feichtinger (2015): Wiener Amalgams and Gabor

Analysis]



Questions to Answer for Yourself / Discuss with Friends

Repetition: Describe the Gabor transform, modulation spaces, and

their role in signal analysis.

Check: Compute the analyzing condition more explicitly. Hint:

express the integral da by a convolution and apply the Fourier

transform; see [Feichtinger Gröchenig (1988), Section 7.1].

Background: Read up on the Gabor transform and short-time Fourier

transform.
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Structure

Definition

The a�ne group is the set G := (R \ {0})⇥ R equipped with the product

topology and the composition

(a0, b0) · (a, b) := (a0a, a0b+ b
0) .

Properties:

This corresponds to the composition of a�ne maps.

The a�ne group is not Abelian.

The left Haar measure is
1

|a|2da db, and the right Haar measure is

1
|a|da db, where da db denotes the Lebesgue measure on R2

.

In particular, the group is not unimodular.



Representation

Definition

The a�ne representation ⇡ : G ! U(L2(R)) is defined as

⇡(b, a)f(y) :=
1p
|a|

f
�y � b

a

�
, f 2 L

2(R), (b, a) 2 G, y 2 R .

Remark:

⇡ can be expressed in terms of translation and dilation as

⇡(a, b)f = TbDaf .

The representation ⇡ is irreducible and integrable.
1

1Irreducibility fails for the connected subgroup R>0 ⇥ R.



Admissibility

Lemma
The Duflo–Moore operator associated to ⇡ is given by

Af(⇠) :=
Ff(⇠)p

|⇠|
, ⇠ 2 R,

and is defined for all f in

D(A) :=
n
f 2 L

2(R) :
Z

R

|Ff(⇠)|2

|⇠| d⇠ < 1
o
.

Remark: Thus, a function  2 L
2(R) is admissible if and only if it satisfies

the Calderón equation
2

Z

R

|F (⇠)|2

|⇠| d⇠ = 1.

2See [Dahlke e.a., Example 2.48.]



Wavelet Transform

Remark:

Admissible vectors are called wavelets.

The wavelet transform is the voice transform of the a�ne

representation.

Definition

For any admissible  2 L
2(R), the wavelet transform V : L2(R) ! L

2(G)
is given by

V f(a, b) :=
1p
|a|

Z

R
f(x) 

�x� b

a

�
dx .



Questions to Answer for Yourself / Discuss with Friends

Repetition: Describe the representation of the a�ne group.

Background: Read the computation of the Duflo–Moore operator.

See [Dahlke e.a. (2015), Example 2.48].

Check: What goes wrong when the a�ne group is replaced by the

connected subgroup R>0 ⇥ R? Hint: see the computation of the

Duflo–Moore operator.

Check: What goes wrong for a�ne groups in higher dimension. Hint:

see the computation of the Duflo–Moore operator.

Discussion: Can you think of a sub-group of the a�ne group which

has an integrable representation in higher dimension? Hint: restrict to

scalar multiples of orthogonal matrices.



Mathematics of Deep Learning, Summer Term 2020

Week 6, Video 5

Wavelet Spaces

Philipp Harms Lars Niemann

University of Freiburg



Analyzing functions

Setting: We consider the representation ⇡ of a�ne group G on L
2(R).

Lemma

Let w be a weight function on G. A function  2 L
2(R) is an analyzing

vector for w if and only if kA k = 1 and

Z

G

|h , TbDa i|w(a, b)
da db

|a|2 < 1 .

Examples:
1

Schwartz functions whose Fourier transform is compactly supported in

R \ {0} are analyzing for any weight function.

Compactly supported functions with su�cient smoothness and

su�ciently many vanishing moments are analyzing for weight

functions of the form w(a, b) := |a|s + |a|�s
.

1See [Dahlke e.a., Theorems 3.24 and 3.35].



Wavelet Coorbit Spaces

Definition
Let m be a w-moderate weight, and let  be an analyzing vector for w.

For any p 2 [1,1], the wavelet coorbit space Hp,m consists of all

tempered distributions f 2 S 0
such that

Z

G

|hf, TbDa i|pm(a, b)p
da db

|a|2 < 1 ,

with the usual modification for p = 1.

Remark:

This definition is independent of the choice of w and  .

The main example is m(a, b) = |a|�s
with s 2 R, and in this case

Hp,m coincides
2

with the homogeneous Besov space Ḃ
s�1/2�1/p
p,p .

2See [Feichtinger Gröchenig 1998] or [Dahlke e.a. 2015]



Wavelet Frames

Theorem

Let p 2 [1,1), s 2 R, w(a, b) := |a|s + |a|�s, and m(a, b) := |a|�s. For
any w-admissible symmetric  subject to some further conditions3 and
su�ciently small ↵ > 1 and � > 0, the vectors (T↵a�bD↵a )a,b2Z form a
Banach frame for Hp,m with respect to the sequence space

`
p

m
:=

n
(�a,b)a,b2Z : k�kp

`
p
m
:=

X

a,b2Z
|�a,b|p↵�asp

< 1
o
.

Proof: For any given U and su�ciently small ↵ > 1 and � > 0, the

sequence (✏↵a
, ✏↵

a
�b)✏2{�1,1},a2Z,b2Z is U -dense and relatively

separated.

3See Theorem 3.19 in Dahlke, De Mari, Grohs, Labatte (2015).



Wavelet Frames for Multi-Resolution Analysis

Remark: Wavelet frames define a non-uniform tiling of the time-frequency

domain, which corresponds to fast sampling of high frequencies and slow

sampling of low frequencies.

Figure: [www.ndt.net/article/v07n09/08]



Wavelet Frames for Multi-Resolution Analysis

Figure: Top: A seismic signal. Bottom: The signal intensity (color-coded) plotted

over time (horizontal) and scale (vertical). From obspy.org



Application to Image Analysis

Remark: The JPEG2000 standard uses lossy compression based on

Cohen–Daubechies–Feauveau (CDF) wavelets.

Figure: Wavelet coe�cients at scale a = 1 (top left), di↵erences to scale a = 1/2
(neighboring squares), and di↵erences to scale a = 1/4 (neighboring squares).

From en.wikipedia.org/wiki/JPEG_2000



Questions to Answer for Yourself / Discuss with Friends

Repetition: Describe wavelet spaces and the wavelet transform.

Check: Draw the locations of the group elements in the definition of

wavelet frames.

Check: These group elements accumulate near a = 0; why are they

still relatively separated?

Check: Verify that m(a, b) := |a|s is moderate for

w(a, b) := |a|s + |a|�s
.

Background: Read up on wavelets and multi-resolution analysis.
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Structure

Notation: For a 2 R⇤ := R \ {0} and b 2 R, let

Aa =

✓
a 0
0 sign(a)

p
|a|

◆
and Sb =

✓
1 b

0 1

◆

denote the parabolic scaling matrix and the shear matrix, respectively.

Definition

The full shear group is the set G := R⇤ ⇥ R⇥ R2
equipped with the

product topology and the composition

(a1, b1, t1) · (a2, b2, t2) := (a1a2, b1 + b2

p
|a1|, t1 + Sb1Aa1t2) .

Properties:

The full shearlet group is not Abelian.

The left Haar measure is given by |a|�3
da db dt.



Representation

Definition

The shearlet representation ⇡ : G ! U(L2(R2)) is defined as

⇡(a, b, t)f(x) := |a|�
3
4 f(A�1

a S
�1
b

(x� t)) ,

where f 2 L
2(R2), (a, b, t) 2 G, and x 2 R2

.

Remark:

It can be written in terms of translations and the left-regular

representation of parabolic scaling and shear matrices:

⇡(a, b, t)f(y) = TtLSbAaf .

The representation ⇡ is irreducible and square-integrable.

However, as an aside, the representation of the reduced shear group

R+ ⇥ R⇥ R2
is reducible.



Admissibility

Lemma
The Duflo–Moore operator associated to ⇡ is given by

Af(⇠, ⌘) :=
Ff(⇠, ⌘)

|⇠| , (⇠, ⌘) 2 R2
,

and is defined for all f in

D(A) :=
n
f 2 L

2(R2) :

Z

R2

|Ff(⇠, ⌘)|2

|⇠|2 < 1
o
.

Remark: Thus, a function  2 L
2(R2) is admissible if and only if

Z

R2

|F (⇠, ⌘)|2

|⇠|2 d⇠ d⌘ = 1.



Shearlet Transform

Remark:

Admissible vectors are called shearlets.

The shearlet transform is the voice transform of the shearlet

representation.

Definition

For any admissible  2 L
2(R2), the shearlet transform

V : L2(R2) ! L
2(G) is given by

V f(g) = hf,⇡gfi .

Remark: Generalizations to higher dimensions are possible.



Questions to Answer for Yourself / Discuss with Friends

Repetition: Describe the shearlet group and its representation.

Check: Draw the action of a shear matrix on a rectangle.

Background: Skim through the computation of the Haar measure and

the admissibility condition. Hint: this can be found in [Dahlke e.a.

