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Overview of Week 1

© Motivation for Deep Learning

@ Introduction to Statistical Learning

© Empirical risk minimization and related algorithms
@ Error decompositions

© Error trade-offs

@ Error bounds

@ Organizational Issues

© Wrapup



Acknowledgement of Sources

Sources for this lecture:

@ Frank Hutter and Joschka Boedecker (Department of Computer
Science, Freiburg): Course on Deep Learning.

e Bousquet, Boucheron, and Lugosi (2003): Introduction to statistical
learning theory.

@ Vapnik (1999): An overview of statistical learning theory.
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Deep Learning in the News
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Deep Learning Revolutionized Computer Vision

@ Excellent empirical results

Object recognition

o e 0.3
| 58 person S
- o 28%
= 26%
©
c 02 OS/'
o ’78
5 %
9 16%
~— 0
= 0.1 12%
1]
=2 zee 5.1%
O o )
[=5%]] human

2010 2011 2012 2013 2014 2015 level
ILSVRC year

Self-driving cars

ILSVRC: ImageNet Large-Scale Visual Recognition Challenge



Deep Learning Revolutionized Speech Recognition

@ Excellent empirical results

Speech recognition
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Deep Learning Goes Great with Reinforcement Learning

@ Excellent empirical results obtained by deep reinforcement learning

- Superhuman performance in
playing Atari games
[Mnih et al, Nature 2015]

- Beating the world's best Go player
[Silver et al, Nature 2016]




(Deep) Learning as A Different Way of Programming

@ We don't understand how the human brain solves certain problems
- Face recognition
- Playing Atari games

Speech recognition

- Picking the next move in the game of Go

@ We can nevertheless learn these tasks from data/experience

@ If the task changes, we simply re-train



Deep Learning Allows Many Branches of Al to Converge

@ Deep learning is now the principle approach in many different
branches of Al:
- Computer vision
- Speech recognition
- Natural language processing
- (Robotics)

@ The same general techniques apply in all of these fields

- Amazing potential for cross-fertilization
- Fields that drifted apart for decades have largely converged again

- E.g., in Freiburg:
o close collaboration & joint reading group between machine learning,
computer vision, robotics, neurorobotics, and robot learning



Further Reasons for the Popularity of Deep Learning

@ Very quick to get good results for some problems

- Deep learning can handle raw data (images, speech, text, etc)
- Very well-engineered libraries handle the complex underpinnings
(Tensorflow, Pytorch, ...)

- Very little machine learning knowledge is required to get started
@ Misconception: “it works like the brain”

@ Neural networks are very flexible models — this is the main content of
the lecture



Understanding deep learning

@ Neural networks are excellent function approximators
- They are dense in many function spaces; this is often called the
universal approximation property [Cybenko, Hornik|
- Approximation rates are known for many shallow and deep network
architectures

@ However, this only partially explains their success
- Generalization capability is needed in addition to approximation
capability
- Deep learning performs better than the theory predicts; this is the
oft-quoted unreasonable effectiveness of deep learning in artificial
intelligence [Sejnowski]

@ Many interesting mathematical questions remain

- Mathematicians are ideally prepared for appreciating the abstract issues
involved in high-dimensional data analysis [Donoho]



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: Why is deep learning so popular?

@ Discussion:
What might a mathematical theory of deep learning look like?

@ Relation to your interests:
What would you like to learn from this lecture?
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Learning or, more precisely, inductive inference:
@ Observe a phenomenon
@ Construct a model of that phenomenon

@ Make predictions using this model

Goals of learning theory and machine learning:
@ Machine learning: automize inference

@ Statistical learning theory: formalize inference

Nothing is more practical than a good theory. [Vapnik, Statistical
Learning Theory 1998]

Main assumption of statistical learning theory:
@ Test and training data are iid.

@ This distinguishes it from time series analysis (not independent) and
transfer learning (not the same distribution).



Formalization

@ Input and output spaces: measurable spaces X’ and ).

@ Loss function: a measurable function L: Y x Y — R.

@ Hypothesis class (aka. model class): a set Hj of measurable functions
f: X =)

@ Observations: independent random variables (X1, Y1), ..., (X5, Yy),

defined on a probability space (€2, F,P), distributed according to a
probability measure P on X x ).

@ Objective: Find a function f € Hp with low or minimal risk (aka. test
or generalization risk)

R(f) = / L(f (), y)P(dz, dy)

in the situation where P is unknown and the only information is
contained in the observations.



Applications:

@ Regression: Y =R and L(y1,2) = (y1 — y2)>.

o Classification: Y = {0, 1} and L(y1,y2) = Ly, £y.}-
Useful hypothesis classes:

e Linear functions, polynomials, C* functions, splines, or, as in deep
learning, multilayer perceptrons.

Main challenge:

@ The distribution P of the data and consequently also the risk
functional R, which is to be minimized, are unknown.

@ Otherwise this would be a standard optimization problem.



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: Describe the setup and goal of statistical learning theory.

@ Discussion: Which aspects of machine learning are well-described by
statistical learning theory? Which aren’t?
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Risk versus empirical risk

Risk: Recall that. ..

@ The objective in statistical learning theory is to minimize the risk

R(P)i= [ L(f(@).0)Plds,dy)
over all f in the hypothesis class Hy.
@ The problem is that the distribution P of the data is unknown.

Empirical risk:

@ As a substitute, define the empirical risk

R(f) = S LU Y = [ LS (@) )P, dy),

where P, := 157" d(x,,v;) is the empirical measure.



Algorithms

Empirical risk minimization (aka. supervised learning):

fn € argmin R, (f).
f€Hy

Structural risk minimization:

fn € argmin Ry (f) + p(k, n),
keN
feHy
for some increasing sequence (Hy)ken of hypothesis classes and a penalty
p(k,n) for the size or capacity of the class.

Regularization:
fn € argmin Ry (f) + || f]%,

f€Ho

fn € argmin R, (f) + || f||> = arg maxe_R"(f)_Hf||2,
fEHO fEHo

for some suitable norm || - || (or some other form of penalty).



Algorithms (cont.)

Maximum likelihood:

fn € argmaxe_R"(f)p(f) = argmin R, (f) — log p(f),
feHO fEHo

where p: Hy — R is a probability density with respect to some reference
measure ™ on Hj.

Posterior mean: 1

fo=7- | Fe D p(f)n(ah),
n 0
where Z,, := fHo e BN p(f)m(df) is a normalizing factor.
Gibbs sampling:
Jn ~ ieiRnpﬂ'-



Questions to Answer for Yourself / Discuss with Friends

e Transfer (optimization): What algorithms could be used to solve the
empirical risk minimization problem?

o Transfer (statistics): What do the law of large numbers and the
central limit theorem say about the convergence of R, (f) to R(f) for
fixed f € Hy?
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Error decompositions

Notation: E and F denote expectations w/r to [P and P, respectively, and:
o f* solves R(f*) =inf;. x5y R(f),
o fo solves R(fo) = inftcm, R(f), and
@ f, is an Hy-valued random variable.

Approximation and estimation error:
R(fa) = R(f") +(R(fo) = R(f*)) + (R(fn) — R(f0))
N——

~
statistical risk approximation error estimation error

Empirical risk and generalization error:

——_——

J/

empirical risk generalization error
Bias and variance: for Y = R and L(y1,2) = (y1 — y2)?,
E[R(f)] = R(Y) +E|Elfa(@) = @) + Varlfu(2)] |

——
statistical risk bias variance




Proof of the bias-variance decomposition

Recall:
o R(f*) = inff: X—=Y R(f)
o V=R, Ly, y2) = (y1 — 12)*.

Mean-square optimality of the mean: f*(z) = E|y|z].

Conditional risk of f,, given (z,w):

E(fa() = 9)* | 2] = Var(fa(z) =y | 2] + Efa(z) —y | 2]’
= B[(f*(z) —y)* | 2] + (fu(z) — f*(2))*.

Expected risk of fi,:

E[R(fn)] = R(f*) + E[E[(fa(z) - f*(2))?]]



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: Visualize the approximation, estimation, and
generalization error in a drawing.

@ Discussion: Can you guess which error terms increase or decrease with
respect to Hy and n?
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Error trade-offs

Decompositions versus trade-offs

@ A trade-off occurs when one term in an error decomposition increases
while another term decreases with respect to a parameter.

Trade-offs in the choice of hypothesis class?

@ In general, there is no trade-off in the above error decompositions
with respect to Hy.

@ However, there may be trade-offs with respect to Hy in error bounds
(as opposed to the error itself).

Example: bias-variance decomposition

@ Conventional wisdom: The price to pay for achieving low bias is high
variance—a trade-off in the choice of Hy. [Geman et al. 1992].

@ However, this is false in over-parameterized regimes, which are
common in modern machine learning applications (see next slide).



Example: bias-variance decomposition

Traditional view of the bias-variance trade-off (left) versus lack of any
trade-off in MNIST character recognition using sufficiently wide RelLu
networks (right).
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Example: bias-variance decomposition (cont.)

Conjectured reconciliation: U-shaped risk curve in the underparameterized

regime and decreasing risk in the overparameterized regime [Belkin e.a.
2019]

under-parameterized

Test risk

“classical”
regime

over-parameterized

“modern”
interpolating regime

- Training risk

. _interpolation threshold
= “~

Capacity of H

[Figure from Belkin e.a. 2019]



Questions to Answer for Yourself / Discuss with Friends

@ Discussion: Can you think of a reason (or an example) why the
variance might be decreasing in over-parameterized regimes?
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Bounding the approximation error

Notation:
o f* solves R(f*) =inf;. x,y R(f), and
o fo solves R(fy) = infrcn, R(f).

Approximation error: R(fo) — R(f*)
@ Decreases when Hj increases.
@ Depends on how closely f* can be approximated by functions in Hy.

@ Is the main focus of this lecture.

Bound for quadratic loss functions:

0 < R(fo) = R(f*) = E[(folx) —y)* = (f*(x) = y)?]
= E[(fo(z) + f*(z) = 2y)(fo(z) — f*(x))]
< E[|fo(z) + f*(x) — 2y|] sup | fo(x) = f*(2)]-



Bounding the generalization error

Notation:

fL (dw dy),
fL P,(dz,dy), and
° fn is a random eIement of Hy.

Generalization error: R(fn) — Rn(fn)

@ Is the difference between a mean and an empirical mean:

R(fa) — Ru(fy) = / L(fu(2),)(P — Py)(de, dy).

o Is of order n1/2 by the central limit theorem for fixed f, = f.

Uniform generalization error: sup ¢ g, [R(f) — Ru(f)|
@ Increases when H increases.

@ Is the main focus of statistical learning theory.



Bounding the estimation error

Notation:

f L(f (dm dy),
fL P,(dz,dy), and
° fn is a random eIement of Hj.

Estimation error: R(f,) — R(fo)

@ Is bounded by twice the uniform generalization error if f,, minimizes
the empirical risk:

- < R(fn) - Rn(fn) +Rn(fn) - Rn(fO)/‘i‘Rn(fO) - R(fO)-

v v
generalization error <0 generalization error




A glimpse into statistical learning theory

Hoffding's inequality: for any function g: X x ) — [a, b], one has the
Gaussian tail estimate

2ne?
IP’[|Png—Pg| >e} < 2exp <_(b—a)2)’ e > 0.
Uniform risk bound: given Hy = {f1,..., fn}, assume that the losses

gi = L(fi(+),) take values in [a,b] and estimate

P ax |R,f — Rf| > =P a P,g; — Pg;| >
L{réhgél [ — Rf| 6] Le{TXN}' g gil e]

10ty

N
2ne?
=1



A glimpse into statistical learning theory

Expected risk: deduce convergence of order n=1/2 via

E R.f—Rfl|=] P R.f — Rf| > €| d
L{gg};l f fl] /0 Lr}g;gl f— Rf| 6} €

< N(b_a)\/;

Note that the right-hand side depends on the size NV of Hy.

Extension to infinite sets Hy: Approximate Hj by finite sets of indicator
functions; the error can be controlled by the Vapnik—Cervonenkis (VC)
dimension of Hy or other capacity measures.

Further topics: unbounded loss functions and capacity measures for
specific hypothesis classes such as indicator functions or neural networks.

Caveat: deep learning performs better than predicted by this theory—once
more, the unreasonable effectiveness of deep learning. ..



Questions to Answer for Yourself / Discuss with Friends

@ Discussion: Can you spot any points where the error analysis of
statistical learning theory might leave room for improvements?

@ Suggestion: Read up on Hoffding's inequality and related large
deviations results or concentration inequalities.
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Team

o Philipp Harms: Lecturer, main contact for lectures
www.stochastik.uni-freiburg.de/professoren/harms/

philipp-harms
@ Jakob Stiefel: Teaching Assistant, main contact for exercises

@ Lars Niemann: Teaching Assistant
www.stochastik.uni-freiburg.de/mitarbeiter/niemann



Web links

@ Lecture homepage for general information:
www.stochastik.uni-freiburg.de/lehre/ss-2020/
vorlesung-deep-learning-ss-2020

@ ILIAS for slides, videos, forum, and exercises: ilias.uni-freiburg.
de/goto.php?target=crs_1542865&client_id=unifreiburg

o BigBlueButton: virtual meeting room vHarms with password
vHarms20206 at www.math.uni-freiburg.de/lehre/virtuelle
veranstaltungen.html. Supported Browsers include Chrome and
Firefox on desktops and Chrome and Safari on mobiles.

@ HislnOne for administrative issues



Outlook on the lecture

@ Approximation theory for neural networks

- shallow/deep
- feed-forward/residual /recurrent

@ Using methods from

- functional analysis
- harmonic analysis
differential geometry
- probability theory
- stochastic analysis

@ Further topics

- For example, generalization capability, auto-encoders, variational
auto-encoders, adversarial networks, etc.
- Depending on your interests and how we do time-wise



Relation to other deep learning courses in Freiburg

@ This course: mathematical aspects of deep learning

o At the Mathematical Institute:

- Angelika Rohde’s seminar about the mathematical foundations of
statistical learning: www.stochastik.uni-freiburg.de/
professoren/rohde/teaching

- Next term: Thorsten Schmidt's lecture on Machine Learning

@ At the Department of Computer Science: in the groups on

Computer Vision

- Machine Learning

Statistical Pattern Recognition
- Artificial Intelligence



Parts of the course

Short videos and slides:
- Available on ILIAS every Tuesday night

@ Live discussion and further reading:
- Wednesdays 14:15-14:45 via BigBlueButton

e Forum:

- Available on ILIAS for questions of all kinds
- Please answer a question if you know the answer

o Graded exercises:

- Mathematical and programming tasks

- Solutions to be uploaded to ILIAS every two weeks
Collaboration in groups of two is allowed and encouraged.
- Groups cannot be changed during the term.



Requirements and exam

@ Requirements:
- Solid background in probability theory and functional analysis
- Basic knowledge in differential equations and stochastic analysis.
- Basic programming skills

@ Oral exam:
- 50% of exercise points required for participation
- Scope: content covered in the lecture, live discussions, and exercises
- Focus on conceptual understanding rather than learning by heart



Resources for Python

@ Python tutorials
- Official tutorial:
https://docs.python.org/3/tutorial/index.html
- For beginners: www.learnpython.org/
- For programmers:
http://stephensugden.com/crash_into_python/
- Many more: http://docs.python-guide.org/en/latest/intro/learning/

@ Python libraries:

- Numpy: http://wiki.scipy.org/Tentative_NumPy_Tutorial
- SciPy: http://docs.scipy.org/doc/scipy/reference/tutorial/
- Matplotlib: http://matplotlib.org/users/beginner.html
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Summary by learning goals

Having heard this lecture, you can now ...
@ Describe why deep learning is so popular
@ Formulate the basic principles of statistical learning theory

@ Understand deep learning in the context of statistical learning theory



Outlook on this week’s discussion and reading session

@ Discussion:
- Questions and feedback, in both directions
- Administrative and IT issues, if any

@ Reading: related original literature
- Sejnowski (2020): The unreasonable effectiveness of deep learning in
artificial intelligence
- Donoho (2000): High-Dimensional Data Analysis—the Curses and
Blessings of Dimensionality
- Vapnik (1999): An overview of statistical learning theory

@ Preparation:
- Watch the videos of the week
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Overview of Week 2

© Multilayer Perceptrons

© A Brief History of Deep Learning

e Deep Learning as Representation Learning
@ Definition of Neural Networks

© Operations on Neural Networks

@ Universality of Neural Networks

@ Discriminatory Activation Functions

© Wrapup



Acknowledgement of Sources

Sources for this lecture:

e Frank Hutter and Joschka Boedecker (Department of Computer
Science, Freiburg): Course on Deep Learning.

@ Philipp Christian Petersen (Faculty of Mathematics, University of
Vienna): Course on Neural Network Theory.
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McCulloch and Pitts Neuron

The first neural network was devised by McCulloch and Pitts (1943) in an
attempt to model a biological neuron.

Definition

A McCulloch and Pitts neuron is a function of the form

d
Rd9$i—>p<2wixi—0> eR

i=1

whered €N, p=1g, : R = R, and w;,0 € R.

@ p is called activation function,
@ 0 is called threshold,
@ w; are called weights, and

@ the neuron fires (i.e., returns 1) if the weighted sum of inputs exceeds
the threshold.



Multilayer Perceptron

A multilayer perceptron, as introduced by Rosenblatt (1958), links multiple
neurons together in the sense that the output of one neuron forms an
input to another.

Definition

Letd, LeN, L >2and p: R — R. Then a multilayer perceptron (MLP)
with d-dimensional input, L layers, and activation function p: R — R is a
function

F:R% -5 RNe, F=TpopoTp_j10---0polh,

where p is applied coordinate-wise and T;: R!=! — R is affine, for each
le{l,...,L} and N; € N with Ny = d.

Recall that an affine map is of the form z — Ax + b for a matrix A and
vector b.



Multilayer Perceptron (cont.)

@ In contrast to the McCulloch and Pitts neuron, we now allow
arbitrary activation functions p.

@ Notice that the MLP does not allow arbitrary connections between
neurons, but only between those, that are in adjacent layers, and only
from lower layers to higher layers.

Ny =8 N =12 - Ny=8 N;=1

Illustration of a multi-layer perceptron with 5 layers. The red dots correspond to the neurons.

[figure from Petersen, Ch. 1]



Activation Functions - Examples

Logistic sigmoid activation function:

1 1.0 /

glogz‘stz‘c(z) = I—FTP(—Z) 08l

0.6

04t

0.2t

Logistic hyperbolic tangent
activation function:

gtanh(z) = tanh(z) 0.0
_ exp(z) — exp(—z) B
exp(z) + exp(—2)




Activation Functions - Examples (cont.)

Linear activation function:

glinear(z) =z

Rectified Linear (ReLU) activation
function:

Gretu(2) = max(0, 2)

Lo
© & A N © N & o »

O N W s w o N @




Deep learning

Definition

Deep learning is the use of multilayer perceptrons in learning tasks.

For example, supervised learning, i.e., empirical risk minimization:
e Given observations (z1,41), .-, (Tn, Yn),

e Find a multilayer perceptron f such that f(x;) ~ y;.