(2015), Lemma 3.27 and Proposition 3.30].
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Analyzing Functions

Setting: We consider the representation of the shearlet group G on

L
2(R2).

Examples of analyzing functions:
1

Schwartz functions whose Fourier transform is compactly supported in

R2 \ ({0}⇥ R) are analyzing for every locally integrable weight

function w(a, b, t) = w(a, b).

Compactly supported functions with su�cient smoothness and

su�ciently many vanishing moments are analyzing for weight

functions w(a, b, t) = w(a) = |a|r + |a|�r
with r 2 R.

1See [Dahlke e.a., Theorems 3.33 and 3.35]



Shearlet Coorbit Spaces

Definition
Let m be a w-moderate weight, and let  be an analyzing vector for w.

For any p 2 [1,1], the shearlet coorbit space Hp,m consists of all

tempered distributions f 2 S 0
such that

Z

G

|hf,⇡g i|pm(g)pdg < 1 ,

with the usual modification for p = 1.

Remark:

This definition is independent of the choice of w and  .

In the most important case m(a, b, t) = |a|�s
with s 2 R, there are

comparison results to Besov spaces.



Shearlet Frames

Theorem

Let p 2 [1,1), s 2 R, w(a, b, t) = |a|s + |a|�s, and m(a, b, t) = |a|�s. For
suitable2  and su�ciently small ↵ > 1, � > 0, and ⌧ > 0, the vectors

⇣
⇡g : g = (↵a

,↵
a/2
�b, S

↵a/2�bA↵a⌧ t)
⌘

a2Z,b2Z,t2Z

form a Banach frame for Hp,m with respect to the sequence space

`
p

m
:=

n
(�a,b,t)a,b,t2Z : k�kp

`
p
m
:=

X

a,b,t2Z
|�a,b,t|p↵�asp

< 1
o
.

Proof:
2

For any given U and su�ciently small ↵ > 1, � > 0, and ⌧ > 0,
the following group elements are U -dense and relatively separated:

(✏↵a
,↵

a/2
�b, S

↵a/2�bA↵a⌧ t)✏2{�1,1},a2Z,b2Z,t2Z

2See [Dahlke, Theorems 3.36 and 3.38].



Frequency Localization of Shearlet Frames

Remark:  is typically chosen as F (⇠1, ⇠2) = F 1(⇠1)F 2(⇠2/⇠1) with

suppF 1 ✓ [�2,�1/2] [ [1/2, 2] and suppF 2 ✓ [�1, 1].

160 K. Guo and D. Labate

and

supp O 1 ! Œ"1; 1!:

The elements of the shearlet system can be written in the Fourier domain as:

O a;s;t."1; "2 / D a
1Cˇ
2 O 1.a"1/ O 2 .aˇ!1. "2

"1
" s// e!2# i""t:

Thus, by the assumptions on  1 and  2 , it follows that the functions O a;s;t have
supports:

supp O a;s;t ! f."1; "2 / W "1 2 Œ" 2a;" 1
2a! [ Œ 12a; 2a!; j

"2
"1
" sj # a1!ˇg:

That is, the support of O a;s;t is a pair of trapezoids, symmetric with respect to
the origin, oriented along a line of slope s. The trapezoidal supports become
increasingly more elongated as a! 0 . Note that, since the functions O a;s;t are in
C1
c , in the space domain the elements  a;s;t are well localized (even though, clearly,

not compactly supported), and their essential support is also highly anisotropic
with orientation controlled by s. In summary, the elements of a continuous shearlet
system form a collection of well-localized functions ranging over a multitude
of scales, orientations, and locations, associated with the variable a; s, and t,
respectively.

Some representative support sets of the functions O a;s;t are illustrated in Fig. 4.1.
Even though the continuous shearlet systems (4.8) exhibit directionality prop-

erties going beyond the traditional isotropic wavelet systems, they do have a
directional bias which is a consequence of the fact that shear variable s is associated

Fig. 4.1 Fourier domain
supports of representative
elements  a;s;t of a
continuous shearlet system,
for different values of aand s.

Figure: Support of  after scaling by a and shearing by b := s. [Dahlke e.a.

(2015)]



Shearlet Frames for Edge Detection

Remark: The decay of V f(a, b, t) for a & 0 is

Fast when t is a regular point of f , and

Slow when t lies on an edge of f which is normal to (1, b).4 Detection of Edges 165

O(a
3
4 )

O(aN)

O(a
3
4 )

O(a
3
4 ) O(aN)

O(aN)

Fig. 4.2 Asymptotic decay rate of the continuous shearlet transform of B D !S, where S ! R2 has
piecewise smooth boundary. Here we consider the case where ˇ D 1

2
. Away from the boundary,

the decay is faster than O.aN/, for any N 2 N. At the regular points p 2 @S, for s corresponding to
the normal orientation, the shearlet transform decays as O.a

3
4 /; for all other values of s, the decay

is faster than O.aN/, for any N 2 N. At a corner point p, the shearlet transform decays as O.a
3
4 /

for the values of s associated with the two normal orientations at p.

(i) If p … @S then, for all s 2 R,

lim
a!0C

a"N SH  B.a; s; p/ D 0; for all N > 0:

(ii) If p0 2 @S is a regular point, s0 corresponds to the normal direction of @S at
p0 and s ¤ s0, then

lim
a!0C

a"N SH  B.a; s; p0/ D 0; for all N > 0:

(iii) If p0 2 @S is a regular point, s0 corresponds to the normal direction of @S at
p0; k.p0/ D 0, and 1

3
< ˇ < 1 , then

lim
a!0C

a" 1C ˇ
2 SH  B.a; s0; p0/ ¤ 0:

(iv) If p0 2 @S is a regular point, s0 corresponds to the normal direction of @S at
p0; k.p0/ 6D 0, and 0 < ˇ ! 1

2
, then

lim
a!0C

a".1"ˇ
2
/SH  B.a; s0; p0/ ¤ 0:

(v) If p0 2 @S is a regular point, s0 corresponds to the normal direction of @S at
p0; k.p0/ 6D 0, and 1

2
! ˇ < 1 , then

lim
a!0C

a" 1C ˇ
2 SH  B.a; s0; p0/ ¤ 0:

Figure: Indicator function f , points t with attached vectors (1, b), and decay of

V f(a, b, t) for a & 0. [Dahlke e.a., 2015]



Shearlet Frames for Edge Detection

Example: edge detection based on shearlet coe�cients.
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Figure: [Gibert (2014): Discrete Shearlet Transform on GPU with applications in

anomaly detection and denoising]



Questions to Answer for Yourself / Discuss with Friends

Repetition: Describe the construction of shearlet coorbit spaces.

Check: Draw the locations of the scaling and shearing coe�cients of

the shearlet frame.

Discussion: How could one redefine shearlets to achieve symmetry

with respect to the horizontal and vertical axes in R2
? Hint: define

horizontal and vertical shearlets.

Discussion: Are shearlets directional wavelets? In what sense?

Background: Find out about ridgelets and curvelets and compare

them to shearlets.
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Outlook on this week’s discussion and reading session

Reading:

– Gröchenig (2001): Foundations of Time-Frequency Analysis

– Mallat (2009): A Wavelet Tour of Signal Processing

– Kutyniok and Labate (2012): Shearlets - Multiscale Analysis for

Multivariate Data



Summary by learning goals

Having heard this lecture, you can now . . .

Describe Schrödinger, wavelet, and shearlet representations and the

associated modulation, wavelet, and shearlet spaces.

Explain the time-frequency tilings of the associated signal transforms.

Implement these signal transforms by neural networks.
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Overview of Week 7

1 Rate-Distortion Theory

2 Hypercube Embeddings and Ball Coverings

3 Dictionaries as Encoders

4 Frames as Dictionaries

5 Networks as Encoders

6 Dictionaries as Networks

7 Wrapup
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Encoding, Decoding, and Distortion

Definition
Let H be a normed space, let C ✓ H be a signal class, and let l 2 N.

The set of binary encoders of C with runlength l is defined as

E l := {E : C ! {0, 1}l} .

The set of binary decoders with runlength l is defined as

Dl := {D : {0, 1}l ! H} .

The distortion of an encoder-decoder pair (E,D) 2 E l ⇥Dl is defined
as

�(E,D) := sup
f2C

kf �D(E(f))k
H

.

Remark: Alternatively, in probabilistic settings, one can consider the
expected distortion E[kf �D(E(f))kH].



Encoding Rate

Definition
The optimal encoding rate of a signal class C in a normed space H is
defined as

s
⇤

enc(C) := sup
n
s > 0

��� inf
(E,D)2El⇥Dl

�(E,D) = O(l�s)
o
.

Remark:

The optimal encoding rate quantifies the complexity of a signal class.

The interpretation is information-theoretic: for any s < s
⇤
enc(C), one

can compress signals f 2 C using l-bit encodings with distortion l
�s.

Rate-distortion theory is the mathematical branch of information
theory which studies data compression problems by analyzing the
trade-o↵ between compression rates and distortion.



Examples: Signal Classes

Continuously di↵erentiable functions:
Ck

K
(C) := {f 2 L

2(Rd) | f 2 C
k
, kfk

Ck  K, supp f ✓ C}, where
C ✓ Rd is a smooth bounded domain.

Piecewise continuously di↵erentiable functions:
Ck,pw

K
(I) := {f1 [0,c) + f2 [c,1) | c 2 I, f1, f2 2 Ck

K
(I)}, where

I = (a, b) is an open interval.

Star-shaped images:
STAR2

K
:= { B | B is interior of Jordan curve ⇢ 2 C

2
, k⇢k

C2  K}.
Cartoon images:
CART2

K
:= {f1 B + f2 | B 2 STAR2

K
, f1, f2 2 C2

K
([0, 1]2)}.

Textures: TEXTk

K,M
:= {sin(Mf)g | f, g 2 Ck

K
([0, 1]2)}.

Mutilated functions: MUTILk

K
:= {g(u ·)h | g 2 Ck,pw

K
(R), h 2

Ck

K
([0, 1]d), u 2 Rd

, kuk = 1}.

Remark: All introduced signal classes are relatively compact in L
2(Rd).



Examples: Optimal Encoding Rates

Remark: The main goal of this week’s lecture is to establish the following
optimal encoding rates and to show that they are achieved by deep neural
networks.

Theorem

s
⇤
enc(Ck

K
(C)) = k/d.

s
⇤
enc(C

k,pw

K
(I)) = k.

s
⇤
enc(STAR

2
K
) = 1.

s
⇤
enc(CART

2
K
) = 1.

s
⇤
enc(TEXT

k

K,M
) = k/2.

s
⇤
enc(MUTILk

K
) = k/d.

Sketch of Proof:

Upper bounds on encoding rates: Hypercubes are di�cult to encode.
If C contains hypercubes, then C is di�cult to encode. See Video 2.

Lower bounds on encoding rates: If signals in C have Banach frame
coe�cients with fast decay, then picking the n largest among the first
n
k frame coe�cients defines a good encoder. See Video 4.
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Fig. 5.2 Left: A natural image is typically composed of smooth parts separated by edges and thus
resembles a cartoon image as defined in Example 5.5. The main features are still visible. Right:
True cartoon image.

Example 5.6 (Textures, see [9]). Textures are signals with highly oscillatory,
repetitive structures. In [9] the following model has been proposed for textures:

TEXTk
K;M WD fsin.Mf .x//g.x/ where f ; g 2 Ck

K.Œ0; 1!
2/g:

It consists of warped, oscillatory patterns.

Example 5.7 (Mutilated Functions, see [2]). The class of ‘mutilated functions’ has
been introduced in [2] as all functions of the form

MUTILkK WD fg.u ! x/h .x/ W g 2 C k;pw
K .R/; h 2 C k

K.Œ0; 1!
d/; u 2 Rd; juj D 1g:

Functions in MUTILkK are generally smooth aside from possible discontinuities
across hyperplanes orthogonal to the vector u. Mutilated functions arise, for
instance, as solution to linear transport PDEs [25].

We reiterate that the signal classes that we have seen in the previous examples do
not necessarily correspond to what real-world signals might look like. But still it
is reasonable to consider, for instance, the class TEXTk

K;M as a stylized model for
fingerprint images or seismic data, or the class CART2K as a model for images with
little texture, see Figures 5.3 and 5.2.

Having agreed on what we mean by signal classes in a mathematical sense we
now define what we mean by encoding such data which formally means a mapping
that maps each u 2 C to a bitstream of finite length. Our nomenclature is mostly
based on conventions in the field of rate-distortion theory [1].

Definition 5.8. Let C be a signal class. An encoding/decoding pair .E;D/ consists
of two mappings
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Fig. 5.3 Left: A fingerprint image resembles a texture image as defined in Example 5.6. Right:
True texture image.

E W C ! f0; 1gR; D W f0; 1gR !H ;

where R 2 N denotes the runlength R.E;D/ of .E;D/. The distortion of .E;D/ is
defined as

ı.E;D/ WD sup
u2C
ku ! D ı E.u/kH :

Given an encoding/decoding pair one encodes a signal u 2 C simply by applying
the mapping E (and thus ‘digitizing’ the continuous signal u into a bitstream) and
the decoding works by applying the decoder, e.g. computing D.E.u// 2 H . The
goal of rate-distortion theory is simply to develop encoding/decoding pairs with a
runlength which is as short as possible while at the same time keeping the distortion
small. In particular we want to understand the following quantity.

Definition 5.9. Let C be a signal class. Then we denote its optimal encoding
rate by

s!.C / WD supfs > 0 W There exists C > 0 such that for each R 2 N

there exists .ER;DR/ with R.ER;DR/ D R and ı.ER;DR/ " CR"sg: (5.4)

We remark that knowledge of s!.C / exactly answers the question posed in the
beginning of this section: Indeed, for any s < s!.C / we can encode any signal
u 2 C , up to precision " > 0 using, up to a fixed constant C, ""1=s bits. Of course,
the larger s!, the better: suppose we want to encode with a guaranteed accuracy of
four decimals, i.e. " D 10"6 . Then, if s!.C / D 2 , we would need about 1000 bits
whereas we would need about 1012 bits if s!.C / D 1=2 .

200 P. Grohs

Fig. 5.1 Many parts of natural images can be modeled mathematically as piecewise smooth
functions with curved discontinuities.

The main question that we ask in this chapter is the following.

Suppose we have a given signal class C and a desired precision " > 0. What is the minimal
number N of bits needed to encode any signal f 2 C up to precision "?

Of course this question makes no sense mathematically, as it stands. We need
to cast it more into the mathematical language. For instance: What precisely do we
mean by a ‘signal class’? What does ‘encoding’ mean? And what do we mean by
‘up to precision "’?

In what follows we will present rigorous answers to these questions, together
with some examples. Finally we will show a fundamental and perhaps surprising
phenomenon: For many signal classes one can precisely quantify the optimal trade-
off between N, the number of bits, and ", the desired precision.

To this end we will first, in Section 5.2 introduce basic notions of coding theory.
After presenting several interesting mathematical models for different types of real-
world signals we introduce, for a signal class C , its optimal encoding rate which

204 P. Grohs

Fig. 5.2 Left: A natural image is typically composed of smooth parts separated by edges and thus
resembles a cartoon image as defined in Example 5.5. The main features are still visible. Right:
True cartoon image.

Example 5.6 (Textures, see [9]). Textures are signals with highly oscillatory,
repetitive structures. In [9] the following model has been proposed for textures:

TEXTk
K;M WD fsin.Mf .x//g.x/ where f ; g 2 Ck

K.Œ0; 1!
2/g:

It consists of warped, oscillatory patterns.

Example 5.7 (Mutilated Functions, see [2]). The class of ‘mutilated functions’ has
been introduced in [2] as all functions of the form

MUTILkK WD fg.u ! x/h .x/ W g 2 C k;pw
K .R/; h 2 C k

K.Œ0; 1!
d/; u 2 Rd; juj D 1g:

Functions in MUTILkK are generally smooth aside from possible discontinuities
across hyperplanes orthogonal to the vector u. Mutilated functions arise, for
instance, as solution to linear transport PDEs [25].

We reiterate that the signal classes that we have seen in the previous examples do
not necessarily correspond to what real-world signals might look like. But still it
is reasonable to consider, for instance, the class TEXTk

K;M as a stylized model for
fingerprint images or seismic data, or the class CART2K as a model for images with
little texture, see Figures 5.3 and 5.2.

Having agreed on what we mean by signal classes in a mathematical sense we
now define what we mean by encoding such data which formally means a mapping
that maps each u 2 C to a bitstream of finite length. Our nomenclature is mostly
based on conventions in the field of rate-distortion theory [1].

Definition 5.8. Let C be a signal class. An encoding/decoding pair .E;D/ consists
of two mappings
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Fig. 5.3 Left: A fingerprint image resembles a texture image as defined in Example 5.6. Right:
True texture image.

E W C ! f0; 1gR; D W f0; 1gR !H ;

where R 2 N denotes the runlength R.E;D/ of .E;D/. The distortion of .E;D/ is
defined as

ı.E;D/ WD sup
u2C
ku ! D ı E.u/kH :

Given an encoding/decoding pair one encodes a signal u 2 C simply by applying
the mapping E (and thus ‘digitizing’ the continuous signal u into a bitstream) and
the decoding works by applying the decoder, e.g. computing D.E.u// 2 H . The
goal of rate-distortion theory is simply to develop encoding/decoding pairs with a
runlength which is as short as possible while at the same time keeping the distortion
small. In particular we want to understand the following quantity.