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: What is a multi-layer perceptron?

@ Application of what you just learned:
What class of functions is represented by multi-layer perceptrons with
linear, polynomial, or ReLu activation functions?

@ Transfer: How do multi-layer perceptrons differ from spline or finite
element discretizations?
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Biological Inspiration of Artificial Neural Networks

@ Dendrites input information to the cell

@ Neuron fires (has action potential) if a certain threshold for the
voltage is exceeded

@ Output of information by axon

@ The axon is connected to dentrites of other cells via synapses

@ Learning: adaptation of the synapse's efficiency, its synaptical weight

dendrites

(D syNapsEs




History of Deep Learning

Deep Learning has developed in several waves

The early days, under the name of artificial neural networks/cybernetics
@ 1942 Artificial neurons as a model of brain function [McCulloch/Pitts]
@ 1949 Hebbian learning [Hebb]
@ 1958 Rosenblatt perceptron [Rosenblatt]
°

1960 Adaline — stochastic gradient descent [Widrow/Hoff]

The first time the popularity of NNs declined
@ Negative result: linear models cannot represent the XOR function

@ Backlash against biologically inspired learning [Minsky/Papert, 1969]



History of Deep Learning

1980 - early 2000s (under the name of connectionism)
@ 1980 Neocognitron [Fukushima]
@ 1986 Multilayer Perceptrons and backpropagation [Rumelhart et al |

@ 1989 Autoencoders [Baldi and Hornik],
Convolutional neural networks [LeCun]

1997 LSTMs [Hochreiter and Schmidhuber]

The second time the popularity of NNs declined
@ Ventures based on NNs made unrealistically ambitious claims
- Al research could not fulfill these unreasonable expectations
@ Other fields of machine learning made advances

- E.g., SVMs and graphical models
- SVMs were the state of the art on many datasets (data was small),
specialized ConvNets held state of the art on MNIST but didn't scale



History of Deep Learning and ANNs (cont.

Mid 2000s, the field got re-invigorated:
o Greedy layer-wise pretraining [Hinton, 2006]
- It was now possible to train much deeper networks
@ Several groups “resurrected” the idea of training large neural
networks supervisedly using large amounts of data.

- Most prominently [Krizhevsky et al., 2012] improved results on Imagenet
benchmark by large margin

@ Since then: exponential growth
- NeurlIPS attendance has grown exponentially
e In 2018, it sold out in 12 minutes; lottery system since then

- Some people are raising unrealistic expectations
- Let's see how long this current wave persists



Questions to Answer for Yourself / Discuss with Friends

@ Discussion: How long will the current deep learning wave persist?

— What are reasons that it will continue?
— What are reasons that it will end?
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Some terminology

@ Supervised learning: given data (x;,;), find a function f such that
fxi) = yi

Classification: special case where f is an indicator function (aka.
classifier) and y; belong to {0,1}

Data representation: a coordinate system for x

Feature: a coordinate

Linearly separable: y; equals the sign of a linear functional of x;



Definition: Representation learning

Representation learning

“a set of methods that allows a machine to be fed with raw data and to
automatically discover the representations needed for detection or
classification” - LeCun et al., 2015

'v"‘*




Example for a Poor Representation: Roman Numbers

In particular, poor for the task of addition.
E.g., perform CCCLXIX + DCCCXLV (369 + 845)

© Substitute for any subtractives : CCCLXVIIII + DCCCXXXXV
@ Concatenate: CCCLXVIHIDCCCXXXXV
@ Sort : DCCCCCCLXXXXXVVIII

© Combine groups to obtain:
DCCCCCCLXXXXXXIII
DCCCCCCLLXII
DCCCCCCCXIIN
DDCCXIIII
MCCXII

© Re-Substitute any subtractives:
MCCXIV

In contrast, converting to our current number system: 369 + 845 = 1214.



Definition: Deep learning

Deep learning

“representation learning methods with multiple levels of representation,
obtained by composing simple but nonlinear modules that each transform
the representation at one level into a [...] higher, slightly more abstract
(one)” - LeCun et al., 2015




Standard Machine Learning Pipeline

@ Standard machine learning algorithms are based on high-level
attributes or features of the data

@ They require (often substantial) feature engineering, i.e., extraction
and selection of features.

2 Merkmale
‘ % L X1 |rot, 3.5 cm

X ran, 4 cm
o ® P 2| gru

® , Xz | gran, 10 cm




Representation Learning Pipeline

@ Jointly learn features and classifier, directly from raw data
@ This is also referrred to as end-to-end learning

X
P==sy
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Shallow vs. Deep Learning

Human Cat Dog Classes
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Shallow vs. Deep Learning

Classes
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[Visualizations of network activations taken from Zeiler [2014]]
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@ Deep Learning: learning a hierarchy of representations that build on
each other, from simple to complex

@ Features are learned in an end-to-end fashion, from raw data



Relation to More Traditional Learning Approaches
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Questions to Answer for Yourself / Discuss with Friends

@ Relation to your interests:
What would be a good and a bad representation for a problem you

find interesting?

@ Discussion: Are deep networks always better than shallow ones?
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Neural Networks: Definition

Definition

Let d, L € N. A neural network with input dimension d and L layers is a
sequence of matrix-vector tuples

® = ((A1,b1), (A2,b2),...,(AL,br)),

where Ng :=d, Ni,...,Np € N, 4; € RNi-1*Ni and b, € RM for
le{l,...,L}.

@ According to this definition, neural networks are the coefficients of
multi-layer perceptrons.

@ This distinction is useful but not always made in the literature.



Neural Networks: Definition (cont.)

Definition

The realization of a neural network ® with activation function p: R — R
is the function

R(®): R? - RN R(®)(x) =21,
where the output xj, results from

Zo = X,
x;p = p(Aji—1 + b)) forl € {1,..., L — 1},
xyp = Apxr_1+byp.

Here p is understood to act component-wise.

@ Thus, a multilayer perceptron is the realisation of a neural network.



Neural Networks: Definition (cont.)

Definition

We call N(®) :=d + Zlel N the number of neurons, L(®) := L the
number of layers or depth, and

L L
M(®):=> M= [[Alo+ lloillo
=1

=1

the number of weights. Here || - ||o denotes the number of non-zero entries
of a matrix or vector.

v




Neural Networks: Definition (cont.)

Definition

Let L € N. A vector S = (N, ..., Nz) € NFtLis called architecture of a
neural network

® = ((A1,b1),...,(AL,br))

if Aj € RNVi-1*Ni for [ =1,..., L. Given such a vector S, we denote by
NN(S) the set of all neural networks with architecture S.

Note: NA(S) is a finite-dimensional linear space.



Questions to Answer for Yourself / Discuss with Friends

@ Check: Is || - [|o a norm?

@ Repetition: What are neural networks, and how do they differ from
multi-layer perceptrons?

@ Discussion: Is the realization map continuous in some sense?
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Operations on neural networks

Lemma (Operations)

Let ®! and ®2 be two neural networks, and let A denote the diagonal
map © — (x,x).
o If the composition R(®') o R(®2) is well-defined, it can be
represented as the realization of a neural network ®' e ®2.
o The full parallelization (R(®'),R(®?)) can be represented as the
realization of a neural network FP(®!, ®?).
o If the parallelization (R(®'),R(®?)) o A is well-defined, it can be
represented as the realization of a neural network P(®!, ®2).

@ The number of nodes satisfy
M(P(®!, ®2)) = M(FP(®!, ®?)) = M(®!) + M(d?).

Proof. The networks defined next have the desired properties. []



Concatenation: Intuition

Composition of functions corresponds to concatenation of neural networks:

Concatenation [Figure from Petersen|



Concatenation: Definition

Definition (Concatenation)
Let L1, Lo € N and let

(I)l = ((A%vb%% ocog (Ail) b},l))

(1)2 = ((A%b%% ocog (A%Q, b%g))

be two neural networks such that the input layer of ®! has the same
dimension as the output layer of ®2.

Then the concatenation of ® and ®2 is the neural network ®! e ®2 with
L1 + Ly — 1 layers given by

D' e 02 = ((A%7 b%): S (A%Q—]_? b%2—1)7
(A1AL,, ATbE, +b1), (A3, b), .-, (AL, bL,)).

v




Parallelisation: Intuition

e The parallelization P(®!, ®2) is a neural network with input
dimension d; = do, where the inputs are shared.

e The full parallelization FP(®!, ®2) is a neural network with input
dimension dy + ds, where the inputs are not shared.

é 7 °<g """" %

Parallelisation with shared inputs [Figure from Petersen|



Parallelisation: Definition

Let &' and ®? be two neural networks with the same number L of layers
and input dimensions d; and da, respectively:

ol = ((Allvbll))le{L...,L}7 ?° = ((A27612))l6{1,...,L}'

Then the parallelization and full parallelization of ®! and ®? are the neural
networks

P(®L, d?) = ((Al,i)l), (A, o), .. ., (AL,EL)) if di = do,
FP(®!, %) = (([11,51), (/12,(32), s, (AL,I;L)> for arbitrary dy, ds,

where for each [ € {1,..., L},

P Al - b - Al 0 = b
() wm (@) (8 ) v ()




Questions to Answer for Yourself / Discuss with Friends

@ Repetition: Take a pen and paper and verify that the network
concatenations and parallelizations satisfy the properties claimed in
the lemma.

@ Check: Can multiplication of functions be represented as an operation
on neural networks?

@ Discussion: Can you think of any further operations on neural
networks?
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Universality

Definition

Let d,L € N, and let p: R — R be a continuous activation function. For
K C R% compact, denote by MLP(p, d, L; K) the set of multilayer
perceptrons with input dimension d, L layers and output dimension 1,
restricted to K.

We say that MLP(p, d, L; K) is universal if it is dense in C'(K), the space
of real-valued continuous functions on K with the supremum norm.




Universal approximation theorem

Definition (Discriminatory activation functions)

Let d € N, K C R% compact. A continuous function p : R — R is called
discriminatory (on K) if the only signed Radon measure 1 on K with

/ plaz —b)du(z) =0 (a € R%beR)
K

is the zero measure p = 0.

Theorem (Universal approximation theorem of Cybenko)

Let d € N, K C R% compact, and p : R — R discriminatory. Then
MLP(p,d,2; K) is universal.




Tool: Riesz—Markov—Kakutani representation

Notation
o Let K be a compact Hausdorff topological space.

@ Denote by C(K) the Banach space of real-valued continuous
functions on K with the supremum norm.

@ Denote by M(K) the Banach space of finite signed Radon measures
on K with the total variation norm.

@ Recall that a Borel measure is called Radon if it is regular and locally
finite.

Theorem (Riesz—Markov—Kakutani representation)

On any compact Hausdorff topological space K, the topological dual of
C(K) is M(K).




Tool: Hahn—Banach extension

Theorem (Hahn—Banach extension)

If X is a normed space, M a linear subspace, and \ a continuous linear
functional on M, then A can be extended to a functional A: X — R such
that |\ = [|A]].

Consequently, M is dense if and only if every continuous linear functional
on X that vanishes on M is trivial.



Proof of the universal approximation theorem

Note that MLP(p,d,2; K) C C(K) is a linear subspace
Assume for contradiction that MLP(p, d, 2; K) is not dense

By Hahn-Banach, there is a non-zero measure p with

[ fdn=0 (s e MLP(p.d 2 K)
K

o However, the functions f,,(x) := p(ax — b) belong to
MLP(p,d,2; K) for all a € R? and b € R.

As p is discriminatory, this gives the desired contradiction O



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: Recount the universal approximation theorem and its
proof.

@ Check: Verify that one has indeed
K >z plax —b) € MLP(p,d,2; K) for a € R*, b € R

@ Transfer: How does Cybenko’s universality theorem differ from the
Stone—Weierstrass approximation theorem?
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Sigmoidal functions

Definition

A continuous function p: R — R is called sigmoidal, if p(x) — 1 for
x — o0 and p(z) — 0 for x — —o0.

Example: The logistic (aka. sigmoidal) function z + (1 +e~%)~! is sigmoidal

Theorem (Cybenko)

Let d € N, K C R% compact. Then every sigmoidal function p: R — R is
discriminatory on K.




Proof that sigmoidal functions are discriminatory

o Let yn € M(K) such that [, p(az — b)du(z) =0 for a € R%, b € R
e For any 0 € R,

1 ar —b >0
)\li_)m p(Aax —b)+0) =< p0) ar—b=0
0 ar —b<0

@ Thus, by dominated convergence,

p{az > b})+p(O)p({az = b}) = lim Kp(/\(aflf—b) +0)dp(z) =0

@ Taking the limit # — —oo, we conclude that

p({ax >b}) =0 (aeR%beR)



Proof that sigmoidal functions are discriminatory (cont.)

@ In particular, for any b; < bo,

plfar > by) = ul{aa > 1) = [ 1, m(aa)dn(z) =0

@ This extends first by linearity to step functions and then by density to
continuous bounded functions:

/ glaz)du(z) =0 (g € Cy(R))
K

@ By choosing g = sin and g = cos, we arrive at

0= /Kexp(iax)d,u(x) (a € RY)

@ This means the Fourier transform of y vanishes; whence p = 0. O



Extensions and variations

@ The above proof also works for other dual pairings such as e.g.
LY(R%) and L>°(R%).

@ Alternatively, for activation functions p € {sin, cos, exp}, density of
{p(a-+b);a € R4 b e R} in C(K) follows directly from
Stone—Weierstrass.

e Alternatively, for activation functions p with [ p(z)dz # 0, density in
L'(K) can be shown using the Tauberian theorem of Wiener: any
translation-invariant subspace of L!(R), which contains for any £ € R
a function f with f(€) # 0, is dense. [Cybenko]



Questions to Answer for Yourself / Discuss with Friends

@ Check: Are sigmoidal functions bounded?

@ Background: Do you recall the proof of the injectivity of the Fourier
transform on measures? (Hint: Stone—Weierstrass for trigonometric
polynomials.)
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Outlook on this week’s discussion and reading session

@ Reading:
- Hornik (1989): Multilayer Feedforward Networks are Universal
Approximators
- Cybenko (1989): Approximation by superpositions of a sigmoidal
function
- Hornik (1991): Approximation capabilities of multilayer feedforward
networks



Summary by learning goals

Having heard this lecture, you can now ...
@ Describe the structure of multi-layer perceptrons and neural networks
@ Sketch a brief history of deep learning and put it into the perspective
of representation learning.
@ State the universal approximation theorem and understand its elegant
proof
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Overview of Week 3

@ Introduction to Dictionary Learning

© Approximating Holder Functions by Splines

9 Approximating Univariate Splines by Multi-Layer Perceptrons
@ Approximating Products by Multi-Layer Perceptrons

© Approximating Multivariate Splines by Multi-Layer Perceptrons

@ Approximating Holder Functions by Multi-Layer Perceptrons

e Wrapup
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Signal classes

Definition (Signal class, approximation error)

Let H be a normed space.
@ A signal class is a subset C of H.

@ The approximation error of signal class C by signal class A is
o(A,C) =supinf || f — .
(4,0) = sup int [~ il

@ A function g € A which realizes the above infimum is called best
approximation of f.

Example:
o H = L%(Q) for some  C R%.
o C=C*(Q) or H5(Q) for some s € R

o A is a set of multi-layer perceptrons, splines, or wavelets



Dictionaries

Definition (Dictionaries)

Let H be a normed space, and let A be a countable index set.
@ A dictionary is a collection ¢ = (¢))rea Of elements in H.

@ The set of n-term linear combinations in ¢ is defined for any n € N as
Tn(g) = {Zcm ceRY ey < n} :
AEA

where ||-||, denotes the number of non-zero entries.

@ The n-term approximation error of signal class C by dictionary ¢ is

o(Xp(¢),C) =sup inf — .
(50(0).0) = sup 117 ~ il

@ A function g which realizes the above infimum is called best n-term
approximation of f.




Approximation Rates

Definition (Approximation Rates)

Let C be a signal class, and let h € RY.

o A sequence (A, )nen of signal classes achieves an approximation rate

of h for C if
0(Ap,C) = O(hy) as n — c©.

@ A dictionary ¢ achieves an approximation rate of h for C if

0(Xn(9),C) = O(hy) asn — .

Remark:
@ Bounds on the approximation rate are typically more easily obtained
than bounds on the approximation error for finite n.
@ A “good” dictionary needs more than just a good approximation rate.

Indeed, any dense sequence ¢ in H achieves any approximation rate
for any signal class but is ill-suited for efficient encoding of functions.



Dictionary Learning: Transfer of Approximation

Motivation: show a result of the following type

o If multi-layer perceptrons approximate a dictionary well, and the
dictionary approximates a signal class well, then multi-layer
perceptrons approximate the signal class well.

Theorem (Transfer of approximation)

Let C be a signal class in a normed space H of functions R? — R. Assume
that multi-layer perceptrons of depth L with activation function p and at
most M weights approximate any function in a dictionary ¢ to arbitrary
accuracy:

Ve>O0VAEATD: L(®) =L, M@) <M, [¢r—R(®)|,<e.

Then multi-layer perceptrons with Mn weights approximate C with error

o({R(®) : L(®) = L, M(®) < Mn},C) < o(Sn(0),C).




Proof: Transfer of Approximation

Proof:
e Given f € C and € > 0, there exists g € ¥,,(¢) with

1f = glly < 0(En(0),C) + e

o After relabeling we may write g = Zz‘gn c;¢p; for some ¢; € R.

@ Given € > 0, there exists neural networks ®; for : = 1,...,n with
€
L(®) =L, M(®:) <M, [¢i—R(®i)]ly <

n-lello

@ By the subsequent lemma on linear combinations of neural networks,
there exists a neural network ® with

L(®) =L, M(®) < Mn, H > cioi - R((I))HH <e.

o Consequently R(®) approximates f with error
If = R(®)[lyy < If =gl +lg = R(®)[ly, < 0(Xn(9),C)+2e. [



Linear combinations of networks

Lemma (Linear combinations of networks)
Let ®q,...,®, be neural networks with depth L and input dimension d,

and let cy,...,c, € R. Then there exists a neural network ® with depth L
and input dimension d such that
R(®) =) cR(®:), M(®) <> M(®;).
i<n i<n

Proof:
e Let c be the row vector (ci,...,c,) € RPX"

@ Define the neural network ® by
® = ((¢,0)) e P(Pq,...,P,)

@ Count the number of layers and weights 0J




Questions to Answer for Yourself / Discuss with Friends

@ Repetition: Recall the definitions of signal classes, dictionaries, and
approximation errors.

@ Check: Verify that the network ® in the lemma on linear
combinations has indeed depth L and not L + 1.

@ Check: Is the set ¥,,(¢), which consists of n-term linear combinations
in the dictionary ¢, a linear space?

@ Transfer: How is the approximation error related to the one defined in
statistical learning theory?
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Univariate Splines

Definition (Univariate splines)
Let £ € N.

@ The univariate cardinal basis spline of order k on [0, k| is defined as

k

Ni(x) := G _1 i Z(—l)l (llﬁ) (-1 forzeR

=0

where (-)4 := max{0, -}.
@ Fort € R and | € N we define the univariate basis splines by
rescalings and translations:

Nir(@) = N2z —t)) forz eR.




Univariate Splines

Plots of the basis spline N, (blue) and some translates of it (gray):
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Multivariate Splines

Definition (Multivariate splines)
Let d, k € N.

@ For I € N and t € R? we define the multivariate basis splines
J\/ltk HMt“k (z;) forx = (21,...2,) € RZ.

@ The dictionary of dyadic basis splines of order k is

k d
B := (M,t,k)leN,terlZd-




Approximating Holder Functions by Splines

Let H = LP([0,1]%) for some d € N and p € (0,00], let B¥ denote the
dyadic basis splines of some order k € N, and let C be the unit ball in
C*([0,1]%) for some s € (0,k]. Then for any r < s/d, the dictionary B"
achieves an approximation rate of (n™"),en for the signal class C in H.

Remark:
@ The coefficients ¢; in the spline approximation of f € C by
Zign ¢;B; € BF can be chosen such that max; |¢;| < || f]]oo-
@ More generally, spline approximations of Besov B;q(Rd) functions
converge in Besov B;:’q/ (R%) norms at a rate of (nearly)

(n_(s‘s')/d)neN. For p > ¢/, this follows from the constructive linear
theory with non-adaptive grids, whereas for p < p’ adaptive grids are
needed, and the approximation theory becomes non-constructive and
non-linear.



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: What is the meaning of the parameters [, ¢, k, d of dyadic
basis splines '/\/’lc,lt,k?

@ Background: Read up on the definition of Holder functions and
splines if needed.

@ Transfer: Cubic interpolating splines are the solution of a linear
best-approximation problem—which one?
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Sigmoidal Functions of Higher Order

A function p : R — R is called sigmoidal of order ¢ € N, if p € C7}(R)
and the following three conditions are met:

° pg(cq) —0 forz— —oco.

° %%1 for x — oc0.
o [p(z)| S(1+]z|)¢ forzeR.

Example:
@ Sigmoidal functions are sigmoidal of order 0.
@ The Relu function = — (x)4 is sigmoidal of order 1.
@ The power unit z — ()% is sigmoidal of order ¢ € N.
Goal:

@ Approximation of univariate splines by multi-layer perceptrons with
sigmoidal activation functions of order ¢ > 2.



Approximating Power Units by Multi-Layer Perceptrons

Notation:

@ [z]| € Z denotes the the smallest integer greater than or equal to x.

Theorem

Let k € N, and let p: R — R sigmoidal of order ¢ > 2. Then there exists a
constant C' > 0 such that for every ¢, K > 0, there is a neural network ®
with [max{log,(k),0}| + 1 layers and C weights satisfying

sup ‘R(@)(m) - (x)’;‘ <e.
z€[—K,K]

Remark:

@ Two layers suffice for the approximation of square units.



Proof: Approximating Power Units by MLPs

Proof:

o Letn:= {max{logq(k:), 0}] let p:= q™ >k, and let f) be the n-fold
composition of p, rescaled by A > 0:

fi(x) == A"Pp"(Ax) for r € R.
@ Then f) converges to the p-th power unit:

VK >0: lim sup |fi(z)— (2)f]=0.
A=0 pe[— K, K]

@ The difference quotient converges to the (p — 1)-th power unit:

(@ +0) — fa()

VK > 0: lim sup —pz)P "t =0,
f__ggoze[fK,K] d (@)

and similarly for higher-order difference quotients and derivatives.

@ These difference quotients are realizations of neural networks ® with
[max{log,(k),0}| + 1 layers. O



Approximating Univariate Basis Splines by MLPs

Any univariate basis spline of degree k € N can be approximated uniformly
on compacts by neural networks with sigmoidal activation function of
order ¢ > 2 and architecture depending only on k and q.

Proof:

@ Univariate basis splines AV, are linear combinations of translated
and rescaled power units:

Nipr(@) = Ni(2H(z — 1),

B k
oD Z(—1)l<’;> (x— 1)k

@ Approximate the power units by multi-layer perceptrons, apply

translations and scalings using the subsequent lemma, and take linear
combinations. O

Ni(z) =



Shifting and rescaling neural networks

Lemma (Shifting and rescaling neural networks)

Let ® be a neural networks of input dimension d € N.

For any t € R and X € R, there exists a neural network U with the same
architecture as ® and at most d additional weights such that

R(U)(z) = R(®)(\z + 1) for z € R%

Proof:

@ Define the neural network W as
U= e ((Aldga,t))

@ Count the number of layers and weights Ol



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: What are power units and how are they related to splines?
@ Repetition: What are sigmoidal functions of higher order what are
they useful for?

@ Check: Verify the claims about uniform convergence on compacts of
rescaled sigmoidal functions to power units!
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Representing Products by Square Units

Theorem

Let d € N, and let p be the square unit x — (z)2. Then there exists a
neural network ® with [logy(d)| + 1 layers such that

d
R(®)(z) = Hmz for z € RY.
i=1

Remark:

@ Note that this representation is exact; no approximation is needed.

@ However, approximation is needed to allow for more general activation
functions.



Proof: Representing Products by Square Units

Proof:
@ Multiplication of 2 variables can be represented as a network of depth
2 and width 6 thanks to polarization:

22129 = (21+22)} +(—21—22)7 — (21)7 — (—21)F — (22)7 — (—22) 7

@ Parallelize and concatenate to achieve multiplication of 2™ variables:

Ty ToTaTy LT T7 Ty

T1T3T3Ty

Ty Ty I3 Ty Tg T o5 T

[Figure from Petersen] 0



Approximating Products by Multi-Layer Perceptrons

Corollary

Let d € N, and let p be sigmoidal of order ¢ > 2. Then there exists a
constant C' such that for every e, K > 0, there exists a neural network ®
with [logy(d)]| + 1 layers and C weights satisfying

d

R(®)(2) — [[ =

=1

< e.

sup
z€[-K,K]?

Proof:
@ Represent the product by a network with square-unit activation
function as above.
@ Approximate each square unit (i.e., each red dot in the previous
figure) by a 2-layer network of fixed size and note that this does not
increase the overall network depth.

O




Questions to Answer for Yourself / Discuss with Friends

@ Repetition: How can the product of two or more variables be
represented or approximated by multi-layer perceptrons?

@ Check: What does the multiplication network look like when the
number of variables is not a power of 27

@ Discussion: Is it possible to build multiplication networks with
activation function z — 227
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Approximating Multivariate Basis Splines by MLPs

Theorem

Let k,d € N, and let p: R — R be sigmoidal of order ¢ > 2. Then there
exists a constant C' > 0 such that for every basis spline f € B* and every
e, K > 0 there is a neural network ® with

[logy(d)] + [max{log,(k — 1),0}]| + 1 layers and C weights satisfying

IR(®) = fll oo (-, ]y S €-




Proof: Approximating Multivariate Basis Splines by MLPs

Proof: Combine the approximations of power units and multiplication:
o Let f € B” be a dyadic basis spline, i.e.,

f(z) = l,t,k HNk ti)) for z € RY,

where N, is the univariate basis spline of order k, i.e.,

k
S ()@t

=0

Ni(z) :=

o Approximate the univariate basis splines z; — N (2! (z; — t;)) by
networks W; with [max{log,(k —1),0}| + 1 layers.

e Approximate multiplication R — R by a network ¥ with
[logy(d)] + 1 layers.

o Define & := Uy e FP(Uy, ..., Ty).



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: Outline the structure of the proof above: How can
multivariate splines be approximated by multi-layer perceptrons?

@ Discussion: Where is sigmoidality of higher order used?
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Approximating Holder Functions by MLPs

Theorem

Letd €N, s >0, r <s/d, and p € (0,00]. Moreover, let p: R — R be
sigmoidal of order ¢ > 2. Then there exists a constant C' > 0 such that, for
every f in the unit ball of C*([0,1]%) and every e € (0,1/2), there exists a
neural network ® with depth L = [logy(d)] + fmax{logq(s —1),0}] +1
and number of weights M < Ce™" satisfying

If = R(®)||» < e

@ Deep networks are needed to approximate high-dimensional functions
using sigmoidal activation functions of low order compared to the
regularity of the function.

@ The approximation rate is inversely proportional to the dimension d.
This is often called the curse of dimensionality.



Proof: Approximating Holder Functions by MLPs

Proof: Transfer of approximation:

Let C be the unit ball in C*([0,1]%), let H := L?(]0,1]%), and let B*
be the dictionary of dyadic basis splines.

Multi-layer perceptrons of depth L with activation function p and at
most M weights approximate any function in the dictionary B*
uniformly on compacts and consequently also in H to arbitrary
accuracy.

The dictionary B* approximates the signal class C at rate (77" )nen.
Yy PP g €

By the transfer-of-approximation theorem,
c({R(®) : L(®) = L,M(®) < Mn},C) < o(Zn(B¥),C) <n™.

Equivalently, an error of € can be achieved using networks with
O(e71/7) weights. O



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: Explain dictionary learning in the context of splines and
Holder functions.

@ Discussion: What are strengths and weaknesses of the result when
applied to function approximation or encoding?
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Outlook on this week’s discussion and reading session

@ Reading:
— Oswald (1990): On the degree of nonlinear spline approximation in
Besov-Sobolev spaces

— DeVore (1998): Nonlinear approximation



Summary by learning goals

Having heard this lecture, you can now ...

@ Describe signal classes, dictionaries, and related notions of
approximation and transfer of approximation.

@ Approximate products and power units by multi-layer perceptrons.

@ Establish approximation rates for Holder functions by multi-layer
perceptrons.
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Overview of Week 4

@ Hilbert's 13th Problem

© Kolmogorov—Arnold Representation

© Approximate Hashing for Specific Functions
@ Approximate Hashing for Generic Functions
© Proof of the Kolmogorov—Arnold Theorem

@ Approximation by Networks of Bounded Size

e Wrapup



Acknowledgement of Sources

Sources for this lecture:
@ Arnold (1958): On the representation of functions of several variables
@ Torbjorn Hedberg: The Kolmogorov Superposition Theorem. In
Shapiro (1971): Topics in Approximation Theory
@ Philipp Christian Petersen (Faculty of Mathematics, University of
Vienna): Course on Neural Network Theory.
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Hilbert's 13th Problem

Hilbert's 13th problem

Can the roots of the equation

2’ tard +brP+cx+1=0

be represented as superpositions of continuous functions of two variables?

Remark:
@ This is the general form of a septic equation after some algebraic
transformations. The roots are functions of (a, b, c).
@ A single superposition is w(u(a, b),v(b, c)) and a double
superposition is w (u (p(a, b),q(b, c)) , v(r(b, ¢), s(e, a))) .
@ More generally, the question becomes: Do functions of three variables

exist at all, or can they be represented as superpositions of functions
of less than three variables?



Hilbert's Conjecture

Conjecture: Hilbert conjectured that such reductions to smaller numbers
of variables are impossible. The strongest supporting evidence is:

Theorem (Vitushkin 1955)

There is a polynomial such that neither the polynomial itself nor any
function sufficiently close to it (in the sense of uniform convergence) can
be decomposed into a simple superposition of continuous functions of two
variables in any region or in any system of coordinates.




Dimension theory

Remark: Kolmogorov interpreted Hilbert's problem using dimension
theory:

Let N(e) be the smallest number of e-balls needed to cover a metric
space X.

On X = [0, 1]" one has dim(X) := liminf._,o _1%;5(6) =
On X = C?*([0,1]™) one has
dim(X) := liminf_,o %ﬁj\[(e) =n/s.

In this sense, Holder functions of 3 variables are strictly richer than
Holder functions of 2 variables.

However, as we will see, this argument does not generalize to
continuous functions.



Reduction to three variables

Theorem (Kolmogorov 1956)

Any continuous function f of n € N variables can be represented as a

finite number of superpositions of functions of 3 variables. For instance,
for n = 4 one has

4

Flar, wo, w3,24) = > g (u(@r, w2, 23), v(21, 29, 23), 74
=1

for some continuous functions ¢*,u,v: R? — R.




Sketch of Proof: Reduction to three variables

Sketch of Proof:
@ The level sets (aka. contour lines) of a continuous function form a
tree (Kronrod, Menger):

Figure: Figure from Arnold (1956)



Sketch of Proof: Reduction to three variables (cont.)

@ Any continuous function of n variables can be written as a sum of
n + 1 continuous functions with standard trees, i.e., trees which do
not depend on the given function (Kolmogorov):

n+1

flze, ... zn) = Zfi(xl, cey ).
i=1

@ Each of function f; can be written as a one-parameter family of
functions of n — 1 variables:

n+1

flz1,...,2n) = Zf;n(xl, ey Tp—1)
i=1



Sketch of Proof: Reduction to three variables (cont.)

@ Each of the functions f;n factors through a function on the
corresponding standard tree:

n+1

flar,. . mn) =Y gh (0(x1,..., 20 1)).
=1

My
'

Figure: Figure from Arnold (1956)




Sketch of Proof: Reduction to three variables (cont.)

@ Embedding the trees in a plane with a two-dimensional coordinate
system (u,v) transforms this into:

n+1

f(xlu"'v Zgg;n 151,...7.’En_1),’0i($1,...,In_1)).

@ This yields 3-variate functions g; and (n — 1)-variate functions u?, v':

n+1

f(z1,...,z Zg a1,y Te1)s 0 (21, 1), Tn) -

e Applying this construction iteratively to u* and v* yields the reduction
to superpositions of functions of 3 variables. O



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: State Hilbert's 13th problem and describe how
Kolmogorov cast it in the frameworks of dimension and graph theory.

@ Check: What happens to Hilbert's problem when continuous
functions are replaced by measurable or arbitrary functions?

@ Background: Find out about generalizations, limitations, and open
problems related to Hilbert's thirteenth problem.
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Kolmogorov—Arnold Representation

Theorem (Kolmogorov—Arnold 1956-1957)
For every n € N>, there exist p; ; € C([0,1]) such that any
f € C([0,1]™) can be represented as

2n+1 n

f@i,. )= gi @i ;) |
=1 7j=1

for some g; € C'(R).

Remark:

@ This disproves Hilbert's conjecture and shows that “the only”
multivariate function is a sum.

@ The inner functions ¢; ; are universal, i.e., they do not depend on f.

@ The outer functions g; can be learned by linear regression.



Sprecher’s Refinement: Universal Inner Function

Theorem (Sprecher 1965, Képpen 2002)

For every n € N>, there exists a continuous function ¢ : R — R and
constants a, \; € R such that any f € C([0,1]"™) can be represented as

2n+1 n

i=1 g=ll

for some g; € C(R).

Remark:
@ The function ¢ and the constants A\; and a can be constructed
explicitly and are universal, i.e., independent of f.
@ Sprecher’s representation can be interpreted as a neural network.

@ There are many further versions of the Kolmogorov—Arnold theorem
with varying regularity and structural assumptions.



r 0.05
07 JJJ R

0.04
06 g
j 0.03

0.02
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Figure: Sprecher’s universal inner functions ¢ (left) and 11 (right), where
iz, 22) = Mp(a1 +ia) + Aap(xe + ia) for some constants A1, Ay, a. [Leni
Fougerolle Truchetet 2008]




Remark:

@ The inner functions in the Kolmogorov—Arnold representation
theorem can be interpreted as hash functions.

Background:
@ Hash functions are widely used in computer science for array indexing
operations.
@ They map high-dimensional /unstructured /variable-length data to
scalar hash values.

@ Hash functions should be fast to compute and should be “nearly”
injective, i.e., minimize duplication of output values.



Hashing and Kolmogorov—Arnold Representation

Lemma

For eachi € {1,...,2n+ 1}, Sprecher’s inner function

bi: [0,1]" 3 (21,...,20) = Y Njp(a; +ia) € R
j=1

is injective on a countable dense subset D C [0,1]".

Remark:
o It is sufficient to establish injectivity of ¢(z) := >, Ajp(x;) on D.
@ This follows from the following two facts: ¢ takes rational values on
D, and the coefficients \; are independent over the rational numbers.

@ Of course, 1 is not injective everywhere; otherwise the
Kolmogorov—Arnold theorem would be trivial.



Space-filling curves

@ Intuitively, the inverse of a hash function [0,1]” — [0,1] is a
space-filling curve, i.e., a surjective continuous map [0, 1] — [0, 1]™.

@ For Sprecher’s hash function, this is made precise as follows: By
carefully examining the properties of v, one may construct an
“inverse” map A : [0,1] — [0, 1]™ with the following properties:

@ The map A :[0,1] — [0,1]™ is a space-filling curve.
@ Its image may be approximated by discrete curves Ay as k — oo.

Remark:
@ By the Hahn—Mazurkiewicz theorem, a non-empty Hausdorff
topological space is a continuous image of the unit interval if and only
if it is compact, connected, locally connected, and second-countable.



Space-filling curves

LR RIS
llmfl‘ hi:!ﬁ! lh.f!ﬂ“ i hh.:!!! Nl hi.ll

0
0 0. 0.4 05 06 1

Figure: An approxmation Ay of the space-filling curve )\. [Sprecher Draghici 2002]



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: Recall and compare the presented versions of the
Kolmogorov—Arnold Theorem.

@ Check: Why exactly does the Kolmogorov—Arnold representation
theorem disprove Hilbert's conjecture?

@ Check: Show that there is no continuous bijection [0, 1]" — [0, 1] for
any n > 2.

@ Discussion: How would you implement Sprecher’s theorem using
neural networks? Do you think this could work well for supervised
learning?
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Hashing rational numbers

There exists a linear map £: R™ — R whose restriction to rational
numbers is injective.

Proof:
e n=2:Set {(x,y) =+ Ay for any irrational number \.
o n>2: Setl(xy,...,xpn) := A1x1 + -+ + Apxy, where \; are
independent over Q, e.g. \; = 7! or some other powers of any

transcendental number. O

Remark:

@ Thus, any f: Q" — R can be written as f = g o £, where £ is the
above linear hashing function. However, g cannot be chosen
continuously, and the approximation error cannot be controlled on
non-rational numbers—a more elaborate construction is needed.

e We fix an irrational number A € R\ Q throughout this section.



Approximate Hashing for a Specific Function

Remark:

@ The key step in the proof of the Kolmogorov—Arnold theorem is the
construction of approximate hashing functions.

@ This is done here for a given specific function and in the next section
for generic functions.

@ We restrict ourselves to bivariate functions.

Definition (Approximate hashing functions, specific f)

A function ¢ € C([0,1],R) is called approximate hashing function for
f € C([0,1)?) if there exists g € C(R) such that

5

sup lg()] < 1/7,  sup |f(z,y) — Y g(pile) + Api(y))| < 7/8.
teR z,y€[0,1] i1




Approximate Hashing for a Specific Function

For any f € C2([0,1]?) with || f|lo < 1, the set of approximate hashing
functions for f is open and dense in C([0, 1], R%).