Definition 5.9. Let C be a signal class. Then we denote its optimal encoding
rate by

s!.C / WD supfs > 0 W There exists C > 0 such that for each R 2 N

there exists .ER;DR/ with R.ER;DR/ D R and ı.ER;DR/ " CR"sg: (5.4)

We remark that knowledge of s!.C / exactly answers the question posed in the
beginning of this section: Indeed, for any s < s!.C / we can encode any signal
u 2 C , up to precision " > 0 using, up to a fixed constant C, ""1=s bits. Of course,
the larger s!, the better: suppose we want to encode with a guaranteed accuracy of
four decimals, i.e. " D 10"6 . Then, if s!.C / D 2 , we would need about 1000 bits
whereas we would need about 1012 bits if s!.C / D 1=2 .

Figure: Real-world images (top) can be analyzed by synthesizing them from
simpler image elements (bottom) such as star-shaped domains, cartoons, or
textures. Additional benefits are compression and denoising. [Dahlke, Fig. 5.1–3]



Questions to Answer for Yourself / Discuss with Friends

Repetition: What is an endoding-decoding pair, and how are optimal
encoding rates defined?

Check: How many bits are needed to encode a natural number in
{1, . . . , n}?

Background: The definition of star-shaped images involves Jordan
curves—can you recall their definition and main properties?

Context: Read some introductory articles (e.g. on Wikipedia) on data
compression and rate-distortion theory.
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Hypercube Embeddings

Definition (Donoho 2001)

Let C be a signal class in H, and let p > 0.

A hypercube of dimension m 2 N and side-length � > 0 is a set of the
form (

f +
mX

i=1

✏i i

���✏i 2 {0, 1}
)

,

where f 2 C, and  i are orthogonal functions in H with k ikH � �.

The signal class C is said to contain a copy of `p0 if it contains for each
k 2 N a hypercube with dimension mk and side-length �k such that

�k ! 0 and m
�1/p
k

= O(�k) as k ! 1.

Remark: A ball of radius r in `p contains hypercubes of dimension m 2 N
with side-length rm

�1/p.



Hypercube Embeddings and Encoding Rates

Remark: For many signal classes, hypercube embeddings are easy to
construct and provide (sharp) upper bounds on the encoding rate.

Theorem

If a signal class C in H contains a copy of `
p

0 for some p 2 (0, 2], then

s
⇤

enc(C) 
1

p
� 1

2
.



Proof: Hypercube Embeddings and Encoding Rates

Idea of proof: (See [Dahlke e.a., Theorem 5.12] for a full proof.)

Hypercubes of dimension m can be identified with bit streams in
{0, 1}m.

Recall that the Hamming distance (aka. `1 or Manhattan distance)
between two bit streams is the number of unequal bits.

Cherno↵’s bounds imply that for any compression rate ↵ 2 (0, 1),
there exists C > 0 such that for any m 2 N and encoder-decoder

E : {0, 1}m ! {0, 1}b↵mc
, D : {0, 1}b↵mc ! {0, 1}m,

the distortion in the Hamming distance is lower-bounded by Cm.

This translates into a lower bound on the encoding rate of a
hypercube as well as its containing signal class.



Examples: Upper Bounds on Optimal Encoding Rates

Remark: The following are special cases of the above theorem.

Corollary

The following upper bounds on encoding rates are achieved via hypercube

embeddings:

s
⇤
enc(Ck

K
(C))  k/d via embedding of `

1/( kd+
1
2 )

0

s
⇤
enc(C

k,pw

K
(I))  k via embedding of `

1/(k+ 1
2 )

0

s
⇤
enc(STAR

2
K
)  1 via embedding of `

2/3
0

s
⇤
enc(CART

2
K
)  1 via embedding of `

2/3
0

s
⇤
enc(TEXT

k

K,M
)  k/2 via embedding of `

2/(k+1)
0

s
⇤
enc(MUTILk

K
)  k/d via embedding of `

1/( kd+
1
2 )

0



Examples: Upper Bounds on Optimal Encoding Rates

Idea of proof: For a fixed bump function  , one uses hypercubes of the
following forms:

P
n�1
i=0 ✏i (nx� i) for piece-wise continuously di↵erentiable functions,

{kxk1}+
P

n�1
i=0 ✏i

�
{kxki/n}� {kxk1}

�
for star-shaped images, or

P
n�1
i,j=1 ✏i,j sin

�
n
�k
 (nx� i) (ny � j)

�
for textures, etc.

See [Dahlke e.a., Theorem 5.17] for a full proof.



Digression: Kolmogorov Entropy

Remark:

Encoding rates are closely related to covering numbers and
Kolmogorov entropy.

We have already encountered the Kolmogorov entropy in the context
of statistical learning theory.

Unfortunately, covering numbers are often di�cult to compute and
therefore of rather theoretical interest.

Definition
Let H be a metric space, and let C ✓ H be a relatively compact subset.

The covering number of C is defined for any ✏ > 0 as the smallest
number N✏(C) of ✏-balls required to cover C.
The Kolmogorov entropy of C is defined as H✏(C) := log2(N✏(C)).



Digression: Kolmogorov Entropy and Encoding Rates

Lemma
Let C ✓ H be a relatively compact signal class in a normed space H. Then

the optimal encoding rate s
⇤
enc(C) is related to the Kolmogorov entropy

H✏(C) by
s
⇤

enc(C) = sup
n
s > 0 : H✏(C) = O(✏�

1
s )
o
.

Proof:

Given a pair (E,D) of length l that achieves distortion ✏, the ✏-balls
centered at D(⇠), ⇠ 2 {0, 1}l, cover C.
Conversely, given ✏ > 0, we can find N✏ := 2H✏(C) centers whose
✏-neighborhoods cover C. Encode C using the binary representation of
the nearest center, and decode by reversing this process.



Questions to Answer for Yourself / Discuss with Friends

Repetition: How are upper bounds on the encoding rate obtained
from hypercube embeddings?

Check: Show that relatively compact signal classes have finite
covering numbers.

Background: Skim through the construction of hypercube
embeddings for specific signal classes in [Dahlke e.a., Theorem 5.17].

Transfer: The upper bounds on the optimal encoding rates decay
inversely proportional to the dimension—an instance of the curse of
dimensionality.
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Repetition: Approximation Rates of Dictionaries

Definition

A dictionary (��)�2⇤ in H achieves an approximation rate of (hn)n2N if

�(⌃n(�), C) := sup
f2C

inf
g2⌃n(�)

kf � gkH = O(hn) as n ! 1,

where ⌃n(�) denotes the set of n-term linear combinations in �.

Remark:

A dense dictionary � in H achieves any approximation rate for any
signal class. Nevertheless, it is ill-suited for e�cient encoding of
functions.

This motivates the requirement of polynomial-depth search, which is
described next.

We restrict ourselves to polynomial rates hn = n
�s, s > 0, as these

are most relevant.



Dictionary Approximation with Polynomial-Depth Search

Definition (Donoho 2001)

Let � = (�i)i2N be a dictionary, ⇡ a univariate polynomial, C a signal class
in H, and n 2 N.

The set of n-term linear combinations in � with polynomial-depth
search is defined as

⌃⇡

n(�) =

8
<

:

⇡(n)X

i=1

ci�i

������
ci 2 R with kck0  n

9
=

; .

The approximation rate of � with polynomial-depth search is defined
as

s
⇤

dict(C,�) := sup
n
s > 0

���9⇡ : sup
f2C

inf
g2⌃⇡

n(�)
kg � fkH = O(n�s)

o

Remark: Here, the dictionary needs to be ordered, i.e., indexed over N.



Encoding via Dictionaries

Remark: Polynomial-depth search leads to the desired link between
dictionary approximation rates and encoding rates:

Theorem
For any dictionary � and bounded signal class C in H,

s
⇤

enc(C) � s
⇤

dict(C,�) .

Remark:

A dictionary � is called rate-optimal if equality holds above.

Explicit dictionary approximation rates can be obtained for Hilbert or
Banach frames, as shown in the next video.



Proof: Encoding via Dictionaries

Proof:

We start by constructing an encoder. For any s < s
⇤

dict(C,�), there
exists a polynomial ⇡ and a constant C > 0 such that for all n 2 N
and f 2 C, there exist coe�cients ci 2 R with kck0  n such that

����f �
⇡(n)X

i=1

ci�i

����
H

 Cn
�s

.

The set ⇤n := {i 2 N : ci 6= 0} can be encoded using O(n log n) bits
thanks to the assumption of polynomial-depth search.

Applying the Gram-Schmidt orthonormalization to �⇤n := (��)�2⇤n

yields an orthonormal set �̃⇤n := (�̃�)�2⇤n . Some �̃� may be zero.



Proof: Encoding via Dictionaries (cont.)

Determine coe�cients c̃� uniquely by

X

�2⇤n

c̃��̃� =
X

�2⇤n

c���, c̃� = 0 if �̃� = 0.

Note that ����f �
X

�2⇤n

c̃��̃�

����
H

 Cn
�s

and that the sequence c̃ is `2-bounded uniformly in n and f . (Here
enters the boundedness of C.)
Rounding the coe�cients c̃� up to multiples of n�(s+ 1

2 ) encodes them
with a bit string of length O(n log n).

Altogether, this gives an encoding procedure El : C ! {0, 1}l with
length l = O(n log n).