Proof:

@ The set is open, since if g works for a particular ¢, it does so for
every nearby .

e It remains to show that the set is dense in C([0, 1], R?).

e Thus, given € > 0 and x € C([0,1],R%), we have to find an
approximate hashing function ¢ for f such that [[¢ — x|| < e.



Proof: Approximate Hashing for a Specific Function

e Divide [0,1] into N € N intervals, cut out the i-th fifth of each

1=1

interval, and color all remaining intervals red.
e Approximate y; (gray) by functions ¢; (blue), which are constant on

red intervals of type i.

< s
N
A\
N\
—




Proof: Approximate Hashing for a Specific Function

@ It can be arranged that each function ¢; assumes distinct rational
numbers on each of the red intervals, and that these numbers are
distinct for different 4.

e Moreover, for sufficiently large N, ||¢ — x|| < €, as desired.

e Furthermore, by the uniform continuity of f on [0, 1]?, we can make
N even larger to get

| f(z,y) —f(x/,y’)‘ < 1/7 whenever max{|:c—x/ y—y/’} < 4/N.

)



Proof: Approximate Hashing for a Specific Function

@ The function ¥;(z,y) := @i(x) + Ap;(y) is constant on red rectangles
of type i, which are defined as products of red intervals of type 1.

@ The irrational numbers, which the functions ¢; assume on rectangles
of type 4, are all distinct for different rectangles and/or different .

@ Thus, there is g € C(R) such that g(¢;(x,y)) = £1/7 if (z,y)

belongs to a red rectangle of type ¢ where f = 0.

Without loss of generality, ||g|| < 1/7.

@ Intuitively, g tracks the sign of f on each rectangle.



Proof: Approximate Hashing for a Specific Function

e For any point (z,y), consider the approximation error
5
i=1

o If f(z,y) = 1/7, then f = 0 on each red rectangle containing (z,y).

@ There are at least 3 such rectangles because out of 5 types, one may
fail on the z-axis and another one on the y-axis.

@ Thus, the majority of the summands in (x) tracks the sign of f
correctly, and the approximation error is bounded by 6/7.

o If |f(z,y)| < 1/7, the approximation error is again bounded by 6/7,
regardless of correct or incorrect tracking.

@ As 6/7 < 7/8, we have shown that ¢ is an approximate hashing
function, which is e-close to x. Ol



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: Recall the definition of and main result on approximate
hashing.

@ Background: Refresh your memory of algebraic closures and the
definition of algebraic and transcendental numbers, if necessary.

@ Check: Draw the red rectangles of types 1 to 5 and verify that each
point is contained in at least three rectangles.

@ Check: What is the role of the numbers 5 and 1/7 in the lemma?
Can they be altered?
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Approximate Hashing for Generic Functions

Remark:
@ As before, we fix an irrational number A € R\ Q.

Definition (Approximate hashing functions)

A function ¢ € C([0,1],R®) is called approximate hashing function if for
any f € C([0,1]?), there exists g € C(R) such that

8
< 5 1fllo

5
1
=1

where ¥;(z,y) = @i(x) + Api(y). J

Remark:
@ Compared to hashing for specific functions f, this definition imposes
the hashing property simultaneously for all f and with a slightly worse
error bound.




Approximate Hashing for Generic Functions

The set of approximate hashing functions is dense in C([0,1],R).

Proof:

Let Uy, be the sets of approximate hashing functions of fi, for some
dense sequence (f)ren in the unit sphere of C([0, 1]?).

The sets Uy, are open and dense. By Baire's category theorem, its
intersection U is dense.

Any function ¢ € U is an approximate hashing function: for any f
with || f]leo < 1, there exists f and g such that

[ = gow| < = il + | f =X g0w

[e.e]

<G-D+i-b

Extend to general f by scaling.



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: What is the difference between hashing for specific versus
generic functions, and how does the former imply the latter?

@ Background: Refresh your memory of the Baire category theorem if
necessary.

@ Discussion: Can you strengthen the proof to get monotonically
increasing approximate hashing functions?
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Kolmogorov—Arnold Representation, Refined Version

Remark: The approximate hashing results imply the following refined
version of the Kolmogorov—Arnold representation theorem:

Theorem (Kolmogorov—Arnold representation, refined version)

For any n € N>g, there exist A1,..., A\, € R and ¢1,. .., pa+1 € C([0,1])
such that any f € C([0,1]™) admits a representation

2n+1

flay, ... zp) = Z g(Mpi(z1) + -+ + Anpi(zn))
i=1

for some continuous function g.

Remark: The difference to Kolmogorov's original result is that g does not
depend on 1.



Proof: Kolmogorov—Arnold Representation for n = 2

Proof: lterative improvement of the approximate hashing representation

e Let ¢ € C([0,1],R®) be an approximate hashing function, define
Yi(z,y) = Api(z) + Aawi(y) for A; ;=1 and Ay irrational, and
define T'g := Z?Zl g o ;.

e Set f1:= f and find g; with [[g1]/cc < %Hfl”oo and
11 = Tg1lloe < Il f1lloo-

o Set fo:= fi — Tig1 and find go with [[ga]lc < L[| 2]l and
1f2 = Tg2lloo < Ell f2lloo-

e Continue to eternity. When done, set g = ), g, and note that
f =Tg as required. O



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: Recall the proof of the Kolmogorov—Arnold theorem via
the construction of approximate hashing functions.

@ Discussion: How does the proof work in higher dimensions?
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Approximation by Networks of Bounded Size

Theorem

There exists a continuous, piece-wise polynomial activation function

p: R — R which allows one to approximate continuous multivariate
functions by realizations of neural networks with bounded size, that is, for
all n € N there exists a constant C = C(n) such that

Ve > 0Vf € C([0,1]") 3B : L(®) =3, M(®) < C(n), ||f — R(®)||, < ¢

Remark:

@ This theorem is in a sense “too good” because it provides an
approximate representation of continuous functions by finitely many
real numbers.

o It highlights the influence of the choice of activation function on the
resulting approximation theory.

@ It also points to the importance of asking for bounded weights.



Approximation by Networks of Bounded Size

Lemma (Univariate case)

The theorem holds in the univariate case n = 1: there exists a continuous,
piecewise polynomial activation function p: R — R such that

Ve >0VfeC(0,1]) 30: L(®) =2, M@®)<3, |[f-R(®), <e.

Remark: By translation and scaling, this extends to continuous functions f
on every closed interval [a,b] C R.



Proof: Approximation by Networks of Bounded Size

Proof of the lemma:

@ Recall that the set II of polynomials with rational coefficients is dense
in the Polish space C'([0,1]), and let (7;);ez be an enumeration of II.

@ Define the activation function p by

(2) = mi(x — 2i), x € (20,20 + 1]
P w1242 — ) + w1 (0)(@ —2i — 1), z e (20+1,2i+2

o Note that, by the very definition of p, one has p(z + 2i) = m;(z) for
z € [0,1].

@ Hence, the neural network @ := ((1,2i), (1,0)) has the desired
properties. O



Proof: Approximation by Networks of Bounded Size

Proof of the theorem:
e By the Kolmogorov—Arnold theorem (refined version),

2n+1
[= Z g o, wi(xlv s 7$n) = >\180i(951) +eee )\n%(fﬂn)-
i=1
for some g € C(R), A1,..., A\, € R and p1,..., 02,41 € C([0,1]).

@ By the previous lemma, ¢; =~ R(®;) € C(]0,1]) for some networks ®;
and a piece-wise polynomial activation function p, where =~ denotes
approximation up to arbitrary accuracy.

@ Then ¢; =~ R(V;) € C([0,1]") for each i € {1,...,2n+ 1}, where

‘111' = ((()\1, ey )\n), 0)) o FP((I)“ ey (I)l)



Proof: Approximation of Multivariate Functions (cont.)

@ By the previous lemma, g = R(E) € C([-K, K]), where K is
sufficiently large such that ;([0,1]") C [- K, K].

@ Then the network
P = (((1, ceey 1), 0)) L] FP(E, e ,E) ° P(\Ifl, ey \Ifgn+1).

has the desired number of layers and weights.
@ Moreover, f =~ R(®) thanks to the estimate

If —R(® H<Z:||REOR i) = gouil

SZHR(E)OR(%) R(Z) o ¢ill + [IR(Z) 0 i — g o ¢l ,

and thanks to the uniform continuity of R(E) on [-K, K].



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: Recall the approximation of univariate and multivariate
functions by networks of bounded size.

@ Check: Verify that the activation function p constructed in the
univariate case is continuous.

@ Discussion: What are theoretical implications to approximation theory
and practical implications to supervised learning?
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Outlook on this week’s discussion and reading session

@ Reading:
— Arnold (1958): On the representation of functions of several variables
— Bar-Natan (2009): Hilberts 13th problem, in full color
— Hecht-Nielsen (1987): Kolmogorov's mapping neural network existence
theorem



Summary by learning goals

Having heard this lecture, ...
@ You can describe the Kolmogorov—Arnold representation theorem and
its proof.
@ You can appreciate the fundamental distinction between inner and
outer network layers.
@ You are aware that different choices of activation functions may lead
to very different approximation theories.
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Overview of Week 5

© Banach frames

© Group representations
© Signal representations
@ Regular Coorbit Spaces
© Duals of Coorbit Spaces
@ General Coorbit Spaces

@ Discretization

© Wrapup
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Analysis
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Bases in Banach spaces

Definition (Schauder 1927)

Let X be a Banach space. A Schauder basis is a sequence (eg)gen in X
with the following property: for every f € X there exists a unique scalar
sequence (cx(f))ken such that

F=> cr(fex.
k=1

The Schauder basis is called unconditional if this sum converges
unconditionally.

Remark:
@ Any Banach space with a Schauder basis is necessarily separable.
@ Not all separable Banach spaces have a Schauder basis (Enflo 1972).

@ The coefficient functionals ¢ are continuous, i.e., belong to X*.



Translations, Modulations, and Scalings

Remark: Many useful bases are constructed by translations, modulations,
and scalings of a given “mother wavelet.”

Lemma

The following are unitary operators on L*(R), which depend strongly
continuously on their parameters a,b € R and ¢ € R\ {0}:

e Translation: T, f(x) = f(x — a).
o Modulation: Eyf(x) := 2™ f(z).
o Scaling (aka. dilation): D.f(x) = ¢~ /2 f(zc™1).

Remark:

@ These are actually group representations; more on this later.



Examples of Bases

Example: Fourier series

e The functions (Ej1)kez are an orthonormal basis in L2([0, 1]).
Example: Gabor bases

@ The functions (Eanﬂ[o,l])kmeZ are an orthonormal basis in L?(R).
Example: Haar bases

@ The functions (Dy;Ty1); ez are an orthonormal basis of L?(R).
@ Here ¢ is the Haar wavelet

1, 0<z<i,
1/}(1’): 717 %§$<17
0, otherwise.

Example: Wavelet bases

@ Replace v by functions with better smoothness or support properties



Limitations of Bases

Requirements: continuous operations for
@ Analysis: encoding f into basis coefficients (cx)
@ Synthesis: decoding f from basis coefficients (cy)

@ Reconstruction: writing f =", cpey.

Limitations:
@ It is often impossible to construct bases with special properties
@ Even a slight modification of a Schauder basis might destroy the basis

property

Idea: use “over-complete” bases, aka. frames
@ Drop linear independence of (ef) and uniqueness of (c)
@ Require continuity of the analysis and synthesis operators
o Get additional benefits such as noise suppression and localization in
time and frequency



Banach Frames

Definition (Grochenig 1991)

Let X be a Banach space, and let Y be a Banach space of sequences
indexed by N. A Banach frame for X with respect to Y is given by

@ Analysis: A bounded linear operator A: X — Y, and

@ Synthesis: A bounded linear operator S: Y — X, such that
@ Reconstruction: So A =1dy.

Remark:
@ The k-th frame coefficient is ¢, := evi 0A € X™*.

o If the unit vectors (d)ken are a Schauder basis in Y, one obtains an
atomic decomposition into frames ¢, := Sd;, € X as follows:

VieX:  f=) clfer

keN

@ Every separable Banach space has a Banach frame.



Examples of Banach frames

Example: Hilbert frames

@ A Banach frame on a Hilbert space H with respect to /2 is a
sequence (ex)ken s-t. for all f € H,

£ < D1 e ul® S Il

keN

Example: Projections
@ The projection of a Schauder basis to a subspace is a Banach frame.
e E.g., the functions (E;1)xcz are a frame but not a basis in L?(I) for
any I C [0,1].
Example: Wavelet frames

e If p € L?(R) N C>(R) is required to have exponential decay and

bounded derivatives, then (Dq;T}1)); kez cannot be a basis but can
be a frame.



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: What are Schauder bases versus frames?

@ Repetition: Give some examples of frames constructed via
translations, scalings, and modulations.

@ Check: Is a Schauder basis a basis?

@ Check: Verify the strong continuity of the translation, scaling, and
modulation group actions.
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Locally compact groups

Definition (Locally compact group)

A locally compact group is a group endowed with a Hausdorff topology
such that the group operations are continuous and every point has a
compact neighborhood.

Theorem (Haar 1933)

Every locally compact group has a left Haar measure, i.e., a non-zero
Radon measure which is invariant under left-multiplication. This measure
is unique up to a constant. Similarly for right Haar measures.

Definition (Unimodular groups)

A group is unimodular if its left Haar measure is right-invariant.




Convolutions

Lemma (Young inequality)
For any p € [1,0], f € L}(Q), and g € LP(G), the convolution

frg(@ /f 9(y 1w)dy=/cf(rvy)g(y‘1)dy

is well-defined, belongs to LP, and || f * gl »qy < | fllL(@)llgllze(c)-

Proof: This follows from Minkowski's integral inequality,

and from the invariance of the LP norm. O

r(@)dY,
G)S/Glf(y)l lg(™ ) Loy

Remark: The same conclusion holds for g x f if GG is unimodular or f has
compact support.



Group Representations

Definition (Representation)

Let G be a locally compact group, and let H be a Hilbert space.

@ A representation of G on H is a strongly continuous group
homomorphism 7: G — L(H).

e 7 is unitary if it takes values in U(H).

e 7 is irreducible if {0} and H are the only invariant closed subspaces
of H, where invariance of V' C H means (V) C V for all g € G.

o T is integrable if it is unitary, irreducible, and [, [(myf, f)r|dg < oo
for some f € H. Similarly for square integrability.

Remark: Unless stated otherwise, all integrals over G are with respect to
the left Haar measure.



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: What is a square integrable representation of a locally
compact group?

@ Check: What condition is more stringent, integrability or square
integrability? Hint: g — (7, f, f) g is continuous and bounded.

@ Check: Suppose that 7 is reducible, can you extract a
subrepresentation? Can you reduce it further down to an irreducible
subrepresentation?

@ Background: How are group representations related to group actions?

@ Background: Look up the proof of Young's and Minkowski's
inequalities!
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Voice transform

Setting: Throughout, we fix a square-integrable representation
m: G — U(H) of a locally compact group G on a Hilbert space H.

Definition (Voice transform)

For any i) € H, the voice transform (aka. representation coefficient) is the
linear map

Vy: H—= C(G),  Vyf(g) = {f,mgd)n-

Remark:
@ The voice transform represents signals in H as coefficients in C(G).

e For any 7 # 0, injectivity of V,, is equivalent to irreducibility of 7.



Orthogonality Relations

Theorem (Duflo-Moore 1976)

There exists a unique densely defined positive self-adjoint operator
A: D(A) C H — H such that

o Vy(v) € L*(G) if and only if ) € D(A), and
e For all fi, fo € H and 1,15 € D(A),

(Vo f1, Vo f2) 12(a) = (f1, fo) m (A2, A1) m.

G is unimodular if and only if A is bounded, and in this case A is a
multiple of the identity.

Remark:
@ This is wrong without the square-integrability assumption on 7.
@ This is difficult to show in general but easy in many specific cases.
@ An immediate consequence is the existence (even density) of such .
o Vy: H — L?(Q) is isometric for any ¢ € D(A) with ||Ay| = 1.



Equivalence to the regular representation

Definition (Regular representation)

The left-regular representation of G is the map

L: G = U(L*Q)), L,F =F(g~).

7 Is unitarily equivalent to a sub-representation of the left-regular
representation, i.e., there exists an isometry V: H — L?(G) such that
Vomy=LyoV holds for all g € G.

Proof: Set V' =V}, for some ¢ € D(A) with ||A¢| =1 and use that

Voﬂ-gl(f)(QQ) = <7T91f7 7ng¢>H = <f7 nglgsz = Lg1 © V(f)(QZ) O



Analysis, Synthesis, and Reconstruction

Lemma

Let ¢ € D(A) with ||Ay| = 1.
o Analysis: Vi: H — L*(G) is an isometry onto its range,

Vy(H) = {F € L*(G) : F = F  Vyi}.

o Synthesis: The adjoint of V; is given by the weak integral

Vi L*(G) - H, VJ(F)zng(g)ﬂg@b dg.

@ Reconstruction: Every f € H satisfies [ = VJ;Vw f-

Remark:
@ This can be seen as a continuous Banach frame.

@ The coefficient space is the reproducing kernel Hilbert space V,(H).



Proof: Analysis, Synthesis, and Reconstruction

Proof:
e Vy, is isometric thanks to the orthogonality relation and ||A%| g = 1.

° VJ is given by the above weak integral because

(FVol) 2o /F (g, fHdg—</F wgwdg,f> .
H
° V¢VJF = I'* V1) because

VeViF(g) = (Vi F.mg)n = (F, Vy(mg¥h)) r2(c)
= (F, LgVyp) r2(qy = (F * V) (g).

@ As V) is isometric, VJVw = Idy and V¢VJ is the orthogonal
projection onto the range of V,;,, which equals the range of Vy V.



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: What is the voice transform, and how does it lead to
signal representations?

@ Check: Where is square integrability of the representation used?

@ Background: There is a definition of continuous frames—can you
guess what it is and/or find it in the literature?

@ Transfer: What is a reproducing kernel Hilbert space, and what is the
relation to the condition F'x V9 = F7?
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Orbits and Coorbits

Setting: m: G — U(H) is a square integrable representation of a locally
compact group G on a Hilbert space H, and A is the Duflo-Moore
operator of .

Remark:

@ The orbit of 7 through ¢ € H is {m¢ : g € G}.
e V* extends the action 7: G x H — H to

V*: L*(G)x D(A) = H,  VjF = /GF(g)ﬂ'gw dg.

Definition
Let X be a Banach subspace of L?(G), and let ¢ € D(A).

@ The orbit space associated to X and ¢ is the subset {V[F': ' € X}
of H with norm | f[| == inf{||F|| : F' € X,V F = f}.

@ The coorbit space associated to X and ) is the set of all f € H such
that Vi, f € X with norm || f|| == ||V | x.

v



Weighted Spaces

Remark:

@ The definitions of orbit and coorbit spaces work best when further
structure is imposed on X.

@ The main examples for X are weighted LP spaces.

Definition

@ A weight function is a continuous function w: G — R which is
submultiplicative and symmetric, i.e.,

w(gh) <w(g)w(h),  w(g) =w(g™").
@ The weighted space L%,(G), p € [1,00], is defined as

Ly(G) ={F: Fwe I’(G)},  |Fl ) = IFwlrc)-

Remark: L%,(G) makes sense for arbitrary measurable functions w.



Properties of Weighted Spaces

Let w be a weight function and p € [1,o0].
@ LL(G) is continuously included in LP(G).
@ The space L,(G) is L-invariant.
© L acts strongly continuously on L%,(G).

Proof:
@ The symmetry of w implies w(g)? = w(g)w(g™") > w(e) > 1.
@ The submodularity of w implies that
ILgF 12y = [(LgF)wl () = 1F(Lg-1w) | o(c)
S w(@)|Fwlec) = w(g)|Fll s (c)-

O It suffices to verify limy . || LyF' — F|| 2y = 0 for F € Co(G). [



Regular Coorbit Spaces

Remark:

@ The following coorbit space Hj ,, plays the role of test functions in
the theory of distributions.

@ More general coorbit spaces, which are not subspaces of H, are
defined later on.

Let w be a weight function.
@ An analyzing vector is a function ¢ € D(A) with ||AY| gz = 1 such
that Vo € LL(G).
o Hi,, is defined as the coorbit space associated to L. (G) and an
analyzing vector 1, i.e.,

Hiyw={f€H:Vufe LG},  Iflm. =IVsflr o




Correspondence Principle

Setting: We fix a weight function w and an analyzing vector .

The voice transform is an isometric isomorphism

Vy: Hiw = {F € LL,(G) : F = F * Vyi}.

Proof:

o X ={F€L.(G): F=FxVy} is well-defined and a Banach
subspace of L?(G) thanks to Young's inequality and w > 1:

1F* Vypbllpzey < NFlnve IVedllzey < IF Ly @l Vel Lz )

@ The definition of the orbit and coorbit spaces is unaffected when
LL(G) is replaced by X. O



Independence of the Analyzing Vector
H; ., does not depend on the choice of analyzing vector 1). \

Proof:
o Let v1,9,3 be analyzing vectors. We will show that V, f € LL(G)
implies Vi, f € LL(G).
@ By the orthogonality relations, one has for any g € G that

Vi |+ Vi 02 (g) = (Vi f, LoV, t02) 12y = (Vi f Vg (Tg¥02)) 2
= (Ao, A1) u (f. mgtho) m = (A2, Ap1) Vi, f(9),
Vi | x Vipyha * Vi3 = (Ao, A¢1>HV¢2f * Vipa 03
= (Atpg, A1) (Avps, A2) u Vi, f-

@ The left-hand side belongs to L. (G) by Young's inequality. Assuming

wlog. that 1)y satisfies (A1, Ao) g # 0 # (Atbg, A)s) i, one
deduces that Vi, f on the right-hand side belongs to L. (G). O




Further Properties
Hy ,, is m-invariant, and 7 acts strongly continuously on it. \

Proof: Correspondence Hiy,, = X == {F € LL(G): F = F % Vy}

e Hi, is m-invariant because X is L-invariant.

@ 7 acts strongly continuously on Hi ,, because L acts strongly
continuously on X. O

H, 4, coincides with the orbit space associated to L} (G) and 1.

Proof:
® Hi, is an orbit space because Hy =V VyHiw = VJL%U(G)- 0



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: What is a (regular) coorbit space?

@ Check: Are weighted L? spaces Banach? Do they increase or
decrease in p?

o Check: If limy . ||LyF — F|12(c) = 0 holds for all Fin a dense
subset of L?(G), why does it then hold for all F?
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Gelfand triples

Definition

A Gelfand triple is a triple (K, H, K*), where K is a topological vector
space, which is densely and continuously included in a Hilbert space H.

Let (K, H,K*) be a Gelfand triple. Then the inner product (-, )y extends
to a sesquilinear form on K* x K.

Proof: Let i: K — H be the inclusion, and let j = (-,-)g: H — H*.
Then ¢*: H* — K* is injective because ¢ has dense range, i* o j includes
H into K*, and the desired extension is just the duality K* x K — R. [J



Gelfand Triples of Coorbit Spaces

Setting: m: G — U(H) is a square-integrable representation with

Duflo—Moore operator A, w is a weight function, and % is an analyzing
vector.

The spaces (Hyw, H, HY ,,) form a Gelfand triple.

Proof:

@ H ., is isomorphic via the voice transform to the space
{F € LL(G) : F = F %V}, which is continuously included in the
space {F € L*(G) : F = F x Vy1}, which is isomorphic via the
inverse voice transform to H.

e Hi ., contains the orbit {my1 : g € G} because

Img¥ll 0 = Ve(mg¥llLy @) = 1 LgVatlli Ly @) S 1IVedlloy @) < oo

The orbit is dense in H because 7 is irreducible. O



Duals of Coorbit Spaces

Remark: As Hj,, plays the role of test functions, Hy ,, plays the role of
distributions.

Definition
The extended voice transform is defined for any f € Hy,, and g € G as

Vo (P)(9) = (fomg) by, > -

Remark: This extends the voice transform on H because the dual pairing
between Hf , and Hy,,, extends the inner product on H.



Correspondence Principle

Remark: Ll (G)* L?/’w(G)

Theorem (Correspondence principle)

Vy: Hf,, — {F € Ll/ 1 F = F % Vy} is an isometric isomorphism.

Proof: In the proof of the correspondence principle for the regular voice
transform, replace the Hilbert inner product on H by the dual pairing
between Hy,, and H . O



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: How does the voice transform extend to duals of coorbit
spaces?

o Check: If (K, H,K*) is a Gelfand triple, and H is seen as a subspace
of K*, how are elements of H applied to elements of K7

e Check: Prove that the topological dual of L. (G) is L‘f?w(G).

@ Transfer: What Gelfand triples are used to define distributions and
tempered distributions?
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Weighted Spaces

Setting: m: G — U(H) is a square-integrable representation with
Duflo—Moore operator A, w is a weight function, and % is an analyzing
vector subject to some further conditions.?

Definition

@ A w-moderate weight is a continuous function m: G — R satisfying
m(ghk) < w(g)m(h)w(k),  g,h.k € G.
@ The weighted space L%, (G) is defined for any p € [1, 0] as

LN(G) ={F:Fme L’(G)},  |Flre,(c) = IFmlLr(c)-

Remark:
@ This extends the def. of L%,(G) since w is a w-moderate weight.

© || llz5(cy is @ norm, but || - ||z () may be only a seminorm.

'See Theorem 3.12 in Dahlke, De Mari, Grohs, Labatte (2015).



Coorbit Spaces

Setting: We fix a w-moderate weight m.

Definition
The coorbit space H), ,, is defined as

Hym :={F € H{,, : Vy(F) € L} (G)}.

Remark:
@ This extends the definition of Hy ,,, and H = Hy .
e H,,, is independent of the choice of analyzing vector 1.

e H,,, coincides as a set with an orbit space.

Theorem (Correspondence principle)

Under an additional condition on 1, the voice transform
Vy: Hym — {F € L1, (G) : F = F x Vyt} is an isometric isomorphism.




Structure of Coorbit Spaces

Uniqueness: Hp, m, = Hp,m, if and only if p; = pa and m1 S mo S my.
Duality: Hy,, = Hg 1 /m for any p € [1,00) and % + % =1
Embeddings: H, ,, is increasing in p and decreasing in m.

Compact Embeddings: H), ,,, embeds compactly in H,, p,, if

T 1 1
m1/mg € L"(G) for some r < - — % > 0.
Complex Interpolation: For any 6 € [0, 1] and p; < oo,
_ wpl_1-6, 6 _ . 1-6,_9
[le,mpsz,mz]H = Hp,m with » = pi + P2 and m = mip o Mmsg.

Generalizations: L1, (G) is a left- and right-invariant solid Banach function
space on (&, and coorbit spaces can be defined for such spaces.



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: How are (general) coorbit spaces H), ,,, defined?

o Check: H,,, C HY

1w

implies L, (G) C Lk (G)*—how can this be
seen directly? Hint: show that m(e) =

m(gg~') S m(g)w(g™).

@ Background: Read up on duality, embedding, and interpolation
properties of LP spaces.
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Towards Banach Frames on Coorbit Spaces

Setting: m: G — U(H) is a square-integrable representation with
Duflo—Moore operator A, w is a weight function, m is a w-moderate

weight, p € [1,00], and % is an analyzing vector subject to some further
conditions.?

Strategy:

o Define a Banach frame for {F € L},(G) : F = F * Vy1} via
left-translations of the kernel V9, i.e., by writing

F= Z ek (F) Ly, Vi)

for a well-chosen sequence of g, € G.

@ Get a Banach frame for Hy, ,, via the correspondence principle.

?See Theorem 3.19 in Dahlke, De Mari, Grohs, Labatte (2015).



Density and Separation

Remark: Intuitively, translations of a kernel by (gi) are a frame if (gz)
spreads out over all of G and does not accumulate anywhere.

Definition
A sequence (g )ren in G is called
@ U-dense if U is a compact neighborhood of e € G and |J,, Ly, U = G.
@ separated if there exists a compact neighborhood U of e € G such
that Ly, U N Ly, U =0 for k # 1.
o relatively separated if it is a finite union of separated sequences.




Banach Frames on Weighted Spaces

Definition

The weighted sequence space /4, is defined as

&= {X: dm e P}, [Alle, = [[Am|e.

If U is a sufficiently small neighborhood of e € G and (gy) is a U-dense
and relatively separated sequence in G, then (Lg, Vy1))ren is a Banach
frame for X .= {F € L},(G) : F = F % Vy1} with respect to {,.

Remark: the frame coefficients are specified in the proof.



Proof: Banach Frames on Weighted Spaces

Proof for p =1 and m = w:
o Let (Wy) be a partition of unity subordinated to (Lg, U).
@ We define some preliminary analysis and synthesis operators:

X5F e (U, F)ragen € by Ly 3 A > MLy Vyth € X.
k

@ These operators are well-defined and continuous: letting
C = supyep w(z), one has

[((¥ks F) 2())kenller, = Z\ U, F) 26 [w(gk)

< CZ Vi, [Flw) 2y = ClI Fll Ly (@)
'

H ZAkLgkwwHLl o S D MllLg Vel )
k w k

<D wlwlgn) Vel = IMe Vil
K



Proof: Banach Frames on Weighted Spaces (cont.)

@ The reconstruction operator (i.e., analysis followed by synthesis),

R: X - X, RF = Z(F, W)Ly, Vi),
keN

tends to Idx as U tends to {e} because for any F' € X,

HF*Vdﬂb—Z(\I’kaF)L? Lg, ¢¢‘
k

LL(G)

= [ ook~ L)Vivds
k

< Uk [Fla) sup [[(Lg = Lo ) Vit )
I g€Lg, U

Ly, (G)

< (U | F)) r2cyw(gn) sup [(Lu = 1)Vt [| L1 ()
k u

< C|Flry (e sup [(Ly —1d)Vypibl| £ () — O



Proof: Banach Frames on Weighted Spaces (cont.)

@ R is invertible for sufficiently small U because Idx is invertible and
invertible operators are open.

@ Any F' € X can be written as

F=RR'F =Y (U4, R7"F) 2Ly Viptb.
keN

@ Thus, the desired Banach frame for X with respect to /. is

er = Lo Vy € X, cp = (U, R ()2 € X5, keN. [



Banach Frames for Coorbit Spaces

If U is a sufficiently small neighborhood of e € G and (gy) is a U-dense
and relatively separated sequence in G, then (mg,¢)ren is a Banach frame
for Hy, ,, with respect to (b, .

Proof: Apply the isomorphism wal: X — Hpm. []



Harmonic Analysis and Neural Networks

o Let G be a sub-group of the affine group GL(R?) x R¢, and define
m: G = U(LP(RY),  map(f)(@) = det(A) 2 F(A7 (@ — b))
@ Then coorbit theory provides continuous and discrete representations
o) = /G F(A,b) det(A)~Y2( A= (2 — b))dAdb

= Z Ck det(Ak)_l/zi/J(Agl(x —br)),
k

where 1) is a suitable analyzing vector, with an equivalence of norms

1M ez, @) = Newlle, = 1 f 1l ey m-

@ These representations can be interpreted as infinite-width multi-layer
perceptrons with activation function 2.



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: How are Banach frames of weighted spaces and coorbit
spaces constructed?

@ Background: Refresh your memory of the definition and construction
of partitions of unity.

@ Check: Why is the set of invertible operators open in the set of
bounded linear operators?

@ Discussion: How could coorbit theory be used to derive approximation
bounds of neural networks?
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Outlook on this week’s discussion and reading session

@ Reading:
— Feichtinger Groechenig (1988): A unified approach to atomic
decompositions
— Dahlke, De Mari, Grohs, Labatte (2015): Harmonic and Applied
Analysis

@ Numerical Example:
— Some wavelet transforms in image analysis.



Summary by learning goals

Having heard this lecture, you can now. ..
@ Describe bases and frames in Hilbert and Banach spaces.
@ Build signal representations from group representations.

@ Interpret such representations as multi-layer perceptrons.
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Overview of Week 6

@ Coorbit Theory, Signal Analysis, and Deep Learning
@ Heisenberg Group

© Modulation Spaces

@ Affine Group

© Wavelet Spaces

@ Shearlet Group

@ Shearlet Coorbit Spaces

© Wrapup



Acknowledgement of Sources

Sources for this lecture:
o Christensen (2016): An introduction to frames and Riesz bases

@ Dahlke, De Mari, Grohs, Labatte (2015): Harmonic and Applied
Analysis

e Feichtinger Grochenig (1988): A unified approach to atomic
decompositions

e Folland (2016): A course in abstract harmonic analysis



Mathematics of Deep Learning, Summer Term 2020
Week 6, Video 1

Coorbit Theory, Signal Analysis, and Deep Learning

Philipp Harms  Lars Niemann

University of Freiburg

UNI
|

FREIBURG



Harmonic Analysis

@ Setting: m: G — U(H) is a strongly continuous irreducible unitary
representation of a locally compact group GG on a Hilbert space H
such that [ [(myf, f)r|?dg < oc for some ¢ € H.

@ Voice transform: For any ¢ € H, the voice transform is the linear map

Vp: H—=C(G),  Vuf(g) = (fimg¥)n.

e Admissibility: the voice transform Vy, is isometric for all ¢ € D(A)
with ||A¢||g = 1, where A is the Duflo-Moore operator. These v are
called admissible.

@ Reproducing kernel spaces: for any admissible v, the voice transform
is an isometric isomorphism onto the space

{F € L*(G) : F x Vyp = F}

with reproducing kernel V1.



Coorbit Theory

e Weighted spaces: for exponents p € [1, 00| and w-moderate weight
functions m: G — R, one defines weighted spaces L%,(G) and
LV, (G), respectively.

@ Analyzing vectors are defined as admissible ¢ with V¢ € L1 (G).

e Coorbit spaces Hy, ,,, are constructed by requiring the voice transform
to be an isomorphism for some (equivalently, all) analyzing vectors :

Viy: Hym —> {F € L (G) : F x Vytp = F}.

@ Banach frames: for suitable analyzing vectors ¢ € D(A) and group
elements (g)ken, one obtains a Banach frame (74, ¢)ren for the
coorbit space Hj, ,,, with respect to a weighted sequence space £1,.

@ Proof by correspondence principle: (Lg, Viy1)ken is a Banach frame
for {F € LY, (G) : F x Vyp = F'} with respect to £5,.



Abelian Groups are not Interesting for Coorbit Theory

Abelian groups have only one-dimensional irreducible representations.

m: G — U(H) is irreducible if and only if its centralizer is trivial, i.e.,

{T'e L(H) : n,T =Ty for all g € G} = span{ldy}.

Proof of the Theorem:
@ The centralizer of 7 is trivial because 7 is irreducible.
@ The operators 7, belong to the centralizer because G is Abelian.
@ Thus, the operators m, are multiples of the identity.

@ Thus, all one-dimensional subspaces are invariant. []



Signal analysis and Deep Learning

Signal Analysis:
@ There are many different group representations with associated voice
transforms.
@ These have a variety of applications in signal analysis such as
time-frequency analysis, multi-resolution analysis, and edge detection.

@ The interpretation varies strongly from case to case.

Deep learning inherits many of the strengths of signal analysis:
@ Many voice transforms are implementable via shallow nets with
activation function equal to the analyzing function.
@ Alternatively, via dictionary learning, they are implementable via deep
nets with other activation functions.
@ In this case, deep learning can adaptively select (i.e., learn) a suitable
analyzing function.



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: Refresh your memory of the voice transform and the
construction of coorbit spaces.

@ Check: As the translation group is Abelian, its representation on
L?(R%) must be reducible—can you find a subrepresentation?

@ Check: Same question for the modulation group. Hint: apply the
Fourier transform.

@ Check: How can dictionary learning be applied to implement signal
transforms via deep networks?

@ Background: Look up the proof of Schur's lemma. For instance, in
[Christensen], [Dahlke e.a.], or [Folland].
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Definition

The Heisenberg group is the set G := R% x R? x S! equipped with the
product topology and the composition

(ala bl, tl) . (ag’ bg, t2) = (al + as, bl + b2,t1t262ﬂib1a2) .

Properties:
@ The Heisenberg group is not Abelian.

@ The Haar measure is the product measure of the three involved
Lebesgue measures.

@ The Heisenberg group is unimodular.



Representation

Definition
The Schrodinger representation 7: G — U(L?(R%)) is defined as

m(a,b,t)f(z) = te>™ =) f(z — a),

where f € L2(R%), (a,b,t) € G, and = € RY.

Remark:
@ 7 can be expressed in terms of translation and modulation as

m(a,b,t)f = te ™ORT, f.

Translations are time shifts, and modulations are frequency shifts.

@ 7 is irreducible and integrable.
o All unit vectors in L2(R?) are admissible because G is unimodular.



Gabor Transform

Remark:

@ The Gabor transform or short-time Fourier transform is the voice
transform of the Schrodinger representation.

@ The torus component t € S' can (and will) be ignored for all practical
purposes.

Definition
For any admissible 1) € L?(R%), the Gabor transform
Vy: L2(RY) — L2(R?9) is given by

Vef(a.b) = | f@hola =)o = (. BTb)om,

where f € L*(R?) and a,b € R%.




Questions to Answer for Yourself / Discuss with Friends

@ Repetition: Describe the Schrodinger representation of the Heisenberg
group. Think about a way of memorizing the group structure.

@ Check: Why can the torus component be ignored for the purpose of
signal analysis?
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Analyzing Functions

Setting: We consider the Schrodinger representation 7 of the Heisenberg
group G on L?(R%).

Let w be a weight function on G. A function ) € L?>(R?) is an analyzing
vector for w if and only if ||¢|| =1 and

/ / |<1/}7EbTa¢>|'U)(a,b) dadb < .
R4 JR4

Remark:

e The Feichtinger algebra Sy is defined as the subspace of L?(R%)
described by the above integrability condition with w = 1.

@ The Gauss function is analyzing! for all polynomial weight functions
w(a,b) = (14 [|p|)*, s € R.