Proof: Decoding via Dictionaries

Decoding is done by reversing this process: starting from a bit string
⇠, reconstruct the set ⇤n and the rounded approximations ĉ� of c̃�,
and define the decoder

Dn : {0, 1}l ! H, Dl(⇠) :=
X

�2⇤n

ĉ��̃� .

It remains to control the distortion:

kf �Dl(El(f))kH =

����f �
X

�2⇤n

ĉ��̃�

����
H


����f �

X

�2⇤n

c̃��̃�

����
H

+

����
X

�2⇤n

ĉ��̃� �
X

�2⇤n

c̃��̃�

����
H

 Cn
�s + max

�2⇤n

|c̃� � ĉ�|n
1
2  Cn

�s
.



Questions to Answer for Yourself / Discuss with Friends

Repetition: How are lower bounds on encoding rates obtained from
dictionary approximation rates?

Check: The approximation rate of a dense dictionary is arbitrarily
high—what about the approximation rate with polynomial-depth
search?

Check: Verify that the coe�cients c̃ after Gram–Schmidt
orthogonalization are `2-bounded uniformly in n 2 N and f 2 C.
Hint: kc̃k`2 = k

P
�
c̃��̃�kH.

Transfer: Nonlinear approximation spaces C are defined by the
requirement that s⇤(C,�) = s for given s 2 R.
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Repetition: Hilbert Frames

Remark: Recall that Hilbert frames are Banach frames in Hilbert spaces
with respect to the sequence space `2; this boils down to the following:

Definition

A Hilbert frame in a Hilbert space H is a dictionary � = (��)�2⇤ s.t.

8f 2 H : kfk2H .
X

�2⇤

|hf,��iH|2 . kfk2H.

A dual frame for � is a complementary dictionary �̃ = (�̃�)�2⇤ s.t.

8f 2 H : f =
X

�2⇤

hf, �̃�iH�� =
X

�2⇤

hf,��iH�̃�.

Remark: Every Hilbert frame has a dual frame, for instance the canonical
one, which is determined by �µ =

P
�
h�̃µ,��iH��, or the one from the

definition of Banach frames.



Weak `p Spaces

Remark: Recall that a quasi-norm is a norm without a triangle inequality.

Definition

The weak `p-quasinorm of a sequence c := (ck)k2N is defined for any
p > 0 as

kckp
w`p

:= sup
t>0

t
p #{k 2 N : |ck| > t},

and the space w`
p consists of all sequences with finite weak `p-quasinorm.

Remark:

For any p � 1, the space `p embeds continuously in w`
p because

kckp
`p

�
X

k

t
p

{k:|ck|>t} +
X

k

|ck|p {k:|ck|t} � t
p#{k : |ck| > t} .

The space w`
p coincides with the Lorentz space `p,1, is complete,

and is normable for p > 1. Weak L
p spaces are defined similarly.



Approximation via Frames

Remark: We next show that weak `p bounds on Hilbert frame coe�cients
translate into dictionary approximation rates.

Theorem

Let (�n)n2N be a Hilbert frame with dual frame (�̃n)n2N in a Hilbert space

H, and let C be a signal class in H which satisfies the weak `
p
bound

sup
f2C

���(hf, �̃niH)n2N
���
w`p

< 1

and, for some ↵ > 0, the `2 tail bound

sup
f2C

X

i�n

|hf, �̃ii|2 = O(n�↵).

Then s
⇤

dict(C,�) �
1
p
� 1

2 .



Proof: Approximation via Frames

Proof: Claim 1: The w`
p bound implies that �(⌃n(�), C) = O(n�s).

For any signal f 2 C, picking the n largest frame coe�cients defines
an n-term approximation

fn :=
X

in

cki�ki ,

were cki is a non-increasing rearrangement of ck := hf, �̃kiH.
The definition of the w`

p norm implies |cki | . i
�1/p because

|cki |
p
i  |cki |

p#{k 2 N : |ck| � |cki |}  kckp
w`p

.

Together with the frame property of � this yields

kf � fnk2 .
X

i>n

|cki |
2 .

X

i>n

i
�2/p  n

�2s
, where s := 1

p
� 1

2 ,

where the last inequality follows from an elementary calculation. This
proves Claim 1.



Proof: Approximation via Frames

Claim 2: The `2 tail bound implies �(⌃⇡
n(�), C) = O(n�s) for suitable ⇡.

Define ⇡(n) := n
d2s/↵e.

For any signal f 2 C, picking the first ⇡(n) frame coe�cients defines
an approximation f̃n with

kf � f̃nk2H .
X

i>⇡(n)

��hf, �̃iiH
��2 

�
⇡(n)

�
�↵  n

�2s
.

By the previous claim, picking the n largest frame coe�cients of f̃n
defines an approximation fn with

kf̃n � fnk2H . n
�2s

.

Taken together, this implies

kf � fnkH . n
�s

,

which proves Claim 2 and establishes the theorem.



Examples: Lower Bounds on Optimal Encoding Rates

Remark: The following lower bounds are sharp and are obtained as special
cases of the previous theorem:

Corollary

The following lower bounds on encoding rates are achieved via frames:

s
⇤
enc(Ck

K
(C)) � k/d via wavelets, shearlets, and many more

s
⇤
enc(C

k,pw

K
(I)) � k via wavelets

s
⇤
enc(STAR

2
K
) � 1 via curvelets and shearlets

s
⇤
enc(CART

2
K
) � 1 via curvelets and shearlets

s
⇤
enc(TEXT

k

K,M
) � k/2 via wave atoms

s
⇤
enc(MUTILk

K
) � k/d via ridgelets

Proof: Verify the conditions of the previous theorem for the specified
frames; see [Dahlke e.a., Theorem 5.51].



Questions to Answer for Yourself / Discuss with Friends

Repetition: How are dictionary approximation rates obtained from
weak `p bounds on Hilbert frame coe�cients?

Background: Find the definition of wave atoms and have a look at
some pictures of wave atoms. Hint: [Demanet and Ying (2007):
Wave atoms and sparsity of oscillatory patterns]

Discussion: Are the encoders/decoders obtained via frame
approximations constructive and numerically implementable?

Discussion: How could the theory be generalized to Banach frames,
and what kind of results would you expect from this?



Mathematics of Deep Learning, Summer Term 2020

Week 7, Video 5

Networks as Encoders

Philipp Harms Lars Niemann

University of Freiburg



Neural Network Approximation Rates

Remark: Neural networks with constrained memory can be seen as
encoders.

Definition

Let C be a signal class in a normed function space H on Rd, let M 2 N,
let ⇡ be a univariate polynomial, and let A be a subset of R.

The set NNA

M
of neural networks with quantized weights is defined

as the set of neural networks � with input dimension d, output
dimension 1, and at most M non-zero weights belonging to A.

The e↵ective network approximation rate of C is defined as

s
⇤

NN (C) := sup
n
s > 0

���9⇡, 9(AM )M2N : #AM = O(⇡(M)),

sup
f2C

inf
�2NN

AM
M

kR(�)� fkH = O(M�s)
o
,

where R is defined using some fixed activation function ⇢ 2 C(R).



Encoding via Neural Networks

Remark: The memory constraint imposed via weight quantization yields
the desired link between network approximation rates and encoding rates:

Theorem
For any signal class C,

s
⇤

enc(C) � s
⇤

NN (C).

Remark:

Neural networks are called rate-optimal for C if equality holds above.

The theorem implies a lower bound on the network connectivity,
namely, an approximation error of ✏ requires approximately ✏1/s

⇤
enc(C)

non-zero network weights.



Proof: Encoding via Neural Networks

Proof:

Let s < s
⇤

NN
(C), and choose ⇡, (AM )M2N, and C such that

8M 2 N : sup
f2C

inf
�2NN

AM
M

kR(�)� fkH < CM
�s

, #AM  ⇡(M) .

Thus, for any given f 2 C and M 2 N, there exists a network
� 2 NNAM

M
with kR(�)� fkH < CM

�s.

We write E  M for the number of edges, L  M for the number of
layers, N0 := d for the input dimension, N1, . . . , NL for the numbers
of neurons per layer, and N :=

P
L

`=0N`  2E.

We will show that � can be encoded in a bit string of length
O(M logM). This yields an encoder-decoder pair with distortion

kD(E(F ))� fk = kR(�)� fk = O(M�s)

thereby establishing the theorem.



Proof: Encoding via Neural Networks (cont.)

We encode the architecture of � in a bit string:
– The number E of edges is encoded by a string of E 1’s, followed by a

single 0.
– The number L of layers is encoded by a string of dlog2 Ee bits, namely,

by the binary representation of L� 1 with left-padded zeros.
– Then (N0, . . . , NL) is encoded in a string of (L+ 1)dlog2 E + 1e bits.

We encode the topology of � in a bit string:
– To each neuron, we associate a unique index i 2 {1, . . . , N}, noting

that this index can be encoded in a string bi of dlog2 Ee+ 1 bits.
– For each neuron i, we output the concatenation of the bit strings bj of

all children j, followed by a zero string of length 2dlog2 Ee+ 2 to
signal the transition to neuron i+ 1.