!See [Feichtinger Grochenig 1988, Section 7.1].



Gabor coorbit spaces

Remark: Gabor coorbit spaces are called modulation spaces:

Definition

Let d € N, let m be a w-moderate weight, and let ¢ be an analyzing
vector for w. For any 1 < p,q < 0o, the modulation space M};? consists
of all tempered distributions f € S’ such that

/ (/ [(f, ExTat)) P m(a, b)pda> " db < o0,

with the usual modifications for p, g € {oo}.

Remark:
@ This definition is independent of the choice of w and .

e For p = q, we write M}, .= ME?.



Properties and Examples

The Feichtinger algebra provides a rich repertoire of analyzing vectors
because it

e Contains all f € C.(R%) with Ff € L'(R9).
o Contains the Schwartz space of rapidly decreasing functions.

@ Is invariant under the Heisenberg group and the Fourier transform.

Modulation spaces with constant weights m = 1:
e M} is the Feichtinger algebra Sp.
o M2 is the space L%(RY).

Modulation spaces with polynomial weights m(a, b) := (1 + ||b]|)*:
o M? is the Sobolev (aka. Bessel potential) space H*(R?), for any
s € R. This follows from the respective characterization via frames.



Gabor Frames

Theorem

Let p € [1,00), let s € R, let w(a,b) = (1+ ||b])*!, and let

m(a,b) = (1+ ||b]])*. For any ¢ € My*\ {0} and sufficiently small

o, 8 >0, the vectors (EgyTuat))qpezt form a Banach frame for MP, with
respect to the sequence space

2, = { Oasdapezs 1A = - PaslP(L+ BT < 00}
a,bez4

Proof: For this choice of weight function, no further conditions® on the
analyzing vector v are needed. O

Remark: The result is independent of the enumeration of a,b € Z¢
because the sum in the ¢4, norm converges unconditionally.

?See Theorem 3.19 in Dahlke, De Mari, Grohs, Labatte (2015).



Gabor Frames for Time-Frequency Analysis

Remark: Gabor frames (equivalently, the short-time Fourier transform)
define a uniform tiling of the time-frequency domain:

.

L=i) CIJ‘
E E
= =
5 5
time frequency
signal-domain frequency-domain (FT)
§.. 2 4
i) 13
= =
g %
= 8
@
time time
time-Ifrequency-domain Wavelet-analysis

[Gabor-spectrum STFT)
Figure: [www.ndt .net/article/v07n09/08|



Gabor Frames for Time-Frequency Analysis

' Wi il Kt
AR e s e e s et o el A Imw' 'A.

100 200 300 200 500 500 900 1 CIDD

Figure: Intensity (color-coded) of an audio signal, plotted over time (horizontal)
and frequency (vertical). [Feichtinger (2015): Wiener Amalgams and Gabor
Analysis]



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: Describe the Gabor transform, modulation spaces, and
their role in signal analysis.

@ Check: Compute the analyzing condition more explicitly. Hint:
express the integral da by a convolution and apply the Fourier
transform; see [Feichtinger Grochenig (1988), Section 7.1].

@ Background: Read up on the Gabor transform and short-time Fourier
transform.
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Definition

The affine group is the set G := (R \ {0}) x R equipped with the product
topology and the composition

(a',b) - (a,b) = (d'a,d'b+ ).

Properties:
@ This corresponds to the composition of affine maps.

@ The affine group is not Abelian.

@ The left Haar measure is ﬁda db, and the right Haar measure is

1

mda db, where da db denotes the Lebesgue measure on R2.

@ In particular, the group is not unimodular.



Representation

Definition
The affine representation m: G — U(L?(R)) is defined as

1

71'(67 a)f(y) o= \/m

F(E=Y), feI’R), (a)eG, yeR.

Remark:

@ 7 can be expressed in terms of translation and dilation as
w(a,b)f =TpDof .

@ The representation 7 is irreducible and integrable.!

!lrreducibility fails for the connected subgroup Rso x R.



Admissibility

Lemma

The Duflo—Moore operator associated to 7 is given by

FrE)

J £ER7
€]

Af(§) =
and is defined for all f in

D(A) = {feLQ( ) : /Rm’;(‘)‘ dg<oo}.

.

Remark: Thus, a function ¥ € L%(R) is admissible if and only if it satisfies
the Calderén equation?

FP(©)?
r ¢

2See [Dahlke e.a., Example 2.48.]

e 6=




Wavelet Transform

Remark:
@ Admissible vectors are called wavelets.

@ The wavelet transform is the voice transform of the affine
representation.

Definition

For any admissible ¢ € L%(R), the wavelet transform V,,: L?(R) — L*(G)
is given by

= b
Vyf(a,b) = az dz .

T Ju o




Questions to Answer for Yourself / Discuss with Friends

@ Repetition: Describe the representation of the affine group.

@ Background: Read the computation of the Duflo-Moore operator.
See [Dahlke e.a. (2015), Example 2.48].

o Check: What goes wrong when the affine group is replaced by the
connected subgroup R x R? Hint: see the computation of the
Duflo-Moore operator.

@ Check: What goes wrong for affine groups in higher dimension. Hint:
see the computation of the Duflo-Moore operator.

@ Discussion: Can you think of a sub-group of the affine group which
has an integrable representation in higher dimension? Hint: restrict to
scalar multiples of orthogonal matrices.
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Analyzing functions

Setting: We consider the representation 7 of affine group G' on L?(R).

Let w be a weight function on G. A function 1 € L*(R) is an analyzing
vector for w if and only if ||Av|| = 1 and

[ . Do) T < oo
G |al

Examples:!
@ Schwartz functions whose Fourier transform is compactly supported in
R\ {0} are analyzing for any weight function.

@ Compactly supported functions with sufficient smoothness and
sufficiently many vanishing moments are analyzing for weight
functions of the form w(a,b) = |a|® + |a|~*.

!See [Dahlke e.a., Theorems 3.24 and 3.35].



Wavelet Coorbit Spaces

Let m be a w-moderate weight, and let ¥ be an analyzing vector for w.

For any p € [1, 00], the wavelet coorbit space Hp,,, consists of all
tempered distributions f € S’ such that

da db
/ [ TLDA) mla P T < o0,
G

with the usual modification for p = co.

Remark:
@ This definition is independent of the choice of w and .
@ The main example is m(a,b) = |a|™* with s € R, and in this case
H,, coincides® with the homogeneous Besov space B, L/2=1/p.

?See [Feichtinger Grochenig 1998] or [Dahlke e.a. 2015]



Wavelet Frames

Theorem

Letp € [1,00), s € R, w(a,b) = |a|® + |a|~*, and m(a,b) := |a|~*. For
any w-admissible symmetric 1) subject to some further conditions® and
sufficiently small oo > 1 and 3 > 0, the vectors (TpagyDaet))qpez form a
Banach frame for H,, ,,, with respect to the sequence space

= { Capdapez : Al = > Paplfa™? < oo}.
a,beZ

Proof: For any given U and sufficiently small & > 1 and 8 > 0, the
sequence (ea®, €a®Bb)cci_11},.aez,bez is U-dense and relatively
separated. ]

See Theorem 3.19 in Dahlke, De Mari, Grohs, Labatte (2015).



Wavelet Frames for Multi-Resolution Analysis

Remark: Wavelet frames define a non-uniform tiling of the time-frequency
domain, which corresponds to fast sampling of high frequencies and slow
sampling of low frequencies.

.

amplitude
amplitude

time frequency

signal-domain frequency-domain (FT)
>_‘1k S

El =
2 2
- [}
]

time time

timeJfrequency-domain Wavelet-analysis

[Zabor-spectrum STFT)
Figure: [www.ndt .net/article/v07n09/08|



Wavelet Frames for Multi-Resolution Analysis

100000 -

140000
120000
100000
80000
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40000

20000

Figure: Top: A seismic signal. Bottom: The signal intensity (color-coded) plotted
over time (horizontal) and scale (vertical). From obspy.org



Application to Image Analysis

Remark: The JPEG2000 standard uses lossy compression based on
Cohen-Daubechies—Feauveau (CDF) wavelets.

Figure: Wavelet coefficients at scale a = 1 (top left), differences to scale a = 1/2
(neighboring squares), and differences to scale a = 1/4 (neighboring squares).
From en.wikipedia.org/wiki/JPEG_2000



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: Describe wavelet spaces and the wavelet transform.

@ Check: Draw the locations of the group elements in the definition of
wavelet frames.

@ Check: These group elements accumulate near a = 0; why are they
still relatively separated?

@ Check: Verify that m(a,b) := |a|® is moderate for
w(a,b) = |a|® + |a|~*.

@ Background: Read up on wavelets and multi-resolution analysis.
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Notation: For a € R* :=R\ {0} and b € R, let

=0 seym) ¢ 5= )

denote the parabolic scaling matrix and the shear matrix, respectively.

Definition

The full shear group is the set G := R* x R x R? equipped with the
product topology and the composition

(a1,b1,t1) - (a2, b, ta) = (araz, by + bav/|a1|, t1 + Sp, A, t2) -

Properties:
@ The full shearlet group is not Abelian.
o The left Haar measure is given by |a| > da dbdt.



Representation

Definition
The shearlet representation 7: G — U(L?(R?)) is defined as

w(a,b,1)f(x) = |a| "1 f(A;'S; (= — 1)),

where f € L%(R?), (a,b,t) € G, and = € R2.

Remark:

@ It can be written in terms of translations and the left-regular
representation of parabolic scaling and shear matrices:

ﬂ(a7 b, t)f(y) = TtLSbAaf .

@ The representation 7 is irreducible and square-integrable.

@ However, as an aside, the representation of the reduced shear group
R, x R x R? is reducible.



Admissibility

Lemma

The Duflo—Moore operator associated to  is given by

_ Ff(&n)

Af(&? 77) = (g’ 77) S RQv

[
and is defined for all f in

D(A) = {feLQ(Rz):/ M<oo}.

R &)

Remark: Thus, a function ¢ € L?(R?) is admissible if and only if

F 2
/R2 | w‘g;ml d dn = 1.



Shearlet Transform

Remark:
@ Admissible vectors are called shearlets.

@ The shearlet transform is the voice transform of the shearlet
representation.

Definition

For any admissible ¢ € L?(IR?), the shearlet transform
Vy: L?(R?) — L*(G) is given by

Vyf(g) = (f,mgf)-

Remark: Generalizations to higher dimensions are possible.



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: Describe the shearlet group and its representation.
@ Check: Draw the action of a shear matrix on a rectangle.
@ Background: Skim through the computation of the Haar measure and

the admissibility condition. Hint: this can be found in [Dahlke e.a.
(2015), Lemma 3.27 and Proposition 3.30].
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Analyzing Functions

Setting: We consider the representation of the shearlet group G on
L?(R?).

Examples of analyzing functions:*

@ Schwartz functions whose Fourier transform is compactly supported in
R2\ ({0} x R) are analyzing for every locally integrable weight
function w(a,b,t) = w(a,b).

o Compactly supported functions with sufficient smoothness and
sufficiently many vanishing moments are analyzing for weight
functions w(a,b,t) = w(a) = |a|” + |a|™" with r € R.

!See [Dahlke e.a., Theorems 3.33 and 3.35]



Shearlet Coorbit Spaces

Definition

Let m be a w-moderate weight, and let ¥ be an analyzing vector for w.
For any p € [1, 0], the shearlet coorbit space Hj, ,,, consists of all
tempered distributions f € S’ such that

/G (5, mg )P mig)Pdy < oo,

with the usual modification for p = cc.

Remark:
@ This definition is independent of the choice of w and .

@ In the most important case m(a,b,t) = |a|™® with s € R, there are
comparison results to Besov spaces.



Shearlet Frames

Letp € [1,00), s € R, w(a,b,t) = |a|® + |a|~%, and m(a,b,t) = |a|~*. For
suitable? 1) and sufficiently small o > 1, 8 > 0, and 7 > 0, the vectors

(779"7[) Lg= (aa’ aa/Qﬂb’ Saa/QBbAaaTt)>a€Z bz tel

form a Banach frame for H), ,, with respect to the sequence space

= { Qapdapiez : A, = D PapilPa™? < oof.

a,bteZ

Proof:?2 For any given U and sufficiently small « > 1, >0, and 7 > 0,
the following group elements are U-dense and relatively separated:

2
(ea”, a®/ b, Saa/2,3bAaa Tt)ee{—l,l},aEZ,bGZ,tGZ

?See [Dahlke, Theorems 3.36 and 3.38].



Frequency Localization of Shearlet Frames

Remark: 1 is typically chosen as F1(&1,&2) = Fu1(&1) Fpa(€2/&1) with
supp Fyn C [-2,—1/2] U [1/2,2] and supp Fip2 C [—1,1].

&

Figure: Support of v after scaling by a and shearing by b := s. [Dahlke e.a.
(2015)]



Shearlet Frames for Edge Detection

Remark: The decay of Vi, f(a,b,t) for a \, 0 is
e Fast when t is a regular point of f, and
@ Slow when ¢ lies on an edge of f which is normal to (1,5).

Figure: Indicator function f, points ¢ with attached vectors (1,b), and decay of
Vi f(a,b,t) for a 0. [Dahlke e.a., 2015]



Shearlet Frames for Edge Detection

Example: edge detection based on shearlet coefficients.

Figure: [Gibert (2014): Discrete Shearlet Transform on GPU with applications in
anomaly detection and denoising]



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: Describe the construction of shearlet coorbit spaces.

@ Check: Draw the locations of the scaling and shearing coefficients of
the shearlet frame.

@ Discussion: How could one redefine shearlets to achieve symmetry
with respect to the horizontal and vertical axes in R?? Hint: define
horizontal and vertical shearlets.

@ Discussion: Are shearlets directional wavelets? In what sense?

@ Background: Find out about ridgelets and curvelets and compare
them to shearlets.
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Outlook on this week’s discussion and reading session

@ Reading:
— Grochenig (2001): Foundations of Time-Frequency Analysis
— Mallat (2009): A Wavelet Tour of Signal Processing

— Kutyniok and Labate (2012): Shearlets - Multiscale Analysis for
Multivariate Data



Summary by learning goals

Having heard this lecture, you can now ...

@ Describe Schrodinger, wavelet, and shearlet representations and the
associated modulation, wavelet, and shearlet spaces.

@ Explain the time-frequency tilings of the associated signal transforms.

@ Implement these signal transforms by neural networks.
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Overview of Week 7

@ Rate-Distortion Theory

© Hypercube Embeddings and Ball Coverings
© Dictionaries as Encoders

@ Frames as Dictionaries

© Networks as Encoders

@ Dictionaries as Networks

a Wrapup



Acknowledgement of Sources

Sources for this lecture:

@ Bolcskei, Grohs, Kutyniok, Petersen (2017): Optimal approximation
with sparsely connected deep neural networks. In: SIAM Journal on
Mathematics of Data Science 1.1, pp. 8-45

e Dahlke, De Mari, Grohs, Labatte (2015): Harmonic and Applied
Analysis. Birkhauser.
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Encoding, Decoding, and Distortion

Let H be a normed space, let C C H be a signal class, and let [ € N.

@ The set of binary encoders of C with runlength [ is defined as
E={E:C—{0,1}'}.

@ The set of binary decoders with runlength [ is defined as
D= {D:{0,1}' - H}.

o The distortion of an encoder-decoder pair (E, D) € &' x D' is defined
as

&ED%=%QU—D@UMM-

Remark: Alternatively, in probabilistic settings, one can consider the
expected distortion E[|| f — D(E(f))]|x]-



Encoding Rate

Definition
The optimal encoding rate of a signal class C in a normed space H is
defined as

s5..(C) == sup {S > 0’ (E,D%gglxDl 5(E,D) = O(l_s)} .

Remark:
@ The optimal encoding rate quantifies the complexity of a signal class.
@ The interpretation is information-theoretic: for any s < s%,.(C), one
can compress signals f € C using [-bit encodings with distortion [~%.
@ Rate-distortion theory is the mathematical branch of information

theory which studies data compression problems by analyzing the
trade-off between compression rates and distortion.



Examples: Signal Classes

@ Continuously differentiable functions:
Ch(C) ={f e L*RY) | f € C*, || fllcx < K, supp f C C}, where
C C R% is a smooth bounded domain.

@ Piecewise continuously differentiable functions:

CRP(I) = {filjpe) + falien) | c €1, fu, fo € Ci(I)}, where
I = (a,b) is an open interval.

@ Star-shaped images:
STAR? = {1 | B is interior of Jordan curve p € C2, ||p|lo2 < K}.

o Cartoon images:
CART%( = {fl]lB -+ f2 | 1p € STAR2 R f1,f2 € C%(([O, 1]2)}.
o Textures: TEXT’}QM ={sin(Mf)g| f,g € Cf(([O, 11}
o Mutilated functions: MUTILE. == {g(u -)h | g € Cfgpw(R), h e
Cr([0,19), w e R, lul| = 1}.

Remark: All introduced signal classes are relatively compact in L?(R%).



Examples: Optimal Encoding Rates

Remark: The main goal of this week’s lecture is to establish the following

optimal encoding rates and to show that they are achieved by deep neural
networks.

enc(ck ( )) = k/d el’lC(CART2 )
® enc(clﬁpw( )) =k. enC(TEXT ) - k/2
o s:.(STARZ) = enC(MUTILk ) =k/d.

Sketch of Proof:

@ Upper bounds on encoding rates: Hypercubes are difficult to encode.
If C contains hypercubes, then C is difficult to encode. See Video 2.

@ Lower bounds on encoding rates: If signals in C have Banach frame
coefficients with fast decay, then picking the n largest among the first
n* frame coefficients defines a good encoder. See Video 4. Ol



Paradigm: Analysis by Synthesis

Figure: Real-world images (top) can be analyzed by synthesizing them from
simpler image elements (bottom) such as star-shaped domains, cartoons, or
textures. Additional benefits are compression and denoising. [Dahlke, Fig. 5.1-3]



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: What is an endoding-decoding pair, and how are optimal
encoding rates defined?

@ Check: How many bits are needed to encode a natural number in
{1,...,n}?

@ Background: The definition of star-shaped images involves Jordan
curves—can you recall their definition and main properties?

@ Context: Read some introductory articles (e.g. on Wikipedia) on data
compression and rate-distortion theory.



Mathematics of Deep Learning, Summer Term 2020
Week 7, Video 2

Hypercube Embeddings and Ball Coverings

Philipp Harms  Lars Niemann

University of Freiburg

UNI
|

FREIBURG



Hypercube Embeddings

Definition (Donoho 2001)
Let C be a signal class in , and let p > 0.

@ A hypercube of dimension m € N and side-length § > 0 is a set of the

form .
{f +) et
i=1

where f € C, and 1; are orthogonal functions in H with ||¢;|| > 4.

o The signal class C is said to contain a copy of £} if it contains for each
k € N a hypercube with dimension mj, and side-length 0 such that

€ € {0,1}} ,

5k —0 and m; P =0(5) ask— oo

Remark: A ball of radius 7 in ¢P contains hypercubes of dimension m € N
with side-length rm=1/7.



Hypercube Embeddings and Encoding Rates

Remark: For many signal classes, hypercube embeddings are easy to
construct and provide (sharp) upper bounds on the encoding rate.

If a signal class C in H contains a copy of £}, for some p € (0,2], then

1
5

1
st (C) < —
()_p




Proof: Hypercube Embeddings and Encoding Rates

Idea of proof: (See [Dahlke e.a., Theorem 5.12] for a full proof.)
@ Hypercubes of dimension m can be identified with bit streams in
{0,1}™.
o Recall that the Hamming distance (aka. ¢! or Manhattan distance)
between two bit streams is the number of unequal bits.

@ Chernoff's bounds imply that for any compression rate « € (0, 1),
there exists C' > 0 such that for any m € N and encoder-decoder

E: {0,1}™ — {0,1}lem D: {0,1}l*m — {0,1}™,

the distortion in the Hamming distance is lower-bounded by C'm.

@ This translates into a lower bound on the encoding rate of a
hypercube as well as its containing signal class. O



Examples: Upper Bounds on Optimal Encoding Rates

Remark: The following are special cases of the above theorem.

Corollary

The following upper bounds on encoding rates are achieved via hypercube
embeddings:

o s5..(CE(C)) < k/d via embedding of LG+
o 55, (CRPY(I)) < k via embedding ofﬁo/(}hL 2)
o s%..(STARZ) < 1 via embedding offg/S
o 5,.(CART%) < 1 via embedding 01‘62/3
° C(TEXT u) < k/2 via embedding of€2/(k+1)
MUTILK) < k/d via embedding of ¢ /( +2)

2)

enc(




Examples: Upper Bounds on Optimal Encoding Rates

Idea of proof: For a fixed bump function v, one uses hypercubes of the
following forms:

° Z?:_ol e;)(nx — i) for piece-wise continuously differentiable functions,
1 .

4 ]l{||x||§1} +Z?:O 62(]1{||x|\§1/n} — ﬂ{”xHSl}) for star—shaped Images, or

° ZZL;:11 €5 sin (n=Fy(na — i)Y (ny — 7)) for textures, etc.

See [Dahlke e.a., Theorem 5.17] for a full proof. O



Digression: Kolmogorov Entropy

Remark:
@ Encoding rates are closely related to covering numbers and
Kolmogorov entropy.
@ We have already encountered the Kolmogorov entropy in the context
of statistical learning theory.
@ Unfortunately, covering numbers are often difficult to compute and
therefore of rather theoretical interest.

Definition
Let H be a metric space, and let C C H be a relatively compact subset.

@ The covering number of C is defined for any € > 0 as the smallest
number N(C) of e-balls required to cover C.

@ The Kolmogorov entropy of C is defined as H(C) = logy(N¢(C)).




Digression: Kolmogorov Entropy and Encoding Rates

Let C C H be a relatively compact signal class in a normed space H. Then
the optimal encoding rate s%,.(C) is related to the Kolmogorov entropy
He(C) by

Senc(C) = sup {s >0:H(C) = (9(6_5)} .

Proof:
e Given a pair (F, D) of length [ that achieves distortion ¢, the e-balls
centered at D(&), £ € {0,1}!, cover C.
o Conversely, given ¢ > 0, we can find N, := 2/<(©) centers whose
e-neighborhoods cover C. Encode C using the binary representation of
the nearest center, and decode by reversing this process. O



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: How are upper bounds on the encoding rate obtained
from hypercube embeddings?

@ Check: Show that relatively compact signal classes have finite
covering numbers.

@ Background: Skim through the construction of hypercube
embeddings for specific signal classes in [Dahlke e.a., Theorem 5.17].

@ Transfer: The upper bounds on the optimal encoding rates decay
inversely proportional to the dimension—an instance of the curse of
dimensionality.
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Repetition: Approximation Rates of Dictionaries

Definition

A dictionary (¢x)aea in H achieves an approximation rate of (hy,)nen if

o(Zn(),C) =sup inf |f—gls=0(hn) asn— oo,
fec 9€En(9)

where ¥,,(¢) denotes the set of n-term linear combinations in ¢.

Remark:

@ A dense dictionary ¢ in H achieves any approximation rate for any
signal class. Nevertheless, it is ill-suited for efficient encoding of
functions.

@ This motivates the requirement of polynomial-depth search, which is
described next.

@ We restrict ourselves to polynomial rates h, =n7%, s > 0, as these
are most relevant.



Dictionary Approximation with Polynomial-Depth Search

Definition (Donoho 2001)

Let ¢ = (¢i)ien be a dictionary, 7 a univariate polynomial, C a signal class
in H#, and n € N.

@ The set of n-term linear combinations in ¢ with polynomial-depth
search is defined as

n(n)
Sr(@) =4 > citilei € R with flcflo < n

=1

@ The approximation rate of ¢ with polynomial-depth search is defined
as

Siia(C,0) i=sup {5 > O3 ssup_inf g~ fllu = O(n™*)}

Remark: Here, the dictionary needs to be ordered, i.e., indexed over N.



Encoding via Dictionaries

Remark: Polynomial-depth search leads to the desired link between
dictionary approximation rates and encoding rates:

For any dictionary ¢ and bounded signal class C in H,

SZHC(C) Z szict (C7 (;5) .

Remark:
@ A dictionary ¢ is called rate-optimal if equality holds above.

o Explicit dictionary approximation rates can be obtained for Hilbert or
Banach frames, as shown in the next video.



Proof: Encoding via Dictionaries

Proof:

o We start by constructing an encoder. For any s < s%,(C, ¢), there
exists a polynomial m and a constant C' > 0 such that for all n € N
and f € C, there exist coefficients ¢; € R with ||c[|o < n such that

7r(n
Hf Ci¢i <Cn™°.
H

@ Theset A, :=={i € N: ¢ # 0} can be encoded using O(nlogn) bits
thanks to the assumption of polynomial-depth search.

o Applying the Gram-Schmidt orthonormalization to ¢a,, == (¢a)rea,
yields an orthonormal set QSA (qb,\),\eAn Some ¢y may be zero.



Proof: Encoding via Dictionaries (cont.)

@ Determine coefficients ¢y uniquely by

dadr= D gy, @ =0if gy =0
AeAn AeAn
@ Note that

<Cn~*
H

Hf > &

AEA,

and that the sequence ¢ is /?-bounded uniformly in n and f. (Here
enters the boundedness of C.)

@ Rounding the coefficients ¢, up to multiples of n~(+3) encodes them
with a bit string of length O(nlogn).

o Altogether, this gives an encoding procedure E; : C — {0, 1} with
length | = O(nlogn).



Proof: Decoding via Dictionaries

@ Decoding is done by reversing this process: starting from a bit string
&, reconstruct the set A,, and the rounded approximations ¢y of ¢y,
and define the decoder

Dp: {0,1} = H, D)= )_ éxta-

AEA,

@ It remains to control the distortion:

|f — Di(Ei(f) ||H—Hf > e

AEA,

H

Hf CMg,\ +

AEA,

D> ada— Y éada
H

AEA, AEA,

H

a1 _
< Cn™% 4+ max |éy — é\|n2 < Cn”°. O
AEA,



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: How are lower bounds on encoding rates obtained from
dictionary approximation rates?

@ Check: The approximation rate of a dense dictionary is arbitrarily
high—what about the approximation rate with polynomial-depth
search?

@ Check: Verify that the coefficients ¢ after Gram—Schmidt
orthogonalization are #2-bounded uniformly in n € N and f € C.

Hint: [[2l;2 = | 325 &dalln.

@ Transfer: Nonlinear approximation spaces C are defined by the
requirement that s*(C, ¢) = s for given s € R.
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Repetition: Hilbert Frames

Remark: Recall that Hilbert frames are Banach frames in Hilbert spaces
with respect to the sequence space ¢2; this boils down to the following:

@ A Hilbert frame in a Hilbert space H is a dictionary ¢ = (¢))xen S-t.

VieH:  IfI1E S D] KA onul® S I

A€A

o A dual frame for ¢ is a complementary dictionary ¢ = (¢x)xea S.t.

VieH:  f=) (fioauda= D (féa)ud

AEA AEA

Remark: Every Hilbert frame has a dual frame, for instance the canonical
one, which is determined by ¢, = > (du, dr)2 @A, or the one from the
definition of Banach frames.



Weak (P Spaces

Remark: Recall that a quasi-norm is a norm without a triangle inequality.

Definition

The weak ¢P-quasinorm of a sequence ¢ := (¢ )ken is defined for any
p >0 as
lellber = supt® 4k € N : |ex| > ¢},

and the space w/P consists of all sequences with finite weak #P-quasinorm.

Remark:
@ For any p > 1, the space /P embeds continuously in w/¢P because

el > thﬂ{k:\ckbt} + Z kP L ey <ty = tPFLE < fer] >t}
K K

@ The space wfP coincides with the Lorentz space /P°°, is complete,
and is normable for p > 1. Weak LP spaces are defined similarly.



Approximation via Frames

Remark: We next show that weak ¢ bounds on Hilbert frame coefficients
translate into dictionary approximation rates.

Theorem

Let (¢n)nen be a Hilbert frame with dual frame (¢ )nen in a Hilbert space
‘H, and let C be a signal class in H which satisfies the weak (P bound

?é‘é H((ﬂ <l~5n>H)n€NHweP =%

and, for some @ > 0, the ¢? tail bound

sup 3" (£, $0)? = O(n ).

fec >n

Then s%;..(C, ¢) >

==
D=




Proof: Approximation via Frames

Proof: Claim 1: The w/? bound implies that o(%,(¢),C) = O(n™?).

@ For any signal f € C, picking the n largest frame coefficients defines
an n-term approximation

fn = chl(ﬁkl 5

i<n

were ¢, is a non-increasing rearrangement of ¢ == (f, ¢x) .
o The definition of the w¢P norm implies |c;.| < i~'/P because

e, |78 < e, [ #{k € Nt Jex| > [ex, [} < el -
o Together with the frame property of ¢ this yields

I1f = £all> S e, P S D i <n™, where s =1 —

>n i>n

)

N[

where the last inequality follows from an elementary calculation. This
proves Claim 1.



Proof: Approximation via Frames

Claim 2: The /2 tail bound implies (X7 (¢),C) = O(n~*) for suitable 7.
o Define 7(n) := nl?s/o1.
e For any signal f € C, picking the first m(n) frame coefficients defines
an approximation f,, with

If = Fll? S S [ danl® < (m(n) ™" <72

i>m(n)

@ By the previous claim, picking the n largest frame coefficients of f,
defines an approximation f, with

an - an%{ < n=%.
@ Taken together, this implies

1f = fallw S 0%

which proves Claim 2 and establishes the theorem. O



Examples: Lower Bounds on Optimal Encoding Rates

Remark: The following lower bounds are sharp and are obtained as special
cases of the previous theorem:

Corollary

The following lower bounds on encoding rates are achieved via frames:
0 5:..(CE(C)) > k/d via wavelets, shearlets, and many more
52 (CRPU(I)) > k via wavelets
s%..(STARZ) > 1 via curvelets and shearlets
st..(CARTZ) > 1 via curvelets and shearlets
C(TEXT u) > k/2 via wave atoms

o st (MUTIL K) > k/d via ridgelets

Proof: Verify the conditions of the previous theorem for the specified
frames; see [Dahlke e.a., Theorem 5.51]. O



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: How are dictionary approximation rates obtained from
weak ¢P bounds on Hilbert frame coefficients?

@ Background: Find the definition of wave atoms and have a look at
some pictures of wave atoms. Hint: [Demanet and Ying (2007):
Wave atoms and sparsity of oscillatory patterns]

@ Discussion: Are the encoders/decoders obtained via frame
approximations constructive and numerically implementable?

@ Discussion: How could the theory be generalized to Banach frames,
and what kind of results would you expect from this?
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Neural Network Approximation Rates

Remark: Neural networks with constrained memory can be seen as
encoders.

Definition

Let C be a signal class in a normed function space H on R¢, let M € N,
let = be a univariate polynomial, and let A be a subset of R.

@ The set NNJ\"}[ of neural networks with quantized weights is defined
as the set of neural networks ® with input dimension d, output
dimension 1, and at most M non-zero weights belonging to A.

@ The effective network approximation rate of C is defined as

sin(€) = sup {s > 0|3, 3(Anr)aren : #4u = O(x(M)),

sup inf |IR(®) — fl = OM )},
fFeC deNN M

where R is defined using some fixed activation function p € C'(R).




Encoding via Neural Networks

Remark: The memory constraint imposed via weight quantization yields
the desired link between network approximation rates and encoding rates:

For any signal class C,

Remark:
@ Neural networks are called rate-optimal for C if equality holds above.

@ The theorem implies a lower bound on the network connectivity,
namely, an approximation error of € requires approximately e!/5enc(C)
non-zero network weights.



Proof: Encoding via Neural Networks

Proof:
o Let s < s}/, (C), and choose 7, (Arr)pen, and C such that

VM eN: sup inf |R(®)— fllu <CM™°, #Ay <nm(M).
FEC DENNIM

@ Thus, for any given f € C and M € N, there exists a network
& € NNM with |R(®) — fllyw < CM 5.

o We write £ < M for the number of edges, L < M for the number of
layers, Ny := d for the input dimension, Ny, ..., N, for the numbers
of neurons per layer, and N := Zz%:o Ny < 2F.

@ We will show that ® can be encoded in a bit string of length
O(M log M). This yields an encoder-decoder pair with distortion

IDEF)) = fl = IR(®) = fll = O(M™)

thereby establishing the theorem.



Proof: Encoding via Neural Networks (cont.)

@ We encode the architecture of ® in a bit string:
— The number E of edges is encoded by a string of E' 1's, followed by a
single 0.
— The number L of layers is encoded by a string of [log, E bits, namely,
by the binary representation of L — 1 with left-padded zeros.
— Then (Ny,...,Nr) is encoded in a string of (L + 1)[log, E + 1] bits.

@ We encode the topology of ® in a bit string:

— To each neuron, we associate a unique index ¢ € {1,..., N}, noting
that this index can be encoded in a string b; of [log, E] + 1 bits.

— For each neuron 7, we output the concatenation of the bit strings b; of
all children j, followed by a zero string of length 2[log, E'| + 2 to
signal the transition to neuron i + 1.

@ We encode the weights of ® in a bit string:

— Each weight requires [log, 7(M)] bits.

— The nodal weights are encoded in (N7 + - - - + N;)[log, w(M)] bits.

— The edge weights are encoded in E[log, w(M)] bits.

@ Overall, this requires O(M log, M) bits, as claimed. O



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: What is the effective network approximation rate, and
why is it upper-bounded by the encoding rate?

@ Check: Why can the logarithmic factors in the rate computations be
ignored?

@ Check: In the last proof we constructed an encoder—what does the
corresponding decoder look like?

@ Discussion: What does the result say about deep learning? What are
limitations of the result?
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Representation of Dictionaries by Neural Networks

Setting: H = L?(2) for some Q C R?, and p: R — R is globally Lipschitz
continuous or differentiable with polynomially bounded first derivative.

Definition

A dictionary ¢ = (¢;)ien in H is said to be effectively representable by
neural networks if there exists L, M € N and a bi-variate polynomial 7
such that for every € € (0,1/2) and i € N there exists a neural network ®
with M(®) < M, L(®) < L, and weights bounded by m(i,e!), such that

[¢i — R(®)[|# < e

Remark:

@ The crucial point, also compared to our former setting for dictionary
learning, is the requirement of polynomially bounded weights.

o For affine systems, i.e., dictionaries of affine transformations of a
mother function 1), it suffices to check effective representability of .



Quantization of Neural Networks

Remark: We will need a seemingly stronger property, namely effective
representation by quantized networks:

In the definition of effective representability, it can be assumed without
loss of generality that the weights of ® are quantized in the sense that
they belong to the set

7(i,€)Z N [~ (i,e ), m(i, e ).




Proof: Quantization of Neural Networks

Sketch of proof for Lipschitz activation functions p:

o For single-layer networks x +— Aix + b1, which by definition are just
affine maps, the quantization error of the network is proportional to
the quantization error of the weights.

e For double-layer networks x +— Agp(Ajx + b1) + by, the quantization
error of the single-layer sub-network is amplified polynomially via the
multiplication by As.

@ By induction, the same holds for multi-layer networks.

@ Thus, the quantization error of the network is O(e) if the
quantization error of the weights is O(¢") for sufficiently high k, with
additional polynomial dependence on 1.

For activation functions with polynomially bounded first derivative we refer
to [Bolcskei e.a., Lemma 3.3]. O



Transfer of Approximation

Remark: Approximation rates for dictionaries transfer to approximation
rates for neural networks if the dictionary is effectively represented by
neural networks.

If ¢ is effectively representable by neural networks and C is bounded, then

8.7\/'/\/'(6) > Sjiict(ca ¢)




Proof: Transfer of Approximation

Proof: Dictionary learning.
@ For any s < s3;..(C, ¢), there are approximations f, of f € C s.t.
m(n)
fo=Dn(En(f)) =Y _cidi,  |fa— fllw=0(n"").
i=1

@ In the theorem on encoding via dictionaries in Video 3 we have shown
that the coefficients ¢; can be chosen in a set of cardinality
polynomially bounded in n.

@ The dictionary functions ¢;, ¢ € {1,...,7(n)}, can be effectively
represented by neural networks ®;, up to an approximation error of
order O(n~*), with weights polynomially bounded in n.

@ By the quantization lemma, it can be assumed without loss of
generality that the weights of the networks ®; belong to a set of
cardinality polynomially bounded in n.

@ Taking linear combinations produces a network approximation of f,
with weights in a set of cardinality polynomially bounded in n and
approximation error O(n™*). O



Rate-Optimal Approximation by Neural Networks

If ¢ is a rate-optimal dictionary for C, and ¢ is effectively represented by
neural networks, then neural networks are rate-optimal for C.

Proof: The following rates are equal,

o o o

$iict (€, 0) = Senc(C) = sy (C) = 53t (C, 9);

because
@ the dictionary ¢ is rate-optimal,
@ quantized neural networks are encoders, as shown in Video 5, and

© quantized dictionary approximations are quantized neural networks, as
shown in the last theorem. O

Remark: This corollary applies to all examples of signal classes and
dictionaries discussed so far.



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: Why and under what conditions is the effective network
approximation rate lower-bounded by the dictionary approximation
rate?

@ Check: How wide and deep are the approximating networks?

@ Check: How does the present transfer-of-approximation result differ
from the one of Week 37

@ Discussion: What does the result say about deep learning? What are
limitations of the result?
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Outlook on this week’s discussion and reading session

@ Reading:
— Bolcskei, Grohs, Kutyniok, Petersen (2017): Optimal approximation
with sparsely connected deep neural networks
— Donoho (2001): Sparse Components of Images and Optimal Atomic
Decompositions. In: Constructive Approximation 17, pp. 353-382
— Shannon (1959): Coding Theorems for a Discrete Source with a
Fidelity Criterion. In: International Convention Record 7, pp. 325-350



Summary by learning goals

Having heard this lecture, you can now ...