We encode the weights of � in a bit string:
– Each weight requires dlog2 ⇡(M)e bits.
– The nodal weights are encoded in (N1 + · · ·+Nl)dlog2 ⇡(M)e bits.
– The edge weights are encoded in Edlog2 ⇡(M)e bits.

Overall, this requires O(M log2M) bits, as claimed.



Questions to Answer for Yourself / Discuss with Friends

Repetition: What is the e↵ective network approximation rate, and
why is it upper-bounded by the encoding rate?

Check: Why can the logarithmic factors in the rate computations be
ignored?

Check: In the last proof we constructed an encoder—what does the
corresponding decoder look like?

Discussion: What does the result say about deep learning? What are
limitations of the result?
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Representation of Dictionaries by Neural Networks

Setting: H = L
2(⌦) for some ⌦ ✓ Rd, and ⇢ : R ! R is globally Lipschitz

continuous or di↵erentiable with polynomially bounded first derivative.

Definition

A dictionary � = (�i)i2N in H is said to be e↵ectively representable by
neural networks if there exists L,M 2 N and a bi-variate polynomial ⇡
such that for every ✏ 2 (0, 1/2) and i 2 N there exists a neural network �
with M(�)  M , L(�)  L, and weights bounded by ⇡(i, ✏�1), such that

k�i � R(�)kH  ✏.

Remark:

The crucial point, also compared to our former setting for dictionary
learning, is the requirement of polynomially bounded weights.

For a�ne systems, i.e., dictionaries of a�ne transformations of a
mother function  , it su�ces to check e↵ective representability of  .



Quantization of Neural Networks

Remark: We will need a seemingly stronger property, namely e↵ective
representation by quantized networks:

Lemma
In the definition of e↵ective representability, it can be assumed without

loss of generality that the weights of � are quantized in the sense that

they belong to the set

⇡(i, ✏)Z \ [�⇡(i, ✏�1),⇡(i, ✏�1)].



Proof: Quantization of Neural Networks

Sketch of proof for Lipschitz activation functions ⇢:

For single-layer networks x 7! A1x+ b1, which by definition are just
a�ne maps, the quantization error of the network is proportional to
the quantization error of the weights.

For double-layer networks x 7! A2⇢(A1x+ b1) + b2, the quantization
error of the single-layer sub-network is amplified polynomially via the
multiplication by A2.

By induction, the same holds for multi-layer networks.

Thus, the quantization error of the network is O(✏) if the
quantization error of the weights is O(✏k) for su�ciently high k, with
additional polynomial dependence on i.

For activation functions with polynomially bounded first derivative we refer
to [Bölcskei e.a., Lemma 3.3].



Transfer of Approximation

Remark: Approximation rates for dictionaries transfer to approximation
rates for neural networks if the dictionary is e↵ectively represented by
neural networks.

Theorem
If � is e↵ectively representable by neural networks and C is bounded, then

s
⇤

NN (C) � s
⇤

dict(C,�).



Proof: Transfer of Approximation

Proof: Dictionary learning.
For any s < s

⇤

dict(C,�), there are approximations fn of f 2 C s.t.

fn := Dn(En(f)) :=

⇡(n)X

i=1

ci�i, kfn � fkH = O(n�s).

In the theorem on encoding via dictionaries in Video 3 we have shown
that the coe�cients ci can be chosen in a set of cardinality
polynomially bounded in n.
The dictionary functions �i, i 2 {1, . . . ,⇡(n)}, can be e↵ectively
represented by neural networks �i, up to an approximation error of
order O(n�s), with weights polynomially bounded in n.
By the quantization lemma, it can be assumed without loss of
generality that the weights of the networks �i belong to a set of
cardinality polynomially bounded in n.
Taking linear combinations produces a network approximation of fn
with weights in a set of cardinality polynomially bounded in n and
approximation error O(n�s).



Rate-Optimal Approximation by Neural Networks

Corollary

If � is a rate-optimal dictionary for C, and � is e↵ectively represented by

neural networks, then neural networks are rate-optimal for C.

Proof: The following rates are equal,

s
⇤

dict(C,�)
1

= s
⇤

enc(C)
2

� s
⇤

NN (C)
3

� s
⇤

dict(C,�),

because

1 the dictionary � is rate-optimal,

2 quantized neural networks are encoders, as shown in Video 5, and

3 quantized dictionary approximations are quantized neural networks, as
shown in the last theorem.

Remark: This corollary applies to all examples of signal classes and
dictionaries discussed so far.



Questions to Answer for Yourself / Discuss with Friends

Repetition: Why and under what conditions is the e↵ective network
approximation rate lower-bounded by the dictionary approximation
rate?

Check: How wide and deep are the approximating networks?

Check: How does the present transfer-of-approximation result di↵er
from the one of Week 3?

Discussion: What does the result say about deep learning? What are
limitations of the result?
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Outlook on this week’s discussion and reading session

Reading:
– Bölcskei, Grohs, Kutyniok, Petersen (2017): Optimal approximation

with sparsely connected deep neural networks
– Donoho (2001): Sparse Components of Images and Optimal Atomic

Decompositions. In: Constructive Approximation 17, pp. 353–382
– Shannon (1959): Coding Theorems for a Discrete Source with a

Fidelity Criterion. In: International Convention Record 7, pp. 325–350



Summary by learning goals

Having heard this lecture, you can now . . .

Derive lower bounds on e↵ective network approximation rates from
harmonic analysis.

Derive upper bounds on e↵ective network approximation rates from
rate-distortion theory.

Explain why neural networks are optimal descriptors of a wide variety
of signal classes.
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Overview of Week 8

1 Operations on ReLU Networks

2 ReLU Representation of Saw-Tooth Functions

3 Saw-Tooth Approximation of the Square Function

4 ReLU Approximation of Multiplication

5 ReLU Approximation of Analytic Functions

6 Wrapup
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Repetition: ReLU Activation Function

Definition

The rectified linear unit (ReLU) activation function is defined as

⇢R(x) = max(0, x), x 2 R.

Remark: The ReLU function is not sigmoidal but discriminatory.



Networks of Bounded Width with Bounded Weights

Remark:

Previously, the focus was on wide networks of bounded depth.

For ReLU networks, we focus on deep networks of bounded width.

Definition

Let � = ((A1, b1), . . . , (AL, bL)) be a neural network with architecture
(N0, N1, . . . , NL).

The width of � is defined as W(�) := maxiNi.

The weight bound of � is defined as

B(�) := max{max
i

kAik1,1,max
i

kbik1},

where the norms k · k1,1 and k · k1 are the maxima of the absolute
values of the matrix or vector entries, respectively.



ReLU Representation of the Identity

Lemma

For each d 2 N and L 2 N, the identity on Rd can be realized as
IdRd = R(�Id

d,L) for a ReLU network �Id
d,L with B(�Id

d,L) = 1,

W(�Id
d,L) = 2d, and L(�Id

d,L) = L.

Proof: For L = 1 we use �Id
d,1 := ((IdRd , 0)), and for L � 2, the network

�Id
d,L :=

✓✓✓
IdRd

� IdRd

◆
, 0

◆
, (IdR2d , 0), . . . (IdR2d , 0), ((IdRd ,� IdRd), 0)

◆

has the desired properties thanks to the algebraic relations

⇢R(x)� ⇢R(�x) = x, ⇢R(⇢R(x)) = ⇢R(x).



Problem: Lack of Sparsity in Network Concatenations

Example: Lack of sparsity in network concatenations.

Let n 2 N and define the neural network � by

� := ((A1, 0), (A2, 0)),

where A1 = (1, . . . , 1)> 2 Rn⇥1 and A2 = (1, . . . , 1) 2 R1⇥n.

� realizes the map

R 3 x 7! (x, . . . , x) 7! (x+, . . . , x+) 7! x+ + · · ·+ x+ = nx+ 2 R.

Then M(�) = 2n but M(� • �) = 2n+ n
2 because

� • � = ((A1, 0), (A1A2, 0), (A2, 0)).

Hence, the number of weights of a concatenated network scales
quadratically in the number of weights of the individual networks.



Solution: Sparse Concatenation

Remark: The lack of sparsity of concatenations motivates the following
definition:

Definition

The sparse concatenation of a neural network �1 with input dimension d

and neural network �2 with output dimension d is defined as

�1 � �2 := �1 • �Id
d,2 • �2

,

where �Id
d,2 is the 2-layer ReLU representation of the identity on Rd.

Remark: Similarly, using �Id
d,L with L > 2, one can define sparse

concatenations of increased depth.



Concatenation versus Sparse Concatenation

Top: Two neural networks, Middle: Sparse Concatenation, Bottom:
Concatenation. [Figure from Petersen, Ch. 3]



Properties of Sparse Concatenation

Lemma

If �1 has input dimension d and �2 has output dimension d, then the
sparse concatenation �1 � �2 satisfies

R(�1 � �2) = R(�1) � R(�2),

L(�1 � �2) = L(�1) + L(�2),

M(�1 � �2)  2(M(�1) +M(�2)),

W(�1 � �2)  max(W(�1),W(�2), 2d),

B(�1 � �2)  max(B(�1),B(�2)).

Remark: Most importantly, the number of weights increases linearly rather
than quadratically, and the weights remain bounded.



Proof: Properties of Sparse Concatenation

Proof:

Sparse concatenation realizes function composition because

R(�1 • �Id
d,2 • �2) = R(�1) � R(�Id

d,2) � R(�2) = R(�1) � R(�2).

The width, depth, weight bound, and number of weights can be
estimated from the following explicit formula:

((A1
1, b

1
1), . . . , (A

1
L1
, b

1
L1
))� ((A2

1, b
2
1), . . . , (A

2
L2
, b

1
L2
))

=

 
(A2

1, b
2
1), . . . , (A

2
L2�1, b

2
L2�1),

✓✓
A

2
L2

�A
2
L2

◆
,

✓
b
2
L2

�b
2
L2

◆◆
,

((A1
1,�A

1
1), b

1
1), (A

1
2, b

1
2), . . . , (A

1
L1
, b

1
L1
)

!
.



Skip Connections

Remark: Recall that a network � = ((A1, b1), . . . , (AL, bL)) can be
represented as a computational graph with edges corresponding to the
non-zero entries of the matrices Ai.

Definition
A skip connection is an edge between non-adjacent layers in the
computational graph of a network.

Remark:

Networks with skip connections have been highly successful in image
recognition.

The ReLU representation of the identity allows one to rewrite
networks with skip connections as networks without skip connections.



Deep Linear Combinations of Networks

Remark:

The following implementation of linear combinations increases the
depth, and not the width, of the networks.

As scalar multiplication does not a↵ect the network structure, we
focus on sums of networks.

Lemma
For any networks �1, . . . ,�k with input dimension d and output dimension
n, there exists a network � with B(�)  maxi B(�i),
W(�)  maxiW(�) + 2d+ 2n, and L(�) =

P
i L(�i) such that

R(�) =
X

i

R(�i).



Proof: Deep Linear Combinations of Networks

Proof:

Let �sum and �diag be the single-layer networks realizing the maps

sum: Rd ⇥ Rn ⇥ Rn 3 (x, y, z) 7! (x, y + z) 2 Rd ⇥ Rn
,

diag : Rd ⇥ Rn 3 (x, y) 7! (x, x, y) 2 Rd ⇥ Rd ⇥ Rn
.

Then the sum with skip connections

Rd ⇥ Rn 3 (x, y) 7! (x,R(�i)(x) + y) 2 Rd ⇥ Rn

is realized by the network

 i := �
sum • FP

⇣
�Id
d,L(�i)

,�i,�
Id
N,L(�i)

⌘
• �diag

,

which satisfies B( i)  max{B(�i), 1}, W( i)  W(�i) + 2d+ 10,
L( i) = L(�i).



Proof: Deep Linear Combinations of Networks

Let �pr and �ins be the single-layer networks realizing the maps

pr: Rd ⇥ Rn 3 (x, y) 7! y 2 Rn
,

ins : Rd 3 x 7! (x, 0) 2 Rd ⇥ Rn
.

Then the network � := �pr • 1 � · · ·� k • �ins has the desired
properties.



Questions to Answer for Yourself / Discuss with Friends

Repetition: How can the identity be realized using ReLU networks?

Repetition: What is sparse concatenation, and how does it di↵er from
non-sparse concatenation?

Repetition: What are skip connections, what are they good for, and
how can they be implemented using ReLU networks?

Discussion: To what extent are the results of this video limited to
ReLU networks?
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ReLU Representation of the Hat Function

Lemma
The hat function

F (x) := ⇢R(2x)� 2⇢R(2x� 1) + ⇢R(2x� 2)

equals the ReLU realization of the network �hat := ((A1, b1), (A2, 0)) with

A1 := (2, 2, 2)>, b1 := (0,�1,�2)>, A2 := (1,�2, 1) .

This network satisfies B(�hat) = 2, W(�hat) = 3, and L(�hat) = 2.



ReLU Representation of Saw-Tooth Functions

Theorem

For any n 2 N, the saw-tooth function Fn given by Fn(x) = 0 for
x /2 (0, 1) and

Fn(x) :=

(
2n(x� i2�n), x 2 [i2�n

, (i+ 1)2�n], i even,

2n((i+ 1)2�n � x), x 2 [i2�n
, (i+ 1)2�n], i odd,

equals the ReLU realization of the concatenated network �n := •n�hat

with B(�n)  4, W(�n)  3, and L(�n) = n+ 1.

Proof:

Fn is the n-fold composition of hat functions.

Thus, the n-fold concatenation •n�hat has the desired properties.



Visualization of Saw-Tooth Functions

Top Left: F1, Bottom Right: F2, Bottom Left: F4.

[Figure from Petersen, Ch. 3]



The Role of Depth

Remark: The theorem is surprising for the following reason:

The realization of a shallow network � with two layers and input
dimension 1 is piece-wise linear with at most W(�) pieces.

Similarly, networks of depth bounded by L have at most W(�)L�1

pieces.

In contrast, the previously introduced deep networks realize the
saw-tooth function Fn, which has exponentially many pieces in L(�).

Thus, saw-tooth functions Fn can be represented very e�ciently by
deep networks, but not very e�ciently by shallow networks.



Questions to Answer for Yourself / Discuss with Friends

Repetition: How can saw-tooth functions be represented by deep
ReLU networks?

Check: Why can the realization of a two-layer network � have at
most M(�) pieces?

Check: Verify that the saw-tooth function is a composition of hat
functions.

Background: Can you show that the ReLU function is discriminatory?
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Saw-Tooth Approximation of the Square Function

Setting: Let Fn, n 2 N, denote the saw-tooth functions of Video 2.

Lemma
The piece-wise linear functions

Hn(x) := x�
nX

k=1

Fk(x)2
�2k

, n 2 N, x 2 R,

approximate the square function at an exponential rate:

sup
x2[0,1]

��x2 �Hn(x)
��  2�2(n+1)

, n 2 N .

Remark: This makes us optimistic that, using su�ciently deep networks,
we can approximate the square function e�ciently.



Visualizing the Approximation of the Square Function

Figure: Approximants Hn(x) := x�
Pn

k=1 Fk(x)2�2k of the square function x
2.

[Figure from Petersen, Ch. 3]



Proof: Approximating the Square Function by Saw-Tooths

Proof:

By induction, the function Hn is piecewise linear with breakpoints
k2�n for k 2 {0, . . . , 2n}, and Hn(x) = x

2 at the breakpoints.

By convexity, Hn(x) � x
2 for x 2 [0, 1].

For any x between the breakpoints ` := k2�n and u := (k + 1)2�n,

��Hn(x)� x
2
�� = Hn(x)� x

2 =
u� x

u� `
`
2 +

x� `

u� `
u
2 � x

2
.

This quadratic function assumes its maximum at its unique critical
point x⇤, and one easily verifies that

x
⇤ =

u+ `

2
, Hn(x

⇤)� (x⇤)2 =

✓
u� `

2

◆2

= 2�2(n+1)
.



Questions to Answer for Yourself / Discuss with Friends

Repetition: How can the square function be approximated by linear
combinations of saw-tooth functions?

Check: Verify that a secant approximation of the square function is
worst half-way between the abscissas of the intersection.

Discussion: How could the saw-tooth approximation of the square
function be implemented by ReLU networks. Spoiler alert: think
about this before you watch the next video.
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Approximating the Square Function

Remark: As an auxiliary result, we will approximate the square function by
ReLU networks, building on the saw-tooth approximations of the square
function.

Lemma
The square function can be approximated by ReLU networks at an
exponential rate:

8n 2 N 9� : B(�)  4,W(�)  5,L(�) = n+ 2,

sup
x2[�1,1]

��x2 � R(�)(x)
��  2�2(n+1)

.



Attempted Proof: Approximating the Square Function

Attempted proof: Strategy of Yarotsky (2017).

Approximate the square function by saw-tooth functions: For any
n 2 N,

sup
x2[0,1]

��x2 �Hn(x)
��  2�2(n+1)

, Hn(x) = x�
X

kn

Fk2
�2k

.

Represent each saw-tooth function by a network: Fk = R(•k�^).

Use skip connections to get networks of equal depth: Fk = R(�k)
with �k := �Id

1,n�k � •k�^.

Take linear combinations of �1, . . . ,�n to obtain networks of width
proportional to n.

Alternatively, using deep linear combinations, one obtains networks of
depth proportional to n

2.

In any case, this strategy is sub-optimal.



Proof: Approximating the Square Function

Proof: Strategy of Perekrestenko e.a. (2018).

As before, approximate the square by saw-tooth functions Hn:

sup
x2[0,1]

��x2 �Hn(x)
��  2�2(n+1)

, Hn(x) = x�
X

kn

Fk2
�2k

.