@ Derive lower bounds on effective network approximation rates from
harmonic analysis.

@ Derive upper bounds on effective network approximation rates from
rate-distortion theory.

@ Explain why neural networks are optimal descriptors of a wide variety
of signal classes.
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Overview of Week 8

@ Operations on ReLU Networks

© ReLU Representation of Saw-Tooth Functions
© Saw-Tooth Approximation of the Square Function
e ReLU Approximation of Multiplication

e ReLU Approximation of Analytic Functions

© Wrapup
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Repetition: RelLU Activation Function

Definition

The rectified linear unit (ReLU) activation function is defined as

pr(z) = max(0, x), z € R.

o = N W s v o N o
— T T T T T

8 -6 -4 -2 0 2 4 6 8

Remark: The ReLU function is not sigmoidal but discriminatory.



Networks of Bounded Width with Bounded Weights

Remark:
@ Previously, the focus was on wide networks of bounded depth.

@ For ReLU networks, we focus on deep networks of bounded width.

Definition
Let ® = ((A1,01),...,(AL,br)) be a neural network with architecture
(.Z\]'O,]\/vl7 ey NL)

@ The width of ® is defined as W(®) := max; N;.

@ The weight bound of ® is defined as

B(®) := max{max || Ai| 0,00, max |||},

where the norms || - ||oc,00 @and || - [|oo are the maxima of the absolute
values of the matrix or vector entries, respectively.




ReLU Representation of the Identity

For each d € N and L € N, the identity on R% can be realized as
Idga = R(®Y,) for a ReLU network ®, with B(®4, ) =1,
W(@,) = 2d, and L(®},) = L.

Proof: For L =1 we use <I>£l‘711 = ((Idga,0)), and for L > 2, the network

Id
oM, = <<< 1§d ) ,o) ,(Idde,O),...(Idde,O),((Ide,—Ide),0)>
b — Rd
has the desired properties thanks to the algebraic relations

pr(z) — pr(—x) =z,  pr(pr(z)) = pr(®). O



Problem: Lack of Sparsity in Network Concatenations

Example: Lack of sparsity in network concatenations.
@ Let n € N and define the neural network ® by

@ = ((A1,0),(A42,0)),

where A} = (1,...,1)T € R™! and Ay = (1,...,1) € RI*",
o & realizes the map

Rozr (z,...,2) = (zy4,...,24) = x4 + -+ 24 =nazy € R
@ Then M(®) = 2n but M(® e ®) = 2n + n? because
DPed = ((Al,O), (AlAQ,O), (AQ,O))

@ Hence, the number of weights of a concatenated network scales
quadratically in the number of weights of the individual networks.



Solution: Sparse Concatenation

Remark: The lack of sparsity of concatenations motivates the following
definition:

Definition

The sparse concatenation of a neural network ®' with input dimension d
and neural network ®5 with output dimension d is defined as

' © D= 0! o Dif) 0 P?,

where @fidQ is the 2-layer ReLU representation of the identity on R%.

Remark: Similarly, using ®11, with L > 2, one can define sparse
concatenations of increased depth.



Concatenation versus Sparse Concatenation

Top: Two neural networks, Middle: Sparse Concatenation, Bottom:
Concatenation. [Figure from Petersen, Ch. 3]



Properties of Sparse Concatenation

If ®' has input dimension d and ®5 has output dimension d, then the
sparse concatenation ®' ® ®? satisfies
R(®' ® %) = R(®') o R(D?),
L(®' ® %) = L(®!) + L(d?),
M(®! ® @) < 2(M(®') + M(®?)),
W(d! © 0?) < max(W (1), W(®?),2d),
B(®! ® %) < max(B(®!), B(9?))

Remark: Most importantly, the number of weights increases linearly rather
than quadratically, and the weights remain bounded.



Proof: Properties of Sparse Concatenation

Proof:

@ Sparse concatenation realizes function composition because
R(®' o @}, 0 %) = R(D') o R(PY,) o R(D?) = R(®') o R(D?).

@ The width, depth, weight bound, and number of weights can be
estimated from the following explicit formula:

((A1,01), - (AL, b1,)) © (AL, 07), ..., (AL, b))

2 12 2 2 A7 b7,
= (A17b1)""7( L2—17bL2—1)7 _ A2 v\ p2 )
Lo Lo

((A%’ _A%)’ b%)’ (A%7b%)’ LR (A}q’ b}q)) .



Skip Connections

Remark: Recall that a network ® = ((Ay,b1),...,(AL, b)) can be
represented as a computational graph with edges corresponding to the
non-zero entries of the matrices A;.

Definition

A skip connection is an edge between non-adjacent layers in the
computational graph of a network.

Remark:
@ Networks with skip connections have been highly successful in image
recognition.

@ The RelLU representation of the identity allows one to rewrite
networks with skip connections as networks without skip connections.



Deep Linear Combinations of Networks

Remark:
@ The following implementation of linear combinations increases the
depth, and not the width, of the networks.
@ As scalar multiplication does not affect the network structure, we
focus on sums of networks.

Lemma
For any networks ®1, ..., ®; with input dimension d and output dimension
n, there exists a network ® with B(®) < max; B(®;),

W(®) < max; W(®) + 2d + 2n, and L(®) = >, L(®;) such that

R(®) = ZR(Q)Z').




Proof: Deep Linear Combinations of Networks

Proof:

o Let "™ and ®428 pe the single-layer networks realizing the maps

sum: R x R™ x R" 3 (z,9, 2) — (z,y + 2) € RY x R,
diag: R x R" 5 (z,9) — (z,z,y) € R? x R? x R™.

@ Then the sum with skip connections
RY x R™ 3 (x,y) — (x, R(®;)(z) +y) € R x R"
is realized by the network
Wy = O o FP (Ol ), @1, Ol 1)) @ 9%,

which satisfies B(¥;) < max{B(®;), 1}, W(¥;) < W(®;) + 2d + 10,
L(Y;) = L(®;).



Proof: Deep Linear Combinations of Networks

o Let ®P' and & be the single-layer networks realizing the maps

pr: R x R" 5 (z,y) — y € R,
ins: R? 5z +— (x,0) € R? x R™.

@ Then the network ® ;== ®P* e U; ® --- ® U, @ ™ has the desired
properties. O



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: How can the identity be realized using ReLU networks?

@ Repetition: What is sparse concatenation, and how does it differ from
non-sparse concatenation?

@ Repetition: What are skip connections, what are they good for, and
how can they be implemented using ReLU networks?

@ Discussion: To what extent are the results of this video limited to
RelLU networks?
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RelLU Representation of the Hat Function

Lemma

The hat function
F(z) = pr(2z) — 2pr(22 — 1) + pr(2z — 2)
equals the ReL U realization of the network ®"®' := ((Ay,b1), (A2,0)) with
A =(2,2,2)T, b :=(0,-1,-2)T, Ay:=(1,-2,1).
This network satisfies B(®") = 2, W(®Pat) = 3, and L(®") = 2.
4

Wy oWp omy 1




RelLU Representation of Saw-Tooth Functions

Theorem

For any n € N, the saw-tooth function F,, given by F, (x) =0 for
xz ¢ (0,1) and

Fo(x) 2" (x —i27"M), x € [i27", (1 +1)27"], ¢ even,
xXr) =
" M((i4+1)27" —x), ze[i27" (i+1)27", i odd,

equals the Rel.U realization of the concatenated network ®,, = " ®hat
with B(®,) <4, W(®,) <3, and L(®,) =n+ 1.

Proof:
e F,, is the n-fold composition of hat functions.

@ Thus, the n-fold concatenation " ®"8" has the desired properties. [



Visualization of Saw-Tooth Functions

Top Left: Fp, Bottom Right: F5, Bottom Left: Fj.

[Figure from Petersen, Ch. 3]



The Role of Depth

Remark: The theorem is surprising for the following reason:
@ The realization of a shallow network ® with two layers and input
dimension 1 is piece-wise linear with at most W(®) pieces.

o Similarly, networks of depth bounded by L have at most W(®)X~!
pieces.

@ In contrast, the previously introduced deep networks realize the
saw-tooth function F,,, which has exponentially many pieces in L(®).

@ Thus, saw-tooth functions F;, can be represented very efficiently by
deep networks, but not very efficiently by shallow networks.



Questions to Answer for Yourself / Discuss with Friends

Repetition: How can saw-tooth functions be represented by deep
RelLU networks?

@ Check: Why can the realization of a two-layer network ® have at
most M(®) pieces?

Check: Verify that the saw-tooth function is a composition of hat
functions.

Background: Can you show that the RelLU function is discriminatory?
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Saw-Tooth Approximation of the Square Function

Setting: Let F,, n € N, denote the saw-tooth functions of Video 2.

Lemma

The piece-wise linear functions

n
Hy(z) =2z— )Y Fi(x)2™®*, neN, zeR,
k=1

approximate the square function at an exponential rate:

sup |:c2 - Hn(x)| < 972(n41) neN.
z€[0,1]

Remark: This makes us optimistic that, using sufficiently deep networks,
we can approximate the square function efficiently.



Visualizing the Approximation of the Square Function

34 4

1/4 4

1/4 1/2 3,4 1

2

272k of the square function 22

Figure: Approximants H,(z) =2 — Y ,_, Fi(x)
[Figure from Petersen, Ch. 3]



Proof: Approximating the Square Function by Saw-Tooths

Proof:

@ By induction, the function H,, is piecewise linear with breakpoints
k27" for k € {0,...,2"}, and H,(x) = 22 at the breakpoints.
e By convexity, H,(z) > x? for x € [0,1].
e For any x between the breakpoints ¢ := k27" and u := (k + 1)27",
2 u—a

|Hn(z) — 2*| = Hy(2) — 2° = u—€£2+u—€u -z,

@ This quadratic function assumes its maximum at its unique critical
point *, and one easily verifies that

2
R B e e

O



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: How can the square function be approximated by linear
combinations of saw-tooth functions?

@ Check: Verify that a secant approximation of the square function is
worst half-way between the abscissas of the intersection.

Discussion: How could the saw-tooth approximation of the square
function be implemented by RelLU networks. Spoiler alert: think
about this before you watch the next video.
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Approximating the Square Function

Remark: As an auxiliary result, we will approximate the square function by
ReLU networks, building on the saw-tooth approximations of the square
function.

Lemma
The square function can be approximated by ReL U networks at an
exponential rate:

Vn €N 36 : B(®) < 4, W(®) < 5,L(®) = n +2,

sup |:c2 — R(@)(az)’ < 97 Ant1)
z€[—1,1]




Attempted Proof: Approximating the Square Function

Attempted proof: Strategy of Yarotsky (2017).

@ Approximate the square function by saw-tooth functions: For any
n €N,

sup |x2 — Hn(x)| < 272t H,(z) =z — Z F272k,
z€[0,1] k<n

Represent each saw-tooth function by a network: Fy = R(e*®").
Use skip connections to get networks of equal depth: Fj, = R(®y)
with @, == ‘I)Ifln,k © oF P/,

@ Take linear combinations of ®1,...,®, to obtain networks of width
proportional to n.

o Alternatively, using deep linear combinations, one obtains networks of
depth proportional to n?.

@ In any case, this strategy is sub-optimal. O



Proof: Approximating the Square Function

Proof: Strategy of Perekrestenko e.a. (2018).
@ As before, approximate the square by saw-tooth functions H,,:

sup |:c2 - Hn(x)| < 27 2n+1) H,(x)=z— Z F, 272k,
z€[0,1] k<n

@ Recall that F), is the n-fold composition of the hat function
F(x) = 2pr(x) — 4pr(z — 3) + 2pr(z — 1),
and note that H,(x) = H,_1(z) — 272" F, ().
@ This yields the recursion
Fo(@) = 2pR(Fo-1(2)) — 4pr(Fa—1(2) = 3) + 2pr(Fa-1(z) — 1),
Hy(2) = pr(Hn-1(2)) = pr(=Hn-1(2)) — 272" Fy (),

where the term F),(z) on the right-hand side can be substituted by a
term involving the functions F,,_1(x) using the first equation.



Proof: Approximating the Square Function (cont.)

@ Each recursive step corresponds to a network layer:

(1) =wen (w2 (fi1).

2 _2—2n+1 T x1
4 2—2n+2 o

Wi(z)=1| 2 272+ z3 |,
0 1 T4
0 -1 xIs5
1 0 0
1 0 1/2

Wo(z)=|1 0 <$1>— 1
0 1 [ \"2 0
0 -1 0

@ Thus, using non-sparse concatenation e, the iteration for H,, with
Fy(z) = |z| and Hy(x) = |x| can be realized by a ReLU network ® of
depth n + 2, width 5, and weights bounded by 4. O



Approximating Multiplication

Remark: The previous lemma on approximation of the square function
implies the following theorem:

Theorem

Multiplication can be approximated by RelLU networks at an exponential
rate:

Vn € N 3@ : B(®) < 8, W(®) < 10,L(®) = n + 2,

sup |zy — R(®)(z,y)| <2771
z,y€[—1,1]

Remark: On domains z,y € [— K, K], the weight bound changes to a
quadratic polynomial in K.



Proof: Approximating Multiplication

Proof:
@ By polarization, we have for z,y € [—1,1] that

2 2
[ty [Ty
o= (5 - (%) “
@ Approximate the square function on [—1, 1] with precision 22(n+1) by
a neural network ®¢ with B(®g) < 4, W(®y) < 5, and
L(®g) =n+2.
@ Define neural networks ®; and ®5 as

1 1

@ As the realization of ¢ := ®5 ¢ FP(P(, ®() @ P; equals (%) with
squares replaced by R(®g), the error is at most 27271, O



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: How can multiplication be approximated by RelLU
networks at an exponential rate?

@ Transfer: Compare the ReLU approximation to the sigmoidal
approximation of multiplication. See Week 3.

@ Discussion: Using harmonic analysis we previously established
polynomial upper bounds on network approximation rates—are they in
contradiction to the exponential approximation rate established here?
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Approximating Monomials

Lemma

Monomials can be approximated by RelL U networks at an exponential rate:

Vd,p,n € NViy,...,i, €{1,...,d} 3®:
B(®) < 8, W(®) < 2d + 10, L(®) = p(n + 2),

sup |:ci1 20007, = R(q))| (z) < g—2n—1
z€[—1,1]4

Remark:
@ Via dictionary learning, this leads to optimal polynomial
approximation rates for many signal classes.
@ More interestingly, in contrast to our previous results, it also leads to

exponential approximation rates for real-analytic functions, including
e.g. sinusoidal functions and oscillatory textures.



Proof: Approximating Monomials

Proof:
e Forany i € {1,...,d}, the multiplication with skip connections
(xla e 7‘Td7y) — (xla e 7xd7xiy)

can be approximated by a network ¥; with B(;) <8,

sup ”(.Il, <o d,y 'rly) - R(\I”L)(‘Tla -y X, y)”oo < 2—2774—1‘
Z1,esZa,yE[—1,1]

@ As the realizations of W; are 1-Lipschitz and bounded by 1, the net

= (0> 1),0)) o Wiy © -+ © Wiy & (<<OI(($;) ’ <0ﬂfd>)>

satisfies B(®) < 8, W(®) < 2d + 10, L(®) = p(n + 3), and

sup |5Ui1 g, — R(®) (2, ... ,xd)‘ <272l O
Z1,..,xg€[—1,1]



Real-Analytic Functions

Definition

A function f: (—r,7)¢ — R is real-analytic if it is given by a power series

flz) = Z apr®, x € (—rr)s,

for some coefficients (ay)end-

Remark:
o The power series converges absolutely on (—7,7)%

@ Thus, if 7 > 1, then a is summable, i.e., [la||p = >, cna Jar] < 0.



Approximating Real-Analytic Functions

Real-analytic functions can be approximated by ReLU networks:

Vd € N> V6 > 0 38 > 0 Ve € (0,€) V(ag)yene € £F 3P :

B(®) <8 Z lak|, W(®) < (2d + 10),L(®) < (e(d—l5 logy L + 1))2d,
keNd

sup Z akxk — R((I))(aj‘) < QGHGkHZL
x€[—1+6,1-6]4 keNd

2d)

Remark: Note that the error decays exponentially in LY/ (29 because

2d
L(®) < (e(% log, % + 1)) & e < exp(—dd(e LY — 1)),



Approximating Real-Analytic Functions

Proof:
e Without loss of generality, ||ax| = 1.

o Truncation: Let p = [}logy 1], f(2) == 3 ;e ar®,
fp(.I) = ZkENip akxk. Then

sup [f(z) = fp(z)| < (1= d)F <.
z€[~1+4,1-0]d

@ Monomial approximation: Let n = [% log, 5 Approximate each
monomial 2* by a network ®; with B(®) < 8, W(®) < 2d + 10,
L(®x) =p(n+2), and

sup |zF — R(®p)(z)| <271 <.
x€[—1,1]4



Approximating Real-Analytic Functions

@ Deep linear combinations of the (pzd) monomials: there is a network

® with B(®) < 8, W(®) < 2d + 11, L(®) = p(n +2) (1),

sup [fp(z) —R(®)(z)] <e.
z€[—1,1]4

@ Depth bound: for sufficiently small € and € < €,

L(®) :p(n+2)<p;d) =p(n+2) (p+4d) d' (p+1)

d
<p(n+2) (ij) =p(n+2) (e(§ + 1))d

< (e(% log, % + 1))2[17

where the last inequality follows by an elementary calculation from
the definitions of p and n and the assumption d > 2. O



Questions to Answer for Yourself / Discuss with Friends

@ Repetition: How can real-analytic functions be approximated by RelLU
networks at an exponential rate?

@ Background: What is the difference between smooth, real-analytic,
and holomorphic functions?

o Check: Prove the inequality d! > (d/e)?, which was used in the last
proof. Hint: d?/d! is a summand in the series expansion of e

@ Discussion: Can real-analytic functions be approximated by shallow
networks at an exponential rate?

@ Transfer: What other assumptions on the signal class besides real
analyticity might increase the approximation rate?
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Outlook on this week’s discussion and reading session

@ Reading:

— VYarotsky (2017): Error bounds for approximations with deep RelLU
networks. Neural Networks 94, pp. 103-114.

— Perekrestenko, Grohs, Elbrachter, Bolcskei (2018): The universal
approximation power of finite-width deep ReLU Networks.
arXiv:1806.01528

— E, Wang (2018): Exponential convergence of the deep neural
approximation for analytic functions. arXiv:1807.00297



Summary by learning goals

Having heard this lecture, you can now ...

o Establish exponential rates for the approximation of real-analytic
functions by deep RelLU networks.

@ Explain the role of skip connections in this construction.



Review and Outlook

@ Topics covered in this lecture series:

Statistical learning theory

Universal approximation theorems
Dictionary learning
Kolmogorov—Arnold representation
Harmonic analysis

Information theory

ReLU networks and the role of depth

@ Topics not covered in this lecture series: (non-exhaustive)

Residual, recurrent, and adversarial networks: auto-encoders
Manifold assumptions on the data distribution
Generalization capability and implicit regularization

Many practical issues