Recall that Fn is the n-fold composition of the hat function

F (x) := 2⇢R(x)� 4⇢R(x� 1
2) + 2⇢R(x� 1),

and note that Hn(x) = Hn�1(x)� 2�2n
Fn(x).

This yields the recursion
(
Fn(x) = 2⇢R(Fn�1(x))� 4⇢R(Fn�1(x)� 1

2) + 2⇢R(Fn�1(x)� 1),

Hn(x) = ⇢R(Hn�1(x))� ⇢R(�Hn�1(x))� 2�2n
Fn(x),

where the term Fn(x) on the right-hand side can be substituted by a
term involving the functions Fn�1(x) using the first equation.



Proof: Approximating the Square Function (cont.)

Each recursive step corresponds to a network layer:
✓
Fn
Hn

◆
= W1⇢R

✓
W2

✓
Fn�1
Hn�1

◆◆
,

W1(x) =

0

BBB@

2 �2�2n+1

�4 2�2n+2

2 2�2n+1

0 1
0 �1

1

CCCA

>0

BBB@

x1
x2
x3
x4
x5

1

CCCA
,

W2(x) =

0

BBB@

1 0
1 0
1 0
0 1
0 �1

1

CCCA

✓
x1
x2

◆
�

0

BBB@

0
1/2
1
0
0

1

CCCA
.

Thus, using non-sparse concatenation •, the iteration for Hn with
F0(x) = |x| and H0(x) = |x| can be realized by a ReLU network � of
depth n+ 2, width 5, and weights bounded by 4.



Approximating Multiplication

Remark: The previous lemma on approximation of the square function
implies the following theorem:

Theorem
Multiplication can be approximated by ReLU networks at an exponential
rate:

8n 2 N 9� : B(�)  8,W(�)  10,L(�) = n+ 2,

sup
x,y2[�1,1]

|xy � R(�)(x, y)|  2�2n�1
.

Remark: On domains x, y 2 [�K,K], the weight bound changes to a
quadratic polynomial in K.



Proof: Approximating Multiplication

Proof:

By polarization, we have for x, y 2 [�1, 1] that

xy =

✓
x+ y

2

◆2

�
✓
x� y

2

◆2

. (⇤)

Approximate the square function on [�1, 1] with precision 2�2(n+1) by
a neural network �0 with B(�0)  4, W(�0)  5, and
L(�0) = n+ 2.

Define neural networks �1 and �2 as

�1 :=

0

BB@

0

BB@
1

2

0

BB@

1 1
�1 �1
1 �1
�1 1

1

CCA , 0

1

CCA

1

CCA , �2 :=
⇣�

(1,�1), 0
�⌘

.

As the realization of � := �2 • FP(�0,�0) • �1 equals (⇤) with
squares replaced by R(�0), the error is at most 2�2n�1.



Questions to Answer for Yourself / Discuss with Friends

Repetition: How can multiplication be approximated by ReLU
networks at an exponential rate?

Transfer: Compare the ReLU approximation to the sigmoidal
approximation of multiplication. See Week 3.

Discussion: Using harmonic analysis we previously established
polynomial upper bounds on network approximation rates—are they in
contradiction to the exponential approximation rate established here?
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Approximating Monomials

Lemma
Monomials can be approximated by ReLU networks at an exponential rate:

8d, p, n 2 N 8i1, . . . , ip 2 {1, . . . , d} 9� :

B(�)  8,W(�)  2d+ 10,L(�) = p(n+ 2),

sup
x2[�1,1]d

��xi1 · · ·xip � R(�)
�� (x)  2�2n�1

Remark:

Via dictionary learning, this leads to optimal polynomial
approximation rates for many signal classes.

More interestingly, in contrast to our previous results, it also leads to
exponential approximation rates for real-analytic functions, including
e.g. sinusoidal functions and oscillatory textures.



Proof: Approximating Monomials

Proof:

For any i 2 {1, . . . , d}, the multiplication with skip connections

(x1, . . . , xd, y) 7! (x1, . . . , xd, xiy)

can be approximated by a network  i with B( i)  8,
W( i)  2d+ 10, L( i) = n+ 2, and

sup
x1,...,xd,y2[�1,1]

k(x1, . . . , xd, xiy)� R( i)(x1, . . . , xd, y)k1  2�2n�1
.

As the realizations of  i are 1-Lipschitz and bounded by 1, the net

� := (((0(Rd)⇤ , 1), 0)) • i1 � · · ·� ip •
✓✓✓

IdRd

0(Rd)⇤

◆
,

✓
0Rd

1

◆◆◆

satisfies B(�)  8, W(�)  2d+ 10, L(�) = p(n+ 3), and

sup
x1,...,xd2[�1,1]

��xi1 · · ·xip � R(�)(x1, . . . , xd)
��  2�2n�1

.



Real-Analytic Functions

Definition

A function f : (�r, r)d ! R is real-analytic if it is given by a power series

f(x) =
X

k2Nd

akx
k
, x 2 (�r, r)d,

for some coe�cients (ak)k2Nd .

Remark:

The power series converges absolutely on (�r, r)d.

Thus, if r > 1, then a is summable, i.e., kak`1 :=
P

k2Nd |ak| < 1.



Approximating Real-Analytic Functions

Theorem
Real-analytic functions can be approximated by ReLU networks:

8d 2 N�2 8� > 0 9✏̄ > 0 8✏ 2 (0, ✏̄) 8(ak)k2Nd 2 `
1 9� :

B(�)  8
X

k2Nd

|ak|,W(�)  (2d+ 10),L(�) 
⇣
e
�

1
d� log2

1
✏ + 1

�⌘2d
,

sup
x2[�1+�,1��]d

������

X

k2Nd

akx
k � R(�)(x)

������
 2✏kakk`1 .

Remark: Note that the error decays exponentially in L
1/(2d) because

L(�) 
⇣
e
�

1
d� log2

1
✏ + 1

�⌘2d
, ✏  exp(�d�(e�1

L
1/(2d) � 1)).



Approximating Real-Analytic Functions

Proof:

Without loss of generality, kakk`1 = 1.

Truncation: Let p := d1� log2
1
✏ e, f(x) :=

P
k2Nd akx

k,
fp(x) :=

P
k2Nd

p
akx

k. Then

sup
x2[�1+�,1��]d

|f(x)� fp(x)|  (1� �)p  ✏.

Monomial approximation: Let n := d12 log2
1
✏ e. Approximate each

monomial xk by a network �k with B(�)  8, W(�)  2d+ 10,
L(�k) = p(n+ 2), and

sup
x2[�1,1]d

���xk � R(�k)(x)
���  2�2n�1  ✏.



Approximating Real-Analytic Functions

Deep linear combinations of the
�p+d

d

�
monomials: there is a network

� with B(�)  8, W(�)  2d+ 11, L(�) = p(n+ 2)
�p+d

d

�
,

sup
x2[�1,1]d

|fp(x)� R(�)(x)|  ✏.

Depth bound: for su�ciently small ✏̄ and ✏ < ✏̄,

L(�) = p(n+ 2)

✓
p+ d

d

◆
= p(n+ 2)

(p+ d) · · · (p+ 1)

d!

 p(n+ 2)

✓
p+ d

d/e

◆d

= p(n+ 2)
�
e(pd + 1)

�d


�
e( 1

d� log2
1
✏ + 1)

�2d
,

where the last inequality follows by an elementary calculation from
the definitions of p and n and the assumption d � 2.



Questions to Answer for Yourself / Discuss with Friends

Repetition: How can real-analytic functions be approximated by ReLU
networks at an exponential rate?

Background: What is the di↵erence between smooth, real-analytic,
and holomorphic functions?

Check: Prove the inequality d! � (d/e)d, which was used in the last
proof. Hint: dd/d! is a summand in the series expansion of ed.

Discussion: Can real-analytic functions be approximated by shallow
networks at an exponential rate?

Transfer: What other assumptions on the signal class besides real
analyticity might increase the approximation rate?
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Outlook on this week’s discussion and reading session

Reading:
– Yarotsky (2017): Error bounds for approximations with deep ReLU

networks. Neural Networks 94, pp. 103–114.
– Perekrestenko, Grohs, Elbrächter, Bölcskei (2018): The universal

approximation power of finite-width deep ReLU Networks.
arXiv:1806.01528

– E, Wang (2018): Exponential convergence of the deep neural
approximation for analytic functions. arXiv:1807.00297



Summary by learning goals

Having heard this lecture, you can now . . .

Establish exponential rates for the approximation of real-analytic
functions by deep ReLU networks.

Explain the role of skip connections in this construction.



Review and Outlook

Topics covered in this lecture series:
– Statistical learning theory
– Universal approximation theorems
– Dictionary learning
– Kolmogorov–Arnold representation
– Harmonic analysis
– Information theory
– ReLU networks and the role of depth

Topics not covered in this lecture series: (non-exhaustive)
– Residual, recurrent, and adversarial networks; auto-encoders
– Manifold assumptions on the data distribution
– Generalization capability and implicit regularization
– Many practical issues


